Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #ifndef V8_HEAP_H_
     29 #define V8_HEAP_H_
     30 
     31 #include <cmath>
     32 
     33 #include "allocation.h"
     34 #include "assert-scope.h"
     35 #include "globals.h"
     36 #include "incremental-marking.h"
     37 #include "list.h"
     38 #include "mark-compact.h"
     39 #include "objects-visiting.h"
     40 #include "spaces.h"
     41 #include "splay-tree-inl.h"
     42 #include "store-buffer.h"
     43 #include "v8-counters.h"
     44 #include "v8globals.h"
     45 
     46 namespace v8 {
     47 namespace internal {
     48 
     49 // Defines all the roots in Heap.
     50 #define STRONG_ROOT_LIST(V)                                                    \
     51   V(Map, byte_array_map, ByteArrayMap)                                         \
     52   V(Map, free_space_map, FreeSpaceMap)                                         \
     53   V(Map, one_pointer_filler_map, OnePointerFillerMap)                          \
     54   V(Map, two_pointer_filler_map, TwoPointerFillerMap)                          \
     55   /* Cluster the most popular ones in a few cache lines here at the top.    */ \
     56   V(Smi, store_buffer_top, StoreBufferTop)                                     \
     57   V(Oddball, undefined_value, UndefinedValue)                                  \
     58   V(Oddball, the_hole_value, TheHoleValue)                                     \
     59   V(Oddball, null_value, NullValue)                                            \
     60   V(Oddball, true_value, TrueValue)                                            \
     61   V(Oddball, false_value, FalseValue)                                          \
     62   V(Oddball, uninitialized_value, UninitializedValue)                          \
     63   V(Map, cell_map, CellMap)                                                    \
     64   V(Map, global_property_cell_map, GlobalPropertyCellMap)                      \
     65   V(Map, shared_function_info_map, SharedFunctionInfoMap)                      \
     66   V(Map, meta_map, MetaMap)                                                    \
     67   V(Map, heap_number_map, HeapNumberMap)                                       \
     68   V(Map, native_context_map, NativeContextMap)                                 \
     69   V(Map, fixed_array_map, FixedArrayMap)                                       \
     70   V(Map, code_map, CodeMap)                                                    \
     71   V(Map, scope_info_map, ScopeInfoMap)                                         \
     72   V(Map, fixed_cow_array_map, FixedCOWArrayMap)                                \
     73   V(Map, fixed_double_array_map, FixedDoubleArrayMap)                          \
     74   V(Map, constant_pool_array_map, ConstantPoolArrayMap)                        \
     75   V(Object, no_interceptor_result_sentinel, NoInterceptorResultSentinel)       \
     76   V(Map, hash_table_map, HashTableMap)                                         \
     77   V(FixedArray, empty_fixed_array, EmptyFixedArray)                            \
     78   V(ByteArray, empty_byte_array, EmptyByteArray)                               \
     79   V(DescriptorArray, empty_descriptor_array, EmptyDescriptorArray)             \
     80   V(Smi, stack_limit, StackLimit)                                              \
     81   V(Oddball, arguments_marker, ArgumentsMarker)                                \
     82   /* The roots above this line should be boring from a GC point of view.    */ \
     83   /* This means they are never in new space and never on a page that is     */ \
     84   /* being compacted.                                                       */ \
     85   V(FixedArray, number_string_cache, NumberStringCache)                        \
     86   V(Object, instanceof_cache_function, InstanceofCacheFunction)                \
     87   V(Object, instanceof_cache_map, InstanceofCacheMap)                          \
     88   V(Object, instanceof_cache_answer, InstanceofCacheAnswer)                    \
     89   V(FixedArray, single_character_string_cache, SingleCharacterStringCache)     \
     90   V(FixedArray, string_split_cache, StringSplitCache)                          \
     91   V(FixedArray, regexp_multiple_cache, RegExpMultipleCache)                    \
     92   V(Object, termination_exception, TerminationException)                       \
     93   V(Smi, hash_seed, HashSeed)                                                  \
     94   V(Map, symbol_map, SymbolMap)                                                \
     95   V(Map, string_map, StringMap)                                                \
     96   V(Map, ascii_string_map, AsciiStringMap)                                     \
     97   V(Map, cons_string_map, ConsStringMap)                                       \
     98   V(Map, cons_ascii_string_map, ConsAsciiStringMap)                            \
     99   V(Map, sliced_string_map, SlicedStringMap)                                   \
    100   V(Map, sliced_ascii_string_map, SlicedAsciiStringMap)                        \
    101   V(Map, external_string_map, ExternalStringMap)                               \
    102   V(Map,                                                                       \
    103     external_string_with_one_byte_data_map,                                    \
    104     ExternalStringWithOneByteDataMap)                                          \
    105   V(Map, external_ascii_string_map, ExternalAsciiStringMap)                    \
    106   V(Map, short_external_string_map, ShortExternalStringMap)                    \
    107   V(Map,                                                                       \
    108     short_external_string_with_one_byte_data_map,                              \
    109     ShortExternalStringWithOneByteDataMap)                                     \
    110   V(Map, internalized_string_map, InternalizedStringMap)                       \
    111   V(Map, ascii_internalized_string_map, AsciiInternalizedStringMap)            \
    112   V(Map, cons_internalized_string_map, ConsInternalizedStringMap)              \
    113   V(Map, cons_ascii_internalized_string_map, ConsAsciiInternalizedStringMap)   \
    114   V(Map,                                                                       \
    115     external_internalized_string_map,                                          \
    116     ExternalInternalizedStringMap)                                             \
    117   V(Map,                                                                       \
    118     external_internalized_string_with_one_byte_data_map,                       \
    119     ExternalInternalizedStringWithOneByteDataMap)                              \
    120   V(Map,                                                                       \
    121     external_ascii_internalized_string_map,                                    \
    122     ExternalAsciiInternalizedStringMap)                                        \
    123   V(Map,                                                                       \
    124     short_external_internalized_string_map,                                    \
    125     ShortExternalInternalizedStringMap)                                        \
    126   V(Map,                                                                       \
    127     short_external_internalized_string_with_one_byte_data_map,                 \
    128     ShortExternalInternalizedStringWithOneByteDataMap)                         \
    129   V(Map,                                                                       \
    130     short_external_ascii_internalized_string_map,                              \
    131     ShortExternalAsciiInternalizedStringMap)                                   \
    132   V(Map, short_external_ascii_string_map, ShortExternalAsciiStringMap)         \
    133   V(Map, undetectable_string_map, UndetectableStringMap)                       \
    134   V(Map, undetectable_ascii_string_map, UndetectableAsciiStringMap)            \
    135   V(Map, external_byte_array_map, ExternalByteArrayMap)                        \
    136   V(Map, external_unsigned_byte_array_map, ExternalUnsignedByteArrayMap)       \
    137   V(Map, external_short_array_map, ExternalShortArrayMap)                      \
    138   V(Map, external_unsigned_short_array_map, ExternalUnsignedShortArrayMap)     \
    139   V(Map, external_int_array_map, ExternalIntArrayMap)                          \
    140   V(Map, external_unsigned_int_array_map, ExternalUnsignedIntArrayMap)         \
    141   V(Map, external_float_array_map, ExternalFloatArrayMap)                      \
    142   V(Map, external_double_array_map, ExternalDoubleArrayMap)                    \
    143   V(Map, external_pixel_array_map, ExternalPixelArrayMap)                      \
    144   V(ExternalArray, empty_external_byte_array,                                  \
    145       EmptyExternalByteArray)                                                  \
    146   V(ExternalArray, empty_external_unsigned_byte_array,                         \
    147       EmptyExternalUnsignedByteArray)                                          \
    148   V(ExternalArray, empty_external_short_array, EmptyExternalShortArray)        \
    149   V(ExternalArray, empty_external_unsigned_short_array,                        \
    150       EmptyExternalUnsignedShortArray)                                         \
    151   V(ExternalArray, empty_external_int_array, EmptyExternalIntArray)            \
    152   V(ExternalArray, empty_external_unsigned_int_array,                          \
    153       EmptyExternalUnsignedIntArray)                                           \
    154   V(ExternalArray, empty_external_float_array, EmptyExternalFloatArray)        \
    155   V(ExternalArray, empty_external_double_array, EmptyExternalDoubleArray)      \
    156   V(ExternalArray, empty_external_pixel_array,                                 \
    157       EmptyExternalPixelArray)                                                 \
    158   V(Map, non_strict_arguments_elements_map, NonStrictArgumentsElementsMap)     \
    159   V(Map, function_context_map, FunctionContextMap)                             \
    160   V(Map, catch_context_map, CatchContextMap)                                   \
    161   V(Map, with_context_map, WithContextMap)                                     \
    162   V(Map, block_context_map, BlockContextMap)                                   \
    163   V(Map, module_context_map, ModuleContextMap)                                 \
    164   V(Map, global_context_map, GlobalContextMap)                                 \
    165   V(Map, oddball_map, OddballMap)                                              \
    166   V(Map, message_object_map, JSMessageObjectMap)                               \
    167   V(Map, foreign_map, ForeignMap)                                              \
    168   V(HeapNumber, nan_value, NanValue)                                           \
    169   V(HeapNumber, infinity_value, InfinityValue)                                 \
    170   V(HeapNumber, minus_zero_value, MinusZeroValue)                              \
    171   V(Map, neander_map, NeanderMap)                                              \
    172   V(JSObject, message_listeners, MessageListeners)                             \
    173   V(UnseededNumberDictionary, code_stubs, CodeStubs)                           \
    174   V(UnseededNumberDictionary, non_monomorphic_cache, NonMonomorphicCache)      \
    175   V(PolymorphicCodeCache, polymorphic_code_cache, PolymorphicCodeCache)        \
    176   V(Code, js_entry_code, JsEntryCode)                                          \
    177   V(Code, js_construct_entry_code, JsConstructEntryCode)                       \
    178   V(FixedArray, natives_source_cache, NativesSourceCache)                      \
    179   V(Smi, last_script_id, LastScriptId)                                         \
    180   V(Script, empty_script, EmptyScript)                                         \
    181   V(Smi, real_stack_limit, RealStackLimit)                                     \
    182   V(NameDictionary, intrinsic_function_names, IntrinsicFunctionNames)          \
    183   V(Smi, arguments_adaptor_deopt_pc_offset, ArgumentsAdaptorDeoptPCOffset)     \
    184   V(Smi, construct_stub_deopt_pc_offset, ConstructStubDeoptPCOffset)           \
    185   V(Smi, getter_stub_deopt_pc_offset, GetterStubDeoptPCOffset)                 \
    186   V(Smi, setter_stub_deopt_pc_offset, SetterStubDeoptPCOffset)                 \
    187   V(JSObject, observation_state, ObservationState)                             \
    188   V(Map, external_map, ExternalMap)                                            \
    189   V(Symbol, frozen_symbol, FrozenSymbol)                                       \
    190   V(Symbol, elements_transition_symbol, ElementsTransitionSymbol)              \
    191   V(SeededNumberDictionary, empty_slow_element_dictionary,                     \
    192       EmptySlowElementDictionary)                                              \
    193   V(Symbol, observed_symbol, ObservedSymbol)
    194 
    195 #define ROOT_LIST(V)                                  \
    196   STRONG_ROOT_LIST(V)                                 \
    197   V(StringTable, string_table, StringTable)
    198 
    199 #define INTERNALIZED_STRING_LIST(V)                                      \
    200   V(Array_string, "Array")                                               \
    201   V(Object_string, "Object")                                             \
    202   V(proto_string, "__proto__")                                           \
    203   V(arguments_string, "arguments")                                       \
    204   V(Arguments_string, "Arguments")                                       \
    205   V(call_string, "call")                                                 \
    206   V(apply_string, "apply")                                               \
    207   V(caller_string, "caller")                                             \
    208   V(boolean_string, "boolean")                                           \
    209   V(Boolean_string, "Boolean")                                           \
    210   V(callee_string, "callee")                                             \
    211   V(constructor_string, "constructor")                                   \
    212   V(dot_result_string, ".result")                                        \
    213   V(dot_for_string, ".for.")                                             \
    214   V(dot_iterator_string, ".iterator")                                    \
    215   V(dot_generator_object_string, ".generator_object")                    \
    216   V(eval_string, "eval")                                                 \
    217   V(empty_string, "")                                                    \
    218   V(function_string, "function")                                         \
    219   V(length_string, "length")                                             \
    220   V(module_string, "module")                                             \
    221   V(name_string, "name")                                                 \
    222   V(native_string, "native")                                             \
    223   V(null_string, "null")                                                 \
    224   V(number_string, "number")                                             \
    225   V(Number_string, "Number")                                             \
    226   V(nan_string, "NaN")                                                   \
    227   V(RegExp_string, "RegExp")                                             \
    228   V(source_string, "source")                                             \
    229   V(global_string, "global")                                             \
    230   V(ignore_case_string, "ignoreCase")                                    \
    231   V(multiline_string, "multiline")                                       \
    232   V(input_string, "input")                                               \
    233   V(index_string, "index")                                               \
    234   V(last_index_string, "lastIndex")                                      \
    235   V(object_string, "object")                                             \
    236   V(literals_string, "literals")                                         \
    237   V(prototype_string, "prototype")                                       \
    238   V(string_string, "string")                                             \
    239   V(String_string, "String")                                             \
    240   V(symbol_string, "symbol")                                             \
    241   V(Symbol_string, "Symbol")                                             \
    242   V(Date_string, "Date")                                                 \
    243   V(this_string, "this")                                                 \
    244   V(to_string_string, "toString")                                        \
    245   V(char_at_string, "CharAt")                                            \
    246   V(undefined_string, "undefined")                                       \
    247   V(value_of_string, "valueOf")                                          \
    248   V(stack_string, "stack")                                               \
    249   V(toJSON_string, "toJSON")                                             \
    250   V(InitializeVarGlobal_string, "InitializeVarGlobal")                   \
    251   V(InitializeConstGlobal_string, "InitializeConstGlobal")               \
    252   V(KeyedLoadElementMonomorphic_string,                                  \
    253     "KeyedLoadElementMonomorphic")                                       \
    254   V(KeyedStoreElementMonomorphic_string,                                 \
    255     "KeyedStoreElementMonomorphic")                                      \
    256   V(stack_overflow_string, "kStackOverflowBoilerplate")                  \
    257   V(illegal_access_string, "illegal access")                             \
    258   V(illegal_execution_state_string, "illegal execution state")           \
    259   V(get_string, "get")                                                   \
    260   V(set_string, "set")                                                   \
    261   V(map_field_string, "%map")                                            \
    262   V(elements_field_string, "%elements")                                  \
    263   V(length_field_string, "%length")                                      \
    264   V(cell_value_string, "%cell_value")                                    \
    265   V(function_class_string, "Function")                                   \
    266   V(illegal_argument_string, "illegal argument")                         \
    267   V(MakeReferenceError_string, "MakeReferenceError")                     \
    268   V(MakeSyntaxError_string, "MakeSyntaxError")                           \
    269   V(MakeTypeError_string, "MakeTypeError")                               \
    270   V(invalid_lhs_in_assignment_string, "invalid_lhs_in_assignment")       \
    271   V(invalid_lhs_in_for_in_string, "invalid_lhs_in_for_in")               \
    272   V(invalid_lhs_in_postfix_op_string, "invalid_lhs_in_postfix_op")       \
    273   V(invalid_lhs_in_prefix_op_string, "invalid_lhs_in_prefix_op")         \
    274   V(illegal_return_string, "illegal_return")                             \
    275   V(illegal_break_string, "illegal_break")                               \
    276   V(illegal_continue_string, "illegal_continue")                         \
    277   V(unknown_label_string, "unknown_label")                               \
    278   V(redeclaration_string, "redeclaration")                               \
    279   V(space_string, " ")                                                   \
    280   V(exec_string, "exec")                                                 \
    281   V(zero_string, "0")                                                    \
    282   V(global_eval_string, "GlobalEval")                                    \
    283   V(identity_hash_string, "v8::IdentityHash")                            \
    284   V(closure_string, "(closure)")                                         \
    285   V(use_strict_string, "use strict")                                     \
    286   V(dot_string, ".")                                                     \
    287   V(anonymous_function_string, "(anonymous function)")                   \
    288   V(compare_ic_string, "==")                                             \
    289   V(strict_compare_ic_string, "===")                                     \
    290   V(infinity_string, "Infinity")                                         \
    291   V(minus_infinity_string, "-Infinity")                                  \
    292   V(hidden_stack_trace_string, "v8::hidden_stack_trace")                 \
    293   V(query_colon_string, "(?:)")                                          \
    294   V(Generator_string, "Generator")                                       \
    295   V(throw_string, "throw")                                               \
    296   V(done_string, "done")                                                 \
    297   V(value_string, "value")                                               \
    298   V(next_string, "next")                                                 \
    299   V(byte_length_string, "byteLength")                                    \
    300   V(byte_offset_string, "byteOffset")                                    \
    301   V(buffer_string, "buffer")
    302 
    303 // Forward declarations.
    304 class GCTracer;
    305 class HeapStats;
    306 class Isolate;
    307 class WeakObjectRetainer;
    308 
    309 
    310 typedef String* (*ExternalStringTableUpdaterCallback)(Heap* heap,
    311                                                       Object** pointer);
    312 
    313 class StoreBufferRebuilder {
    314  public:
    315   explicit StoreBufferRebuilder(StoreBuffer* store_buffer)
    316       : store_buffer_(store_buffer) {
    317   }
    318 
    319   void Callback(MemoryChunk* page, StoreBufferEvent event);
    320 
    321  private:
    322   StoreBuffer* store_buffer_;
    323 
    324   // We record in this variable how full the store buffer was when we started
    325   // iterating over the current page, finding pointers to new space.  If the
    326   // store buffer overflows again we can exempt the page from the store buffer
    327   // by rewinding to this point instead of having to search the store buffer.
    328   Object*** start_of_current_page_;
    329   // The current page we are scanning in the store buffer iterator.
    330   MemoryChunk* current_page_;
    331 };
    332 
    333 
    334 
    335 // A queue of objects promoted during scavenge. Each object is accompanied
    336 // by it's size to avoid dereferencing a map pointer for scanning.
    337 class PromotionQueue {
    338  public:
    339   explicit PromotionQueue(Heap* heap)
    340       : front_(NULL),
    341         rear_(NULL),
    342         limit_(NULL),
    343         emergency_stack_(0),
    344         heap_(heap) { }
    345 
    346   void Initialize();
    347 
    348   void Destroy() {
    349     ASSERT(is_empty());
    350     delete emergency_stack_;
    351     emergency_stack_ = NULL;
    352   }
    353 
    354   inline void ActivateGuardIfOnTheSamePage();
    355 
    356   Page* GetHeadPage() {
    357     return Page::FromAllocationTop(reinterpret_cast<Address>(rear_));
    358   }
    359 
    360   void SetNewLimit(Address limit) {
    361     if (!guard_) {
    362       return;
    363     }
    364 
    365     ASSERT(GetHeadPage() == Page::FromAllocationTop(limit));
    366     limit_ = reinterpret_cast<intptr_t*>(limit);
    367 
    368     if (limit_ <= rear_) {
    369       return;
    370     }
    371 
    372     RelocateQueueHead();
    373   }
    374 
    375   bool is_empty() {
    376     return (front_ == rear_) &&
    377         (emergency_stack_ == NULL || emergency_stack_->length() == 0);
    378   }
    379 
    380   inline void insert(HeapObject* target, int size);
    381 
    382   void remove(HeapObject** target, int* size) {
    383     ASSERT(!is_empty());
    384     if (front_ == rear_) {
    385       Entry e = emergency_stack_->RemoveLast();
    386       *target = e.obj_;
    387       *size = e.size_;
    388       return;
    389     }
    390 
    391     if (NewSpacePage::IsAtStart(reinterpret_cast<Address>(front_))) {
    392       NewSpacePage* front_page =
    393           NewSpacePage::FromAddress(reinterpret_cast<Address>(front_));
    394       ASSERT(!front_page->prev_page()->is_anchor());
    395       front_ =
    396           reinterpret_cast<intptr_t*>(front_page->prev_page()->area_end());
    397     }
    398     *target = reinterpret_cast<HeapObject*>(*(--front_));
    399     *size = static_cast<int>(*(--front_));
    400     // Assert no underflow.
    401     SemiSpace::AssertValidRange(reinterpret_cast<Address>(rear_),
    402                                 reinterpret_cast<Address>(front_));
    403   }
    404 
    405  private:
    406   // The front of the queue is higher in the memory page chain than the rear.
    407   intptr_t* front_;
    408   intptr_t* rear_;
    409   intptr_t* limit_;
    410 
    411   bool guard_;
    412 
    413   static const int kEntrySizeInWords = 2;
    414 
    415   struct Entry {
    416     Entry(HeapObject* obj, int size) : obj_(obj), size_(size) { }
    417 
    418     HeapObject* obj_;
    419     int size_;
    420   };
    421   List<Entry>* emergency_stack_;
    422 
    423   Heap* heap_;
    424 
    425   void RelocateQueueHead();
    426 
    427   DISALLOW_COPY_AND_ASSIGN(PromotionQueue);
    428 };
    429 
    430 
    431 typedef void (*ScavengingCallback)(Map* map,
    432                                    HeapObject** slot,
    433                                    HeapObject* object);
    434 
    435 
    436 // External strings table is a place where all external strings are
    437 // registered.  We need to keep track of such strings to properly
    438 // finalize them.
    439 class ExternalStringTable {
    440  public:
    441   // Registers an external string.
    442   inline void AddString(String* string);
    443 
    444   inline void Iterate(ObjectVisitor* v);
    445 
    446   // Restores internal invariant and gets rid of collected strings.
    447   // Must be called after each Iterate() that modified the strings.
    448   void CleanUp();
    449 
    450   // Destroys all allocated memory.
    451   void TearDown();
    452 
    453  private:
    454   ExternalStringTable() { }
    455 
    456   friend class Heap;
    457 
    458   inline void Verify();
    459 
    460   inline void AddOldString(String* string);
    461 
    462   // Notifies the table that only a prefix of the new list is valid.
    463   inline void ShrinkNewStrings(int position);
    464 
    465   // To speed up scavenge collections new space string are kept
    466   // separate from old space strings.
    467   List<Object*> new_space_strings_;
    468   List<Object*> old_space_strings_;
    469 
    470   Heap* heap_;
    471 
    472   DISALLOW_COPY_AND_ASSIGN(ExternalStringTable);
    473 };
    474 
    475 
    476 enum ArrayStorageAllocationMode {
    477   DONT_INITIALIZE_ARRAY_ELEMENTS,
    478   INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE
    479 };
    480 
    481 
    482 class Heap {
    483  public:
    484   // Configure heap size before setup. Return false if the heap has been
    485   // set up already.
    486   bool ConfigureHeap(int max_semispace_size,
    487                      intptr_t max_old_gen_size,
    488                      intptr_t max_executable_size);
    489   bool ConfigureHeapDefault();
    490 
    491   // Prepares the heap, setting up memory areas that are needed in the isolate
    492   // without actually creating any objects.
    493   bool SetUp();
    494 
    495   // Bootstraps the object heap with the core set of objects required to run.
    496   // Returns whether it succeeded.
    497   bool CreateHeapObjects();
    498 
    499   // Destroys all memory allocated by the heap.
    500   void TearDown();
    501 
    502   // Set the stack limit in the roots_ array.  Some architectures generate
    503   // code that looks here, because it is faster than loading from the static
    504   // jslimit_/real_jslimit_ variable in the StackGuard.
    505   void SetStackLimits();
    506 
    507   // Returns whether SetUp has been called.
    508   bool HasBeenSetUp();
    509 
    510   // Returns the maximum amount of memory reserved for the heap.  For
    511   // the young generation, we reserve 4 times the amount needed for a
    512   // semi space.  The young generation consists of two semi spaces and
    513   // we reserve twice the amount needed for those in order to ensure
    514   // that new space can be aligned to its size.
    515   intptr_t MaxReserved() {
    516     return 4 * reserved_semispace_size_ + max_old_generation_size_;
    517   }
    518   int MaxSemiSpaceSize() { return max_semispace_size_; }
    519   int ReservedSemiSpaceSize() { return reserved_semispace_size_; }
    520   int InitialSemiSpaceSize() { return initial_semispace_size_; }
    521   intptr_t MaxOldGenerationSize() { return max_old_generation_size_; }
    522   intptr_t MaxExecutableSize() { return max_executable_size_; }
    523   int MaxRegularSpaceAllocationSize() { return InitialSemiSpaceSize() * 4/5; }
    524 
    525   // Returns the capacity of the heap in bytes w/o growing. Heap grows when
    526   // more spaces are needed until it reaches the limit.
    527   intptr_t Capacity();
    528 
    529   // Returns the amount of memory currently committed for the heap.
    530   intptr_t CommittedMemory();
    531 
    532   // Returns the amount of executable memory currently committed for the heap.
    533   intptr_t CommittedMemoryExecutable();
    534 
    535   // Returns the amount of phyical memory currently committed for the heap.
    536   size_t CommittedPhysicalMemory();
    537 
    538   // Returns the maximum amount of memory ever committed for the heap.
    539   intptr_t MaximumCommittedMemory() { return maximum_committed_; }
    540 
    541   // Updates the maximum committed memory for the heap. Should be called
    542   // whenever a space grows.
    543   void UpdateMaximumCommitted();
    544 
    545   // Returns the available bytes in space w/o growing.
    546   // Heap doesn't guarantee that it can allocate an object that requires
    547   // all available bytes. Check MaxHeapObjectSize() instead.
    548   intptr_t Available();
    549 
    550   // Returns of size of all objects residing in the heap.
    551   intptr_t SizeOfObjects();
    552 
    553   // Return the starting address and a mask for the new space.  And-masking an
    554   // address with the mask will result in the start address of the new space
    555   // for all addresses in either semispace.
    556   Address NewSpaceStart() { return new_space_.start(); }
    557   uintptr_t NewSpaceMask() { return new_space_.mask(); }
    558   Address NewSpaceTop() { return new_space_.top(); }
    559 
    560   NewSpace* new_space() { return &new_space_; }
    561   OldSpace* old_pointer_space() { return old_pointer_space_; }
    562   OldSpace* old_data_space() { return old_data_space_; }
    563   OldSpace* code_space() { return code_space_; }
    564   MapSpace* map_space() { return map_space_; }
    565   CellSpace* cell_space() { return cell_space_; }
    566   PropertyCellSpace* property_cell_space() {
    567     return property_cell_space_;
    568   }
    569   LargeObjectSpace* lo_space() { return lo_space_; }
    570   PagedSpace* paged_space(int idx) {
    571     switch (idx) {
    572       case OLD_POINTER_SPACE:
    573         return old_pointer_space();
    574       case OLD_DATA_SPACE:
    575         return old_data_space();
    576       case MAP_SPACE:
    577         return map_space();
    578       case CELL_SPACE:
    579         return cell_space();
    580       case PROPERTY_CELL_SPACE:
    581         return property_cell_space();
    582       case CODE_SPACE:
    583         return code_space();
    584       case NEW_SPACE:
    585       case LO_SPACE:
    586         UNREACHABLE();
    587     }
    588     return NULL;
    589   }
    590 
    591   bool always_allocate() { return always_allocate_scope_depth_ != 0; }
    592   Address always_allocate_scope_depth_address() {
    593     return reinterpret_cast<Address>(&always_allocate_scope_depth_);
    594   }
    595   bool linear_allocation() {
    596     return linear_allocation_scope_depth_ != 0;
    597   }
    598 
    599   Address* NewSpaceAllocationTopAddress() {
    600     return new_space_.allocation_top_address();
    601   }
    602   Address* NewSpaceAllocationLimitAddress() {
    603     return new_space_.allocation_limit_address();
    604   }
    605 
    606   Address* OldPointerSpaceAllocationTopAddress() {
    607     return old_pointer_space_->allocation_top_address();
    608   }
    609   Address* OldPointerSpaceAllocationLimitAddress() {
    610     return old_pointer_space_->allocation_limit_address();
    611   }
    612 
    613   Address* OldDataSpaceAllocationTopAddress() {
    614     return old_data_space_->allocation_top_address();
    615   }
    616   Address* OldDataSpaceAllocationLimitAddress() {
    617     return old_data_space_->allocation_limit_address();
    618   }
    619 
    620   // Allocates and initializes a new JavaScript object based on a
    621   // constructor.
    622   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    623   // failed.
    624   // Please note this does not perform a garbage collection.
    625   MUST_USE_RESULT MaybeObject* AllocateJSObject(
    626       JSFunction* constructor,
    627       PretenureFlag pretenure = NOT_TENURED);
    628 
    629   MUST_USE_RESULT MaybeObject* AllocateJSObjectWithAllocationSite(
    630       JSFunction* constructor,
    631       Handle<AllocationSite> allocation_site);
    632 
    633   MUST_USE_RESULT MaybeObject* AllocateJSModule(Context* context,
    634                                                 ScopeInfo* scope_info);
    635 
    636   // Allocate a JSArray with no elements
    637   MUST_USE_RESULT MaybeObject* AllocateEmptyJSArray(
    638       ElementsKind elements_kind,
    639       PretenureFlag pretenure = NOT_TENURED) {
    640     return AllocateJSArrayAndStorage(elements_kind, 0, 0,
    641                                      DONT_INITIALIZE_ARRAY_ELEMENTS,
    642                                      pretenure);
    643   }
    644 
    645   // Allocate a JSArray with a specified length but elements that are left
    646   // uninitialized.
    647   MUST_USE_RESULT MaybeObject* AllocateJSArrayAndStorage(
    648       ElementsKind elements_kind,
    649       int length,
    650       int capacity,
    651       ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS,
    652       PretenureFlag pretenure = NOT_TENURED);
    653 
    654   MUST_USE_RESULT MaybeObject* AllocateJSArrayStorage(
    655       JSArray* array,
    656       int length,
    657       int capacity,
    658       ArrayStorageAllocationMode mode = DONT_INITIALIZE_ARRAY_ELEMENTS);
    659 
    660   // Allocate a JSArray with no elements
    661   MUST_USE_RESULT MaybeObject* AllocateJSArrayWithElements(
    662       FixedArrayBase* array_base,
    663       ElementsKind elements_kind,
    664       int length,
    665       PretenureFlag pretenure = NOT_TENURED);
    666 
    667   // Returns a deep copy of the JavaScript object.
    668   // Properties and elements are copied too.
    669   // Returns failure if allocation failed.
    670   // Optionally takes an AllocationSite to be appended in an AllocationMemento.
    671   MUST_USE_RESULT MaybeObject* CopyJSObject(JSObject* source,
    672                                             AllocationSite* site = NULL);
    673 
    674   // Allocates a JS ArrayBuffer object.
    675   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    676   // failed.
    677   // Please note this does not perform a garbage collection.
    678   MUST_USE_RESULT MaybeObject* AllocateJSArrayBuffer();
    679 
    680   // Allocates a Harmony proxy or function proxy.
    681   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    682   // failed.
    683   // Please note this does not perform a garbage collection.
    684   MUST_USE_RESULT MaybeObject* AllocateJSProxy(Object* handler,
    685                                                Object* prototype);
    686 
    687   MUST_USE_RESULT MaybeObject* AllocateJSFunctionProxy(Object* handler,
    688                                                        Object* call_trap,
    689                                                        Object* construct_trap,
    690                                                        Object* prototype);
    691 
    692   // Reinitialize a JSReceiver into an (empty) JS object of respective type and
    693   // size, but keeping the original prototype.  The receiver must have at least
    694   // the size of the new object.  The object is reinitialized and behaves as an
    695   // object that has been freshly allocated.
    696   // Returns failure if an error occured, otherwise object.
    697   MUST_USE_RESULT MaybeObject* ReinitializeJSReceiver(JSReceiver* object,
    698                                                       InstanceType type,
    699                                                       int size);
    700 
    701   // Reinitialize an JSGlobalProxy based on a constructor.  The object
    702   // must have the same size as objects allocated using the
    703   // constructor.  The object is reinitialized and behaves as an
    704   // object that has been freshly allocated using the constructor.
    705   MUST_USE_RESULT MaybeObject* ReinitializeJSGlobalProxy(
    706       JSFunction* constructor, JSGlobalProxy* global);
    707 
    708   // Allocates and initializes a new JavaScript object based on a map.
    709   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    710   // failed.
    711   // Please note this does not perform a garbage collection.
    712   MUST_USE_RESULT MaybeObject* AllocateJSObjectFromMap(
    713       Map* map, PretenureFlag pretenure = NOT_TENURED, bool alloc_props = true);
    714 
    715   MUST_USE_RESULT MaybeObject* AllocateJSObjectFromMapWithAllocationSite(
    716       Map* map, Handle<AllocationSite> allocation_site);
    717 
    718   // Allocates a heap object based on the map.
    719   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    720   // failed.
    721   // Please note this function does not perform a garbage collection.
    722   MUST_USE_RESULT MaybeObject* Allocate(Map* map, AllocationSpace space);
    723 
    724   MUST_USE_RESULT MaybeObject* AllocateWithAllocationSite(Map* map,
    725       AllocationSpace space, Handle<AllocationSite> allocation_site);
    726 
    727   // Allocates a JS Map in the heap.
    728   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    729   // failed.
    730   // Please note this function does not perform a garbage collection.
    731   MUST_USE_RESULT MaybeObject* AllocateMap(
    732       InstanceType instance_type,
    733       int instance_size,
    734       ElementsKind elements_kind = TERMINAL_FAST_ELEMENTS_KIND);
    735 
    736   // Allocates a partial map for bootstrapping.
    737   MUST_USE_RESULT MaybeObject* AllocatePartialMap(InstanceType instance_type,
    738                                                   int instance_size);
    739 
    740   // Allocates an empty code cache.
    741   MUST_USE_RESULT MaybeObject* AllocateCodeCache();
    742 
    743   // Allocates a serialized scope info.
    744   MUST_USE_RESULT MaybeObject* AllocateScopeInfo(int length);
    745 
    746   // Allocates an External object for v8's external API.
    747   MUST_USE_RESULT MaybeObject* AllocateExternal(void* value);
    748 
    749   // Allocates an empty PolymorphicCodeCache.
    750   MUST_USE_RESULT MaybeObject* AllocatePolymorphicCodeCache();
    751 
    752   // Allocates a pre-tenured empty AccessorPair.
    753   MUST_USE_RESULT MaybeObject* AllocateAccessorPair();
    754 
    755   // Allocates an empty TypeFeedbackInfo.
    756   MUST_USE_RESULT MaybeObject* AllocateTypeFeedbackInfo();
    757 
    758   // Allocates an AliasedArgumentsEntry.
    759   MUST_USE_RESULT MaybeObject* AllocateAliasedArgumentsEntry(int slot);
    760 
    761   // Clear the Instanceof cache (used when a prototype changes).
    762   inline void ClearInstanceofCache();
    763 
    764   // Iterates the whole code space to clear all ICs of the given kind.
    765   void ClearAllICsByKind(Code::Kind kind);
    766 
    767   // For use during bootup.
    768   void RepairFreeListsAfterBoot();
    769 
    770   // Allocates and fully initializes a String.  There are two String
    771   // encodings: ASCII and two byte. One should choose between the three string
    772   // allocation functions based on the encoding of the string buffer used to
    773   // initialized the string.
    774   //   - ...FromAscii initializes the string from a buffer that is ASCII
    775   //     encoded (it does not check that the buffer is ASCII encoded) and the
    776   //     result will be ASCII encoded.
    777   //   - ...FromUTF8 initializes the string from a buffer that is UTF-8
    778   //     encoded.  If the characters are all single-byte characters, the
    779   //     result will be ASCII encoded, otherwise it will converted to two
    780   //     byte.
    781   //   - ...FromTwoByte initializes the string from a buffer that is two-byte
    782   //     encoded.  If the characters are all single-byte characters, the
    783   //     result will be converted to ASCII, otherwise it will be left as
    784   //     two-byte.
    785   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    786   // failed.
    787   // Please note this does not perform a garbage collection.
    788   MUST_USE_RESULT MaybeObject* AllocateStringFromOneByte(
    789       Vector<const uint8_t> str,
    790       PretenureFlag pretenure = NOT_TENURED);
    791   // TODO(dcarney): remove this function.
    792   MUST_USE_RESULT inline MaybeObject* AllocateStringFromOneByte(
    793       Vector<const char> str,
    794       PretenureFlag pretenure = NOT_TENURED) {
    795     return AllocateStringFromOneByte(Vector<const uint8_t>::cast(str),
    796                                      pretenure);
    797   }
    798   MUST_USE_RESULT inline MaybeObject* AllocateStringFromUtf8(
    799       Vector<const char> str,
    800       PretenureFlag pretenure = NOT_TENURED);
    801   MUST_USE_RESULT MaybeObject* AllocateStringFromUtf8Slow(
    802       Vector<const char> str,
    803       int non_ascii_start,
    804       PretenureFlag pretenure = NOT_TENURED);
    805   MUST_USE_RESULT MaybeObject* AllocateStringFromTwoByte(
    806       Vector<const uc16> str,
    807       PretenureFlag pretenure = NOT_TENURED);
    808 
    809   // Allocates an internalized string in old space based on the character
    810   // stream. Returns Failure::RetryAfterGC(requested_bytes, space) if the
    811   // allocation failed.
    812   // Please note this function does not perform a garbage collection.
    813   MUST_USE_RESULT inline MaybeObject* AllocateInternalizedStringFromUtf8(
    814       Vector<const char> str,
    815       int chars,
    816       uint32_t hash_field);
    817 
    818   MUST_USE_RESULT inline MaybeObject* AllocateOneByteInternalizedString(
    819         Vector<const uint8_t> str,
    820         uint32_t hash_field);
    821 
    822   MUST_USE_RESULT inline MaybeObject* AllocateTwoByteInternalizedString(
    823         Vector<const uc16> str,
    824         uint32_t hash_field);
    825 
    826   template<typename T>
    827   static inline bool IsOneByte(T t, int chars);
    828 
    829   template<typename T>
    830   MUST_USE_RESULT inline MaybeObject* AllocateInternalizedStringImpl(
    831       T t, int chars, uint32_t hash_field);
    832 
    833   template<bool is_one_byte, typename T>
    834   MUST_USE_RESULT MaybeObject* AllocateInternalizedStringImpl(
    835       T t, int chars, uint32_t hash_field);
    836 
    837   // Allocates and partially initializes a String.  There are two String
    838   // encodings: ASCII and two byte.  These functions allocate a string of the
    839   // given length and set its map and length fields.  The characters of the
    840   // string are uninitialized.
    841   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    842   // failed.
    843   // Please note this does not perform a garbage collection.
    844   MUST_USE_RESULT MaybeObject* AllocateRawOneByteString(
    845       int length,
    846       PretenureFlag pretenure = NOT_TENURED);
    847   MUST_USE_RESULT MaybeObject* AllocateRawTwoByteString(
    848       int length,
    849       PretenureFlag pretenure = NOT_TENURED);
    850 
    851   // Computes a single character string where the character has code.
    852   // A cache is used for ASCII codes.
    853   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    854   // failed. Please note this does not perform a garbage collection.
    855   MUST_USE_RESULT MaybeObject* LookupSingleCharacterStringFromCode(
    856       uint16_t code);
    857 
    858   // Allocate a byte array of the specified length
    859   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    860   // failed.
    861   // Please note this does not perform a garbage collection.
    862   MUST_USE_RESULT MaybeObject* AllocateByteArray(
    863       int length,
    864       PretenureFlag pretenure = NOT_TENURED);
    865 
    866   // Allocates an external array of the specified length and type.
    867   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    868   // failed.
    869   // Please note this does not perform a garbage collection.
    870   MUST_USE_RESULT MaybeObject* AllocateExternalArray(
    871       int length,
    872       ExternalArrayType array_type,
    873       void* external_pointer,
    874       PretenureFlag pretenure);
    875 
    876   // Allocate a symbol in old space.
    877   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    878   // failed.
    879   // Please note this does not perform a garbage collection.
    880   MUST_USE_RESULT MaybeObject* AllocateSymbol();
    881   MUST_USE_RESULT MaybeObject* AllocatePrivateSymbol();
    882 
    883   // Allocate a tenured AllocationSite. It's payload is null
    884   MUST_USE_RESULT MaybeObject* AllocateAllocationSite();
    885 
    886   // Allocates a fixed array initialized with undefined values
    887   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    888   // failed.
    889   // Please note this does not perform a garbage collection.
    890   MUST_USE_RESULT MaybeObject* AllocateFixedArray(
    891       int length,
    892       PretenureFlag pretenure = NOT_TENURED);
    893 
    894   // Allocates an uninitialized fixed array. It must be filled by the caller.
    895   //
    896   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    897   // failed.
    898   // Please note this does not perform a garbage collection.
    899   MUST_USE_RESULT MaybeObject* AllocateUninitializedFixedArray(int length);
    900 
    901   // Move len elements within a given array from src_index index to dst_index
    902   // index.
    903   void MoveElements(FixedArray* array, int dst_index, int src_index, int len);
    904 
    905   // Make a copy of src and return it. Returns
    906   // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
    907   MUST_USE_RESULT inline MaybeObject* CopyFixedArray(FixedArray* src);
    908 
    909   // Make a copy of src, set the map, and return the copy. Returns
    910   // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
    911   MUST_USE_RESULT MaybeObject* CopyFixedArrayWithMap(FixedArray* src, Map* map);
    912 
    913   // Make a copy of src and return it. Returns
    914   // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
    915   MUST_USE_RESULT inline MaybeObject* CopyFixedDoubleArray(
    916       FixedDoubleArray* src);
    917 
    918   // Make a copy of src, set the map, and return the copy. Returns
    919   // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
    920   MUST_USE_RESULT MaybeObject* CopyFixedDoubleArrayWithMap(
    921       FixedDoubleArray* src, Map* map);
    922 
    923   // Make a copy of src and return it. Returns
    924   // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
    925   MUST_USE_RESULT inline MaybeObject* CopyConstantPoolArray(
    926       ConstantPoolArray* src);
    927 
    928   // Make a copy of src, set the map, and return the copy. Returns
    929   // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
    930   MUST_USE_RESULT MaybeObject* CopyConstantPoolArrayWithMap(
    931       ConstantPoolArray* src, Map* map);
    932 
    933   // Allocates a fixed array initialized with the hole values.
    934   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    935   // failed.
    936   // Please note this does not perform a garbage collection.
    937   MUST_USE_RESULT MaybeObject* AllocateFixedArrayWithHoles(
    938       int length,
    939       PretenureFlag pretenure = NOT_TENURED);
    940 
    941   MUST_USE_RESULT MaybeObject* AllocateConstantPoolArray(
    942       int first_int64_index,
    943       int first_ptr_index,
    944       int first_int32_index);
    945 
    946   // Allocates a fixed double array with uninitialized values. Returns
    947   // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
    948   // Please note this does not perform a garbage collection.
    949   MUST_USE_RESULT MaybeObject* AllocateUninitializedFixedDoubleArray(
    950       int length,
    951       PretenureFlag pretenure = NOT_TENURED);
    952 
    953   // Allocates a fixed double array with hole values. Returns
    954   // Failure::RetryAfterGC(requested_bytes, space) if the allocation failed.
    955   // Please note this does not perform a garbage collection.
    956   MUST_USE_RESULT MaybeObject* AllocateFixedDoubleArrayWithHoles(
    957       int length,
    958       PretenureFlag pretenure = NOT_TENURED);
    959 
    960   // AllocateHashTable is identical to AllocateFixedArray except
    961   // that the resulting object has hash_table_map as map.
    962   MUST_USE_RESULT MaybeObject* AllocateHashTable(
    963       int length, PretenureFlag pretenure = NOT_TENURED);
    964 
    965   // Allocate a native (but otherwise uninitialized) context.
    966   MUST_USE_RESULT MaybeObject* AllocateNativeContext();
    967 
    968   // Allocate a global context.
    969   MUST_USE_RESULT MaybeObject* AllocateGlobalContext(JSFunction* function,
    970                                                      ScopeInfo* scope_info);
    971 
    972   // Allocate a module context.
    973   MUST_USE_RESULT MaybeObject* AllocateModuleContext(ScopeInfo* scope_info);
    974 
    975   // Allocate a function context.
    976   MUST_USE_RESULT MaybeObject* AllocateFunctionContext(int length,
    977                                                        JSFunction* function);
    978 
    979   // Allocate a catch context.
    980   MUST_USE_RESULT MaybeObject* AllocateCatchContext(JSFunction* function,
    981                                                     Context* previous,
    982                                                     String* name,
    983                                                     Object* thrown_object);
    984   // Allocate a 'with' context.
    985   MUST_USE_RESULT MaybeObject* AllocateWithContext(JSFunction* function,
    986                                                    Context* previous,
    987                                                    JSReceiver* extension);
    988 
    989   // Allocate a block context.
    990   MUST_USE_RESULT MaybeObject* AllocateBlockContext(JSFunction* function,
    991                                                     Context* previous,
    992                                                     ScopeInfo* info);
    993 
    994   // Allocates a new utility object in the old generation.
    995   MUST_USE_RESULT MaybeObject* AllocateStruct(InstanceType type);
    996 
    997   // Allocates a function initialized with a shared part.
    998   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
    999   // failed.
   1000   // Please note this does not perform a garbage collection.
   1001   MUST_USE_RESULT MaybeObject* AllocateFunction(
   1002       Map* function_map,
   1003       SharedFunctionInfo* shared,
   1004       Object* prototype,
   1005       PretenureFlag pretenure = TENURED);
   1006 
   1007   // Arguments object size.
   1008   static const int kArgumentsObjectSize =
   1009       JSObject::kHeaderSize + 2 * kPointerSize;
   1010   // Strict mode arguments has no callee so it is smaller.
   1011   static const int kArgumentsObjectSizeStrict =
   1012       JSObject::kHeaderSize + 1 * kPointerSize;
   1013   // Indicies for direct access into argument objects.
   1014   static const int kArgumentsLengthIndex = 0;
   1015   // callee is only valid in non-strict mode.
   1016   static const int kArgumentsCalleeIndex = 1;
   1017 
   1018   // Allocates an arguments object - optionally with an elements array.
   1019   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
   1020   // failed.
   1021   // Please note this does not perform a garbage collection.
   1022   MUST_USE_RESULT MaybeObject* AllocateArgumentsObject(
   1023       Object* callee, int length);
   1024 
   1025   // Same as NewNumberFromDouble, but may return a preallocated/immutable
   1026   // number object (e.g., minus_zero_value_, nan_value_)
   1027   MUST_USE_RESULT MaybeObject* NumberFromDouble(
   1028       double value, PretenureFlag pretenure = NOT_TENURED);
   1029 
   1030   // Allocated a HeapNumber from value.
   1031   MUST_USE_RESULT MaybeObject* AllocateHeapNumber(
   1032       double value, PretenureFlag pretenure = NOT_TENURED);
   1033 
   1034   // Converts an int into either a Smi or a HeapNumber object.
   1035   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
   1036   // failed.
   1037   // Please note this does not perform a garbage collection.
   1038   MUST_USE_RESULT inline MaybeObject* NumberFromInt32(
   1039       int32_t value, PretenureFlag pretenure = NOT_TENURED);
   1040 
   1041   // Converts an int into either a Smi or a HeapNumber object.
   1042   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
   1043   // failed.
   1044   // Please note this does not perform a garbage collection.
   1045   MUST_USE_RESULT inline MaybeObject* NumberFromUint32(
   1046       uint32_t value, PretenureFlag pretenure = NOT_TENURED);
   1047 
   1048   // Allocates a new foreign object.
   1049   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
   1050   // failed.
   1051   // Please note this does not perform a garbage collection.
   1052   MUST_USE_RESULT MaybeObject* AllocateForeign(
   1053       Address address, PretenureFlag pretenure = NOT_TENURED);
   1054 
   1055   // Allocates a new SharedFunctionInfo object.
   1056   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
   1057   // failed.
   1058   // Please note this does not perform a garbage collection.
   1059   MUST_USE_RESULT MaybeObject* AllocateSharedFunctionInfo(Object* name);
   1060 
   1061   // Allocates a new JSMessageObject object.
   1062   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
   1063   // failed.
   1064   // Please note that this does not perform a garbage collection.
   1065   MUST_USE_RESULT MaybeObject* AllocateJSMessageObject(
   1066       String* type,
   1067       JSArray* arguments,
   1068       int start_position,
   1069       int end_position,
   1070       Object* script,
   1071       Object* stack_trace,
   1072       Object* stack_frames);
   1073 
   1074   // Allocates a new cons string object.
   1075   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
   1076   // failed.
   1077   // Please note this does not perform a garbage collection.
   1078   MUST_USE_RESULT MaybeObject* AllocateConsString(String* first,
   1079                                                   String* second);
   1080 
   1081   // Allocates a new sub string object which is a substring of an underlying
   1082   // string buffer stretching from the index start (inclusive) to the index
   1083   // end (exclusive).
   1084   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
   1085   // failed.
   1086   // Please note this does not perform a garbage collection.
   1087   MUST_USE_RESULT MaybeObject* AllocateSubString(
   1088       String* buffer,
   1089       int start,
   1090       int end,
   1091       PretenureFlag pretenure = NOT_TENURED);
   1092 
   1093   // Allocate a new external string object, which is backed by a string
   1094   // resource that resides outside the V8 heap.
   1095   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
   1096   // failed.
   1097   // Please note this does not perform a garbage collection.
   1098   MUST_USE_RESULT MaybeObject* AllocateExternalStringFromAscii(
   1099       const ExternalAsciiString::Resource* resource);
   1100   MUST_USE_RESULT MaybeObject* AllocateExternalStringFromTwoByte(
   1101       const ExternalTwoByteString::Resource* resource);
   1102 
   1103   // Finalizes an external string by deleting the associated external
   1104   // data and clearing the resource pointer.
   1105   inline void FinalizeExternalString(String* string);
   1106 
   1107   // Allocates an uninitialized object.  The memory is non-executable if the
   1108   // hardware and OS allow.
   1109   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
   1110   // failed.
   1111   // Please note this function does not perform a garbage collection.
   1112   MUST_USE_RESULT inline MaybeObject* AllocateRaw(int size_in_bytes,
   1113                                                   AllocationSpace space,
   1114                                                   AllocationSpace retry_space);
   1115 
   1116   // Initialize a filler object to keep the ability to iterate over the heap
   1117   // when shortening objects.
   1118   void CreateFillerObjectAt(Address addr, int size);
   1119 
   1120   // Makes a new native code object
   1121   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
   1122   // failed. On success, the pointer to the Code object is stored in the
   1123   // self_reference. This allows generated code to reference its own Code
   1124   // object by containing this pointer.
   1125   // Please note this function does not perform a garbage collection.
   1126   MUST_USE_RESULT MaybeObject* CreateCode(
   1127       const CodeDesc& desc,
   1128       Code::Flags flags,
   1129       Handle<Object> self_reference,
   1130       bool immovable = false,
   1131       bool crankshafted = false,
   1132       int prologue_offset = Code::kPrologueOffsetNotSet);
   1133 
   1134   MUST_USE_RESULT MaybeObject* CopyCode(Code* code);
   1135 
   1136   // Copy the code and scope info part of the code object, but insert
   1137   // the provided data as the relocation information.
   1138   MUST_USE_RESULT MaybeObject* CopyCode(Code* code, Vector<byte> reloc_info);
   1139 
   1140   // Finds the internalized copy for string in the string table.
   1141   // If not found, a new string is added to the table and returned.
   1142   // Returns Failure::RetryAfterGC(requested_bytes, space) if allocation
   1143   // failed.
   1144   // Please note this function does not perform a garbage collection.
   1145   MUST_USE_RESULT MaybeObject* InternalizeUtf8String(Vector<const char> str);
   1146   MUST_USE_RESULT MaybeObject* InternalizeUtf8String(const char* str) {
   1147     return InternalizeUtf8String(CStrVector(str));
   1148   }
   1149   MUST_USE_RESULT MaybeObject* InternalizeOneByteString(
   1150       Vector<const uint8_t> str);
   1151   MUST_USE_RESULT MaybeObject* InternalizeTwoByteString(Vector<const uc16> str);
   1152   MUST_USE_RESULT MaybeObject* InternalizeString(String* str);
   1153   MUST_USE_RESULT MaybeObject* InternalizeOneByteString(
   1154       Handle<SeqOneByteString> string, int from, int length);
   1155 
   1156   bool InternalizeStringIfExists(String* str, String** result);
   1157   bool InternalizeTwoCharsStringIfExists(String* str, String** result);
   1158 
   1159   // Compute the matching internalized string map for a string if possible.
   1160   // NULL is returned if string is in new space or not flattened.
   1161   Map* InternalizedStringMapForString(String* str);
   1162 
   1163   // Tries to flatten a string before compare operation.
   1164   //
   1165   // Returns a failure in case it was decided that flattening was
   1166   // necessary and failed.  Note, if flattening is not necessary the
   1167   // string might stay non-flat even when not a failure is returned.
   1168   //
   1169   // Please note this function does not perform a garbage collection.
   1170   MUST_USE_RESULT inline MaybeObject* PrepareForCompare(String* str);
   1171 
   1172   // Converts the given boolean condition to JavaScript boolean value.
   1173   inline Object* ToBoolean(bool condition);
   1174 
   1175   // Performs garbage collection operation.
   1176   // Returns whether there is a chance that another major GC could
   1177   // collect more garbage.
   1178   inline bool CollectGarbage(AllocationSpace space,
   1179                              const char* gc_reason = NULL);
   1180 
   1181   static const int kNoGCFlags = 0;
   1182   static const int kSweepPreciselyMask = 1;
   1183   static const int kReduceMemoryFootprintMask = 2;
   1184   static const int kAbortIncrementalMarkingMask = 4;
   1185 
   1186   // Making the heap iterable requires us to sweep precisely and abort any
   1187   // incremental marking as well.
   1188   static const int kMakeHeapIterableMask =
   1189       kSweepPreciselyMask | kAbortIncrementalMarkingMask;
   1190 
   1191   // Performs a full garbage collection.  If (flags & kMakeHeapIterableMask) is
   1192   // non-zero, then the slower precise sweeper is used, which leaves the heap
   1193   // in a state where we can iterate over the heap visiting all objects.
   1194   void CollectAllGarbage(int flags, const char* gc_reason = NULL);
   1195 
   1196   // Last hope GC, should try to squeeze as much as possible.
   1197   void CollectAllAvailableGarbage(const char* gc_reason = NULL);
   1198 
   1199   // Check whether the heap is currently iterable.
   1200   bool IsHeapIterable();
   1201 
   1202   // Ensure that we have swept all spaces in such a way that we can iterate
   1203   // over all objects.  May cause a GC.
   1204   void EnsureHeapIsIterable();
   1205 
   1206   // Notify the heap that a context has been disposed.
   1207   int NotifyContextDisposed();
   1208 
   1209   // Utility to invoke the scavenger. This is needed in test code to
   1210   // ensure correct callback for weak global handles.
   1211   void PerformScavenge();
   1212 
   1213   inline void increment_scan_on_scavenge_pages() {
   1214     scan_on_scavenge_pages_++;
   1215     if (FLAG_gc_verbose) {
   1216       PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_);
   1217     }
   1218   }
   1219 
   1220   inline void decrement_scan_on_scavenge_pages() {
   1221     scan_on_scavenge_pages_--;
   1222     if (FLAG_gc_verbose) {
   1223       PrintF("Scan-on-scavenge pages: %d\n", scan_on_scavenge_pages_);
   1224     }
   1225   }
   1226 
   1227   PromotionQueue* promotion_queue() { return &promotion_queue_; }
   1228 
   1229 #ifdef DEBUG
   1230   // Utility used with flag gc-greedy.
   1231   void GarbageCollectionGreedyCheck();
   1232 #endif
   1233 
   1234   void AddGCPrologueCallback(v8::Isolate::GCPrologueCallback callback,
   1235                              GCType gc_type_filter,
   1236                              bool pass_isolate = true);
   1237   void RemoveGCPrologueCallback(v8::Isolate::GCPrologueCallback callback);
   1238 
   1239   void AddGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback,
   1240                              GCType gc_type_filter,
   1241                              bool pass_isolate = true);
   1242   void RemoveGCEpilogueCallback(v8::Isolate::GCEpilogueCallback callback);
   1243 
   1244   // Heap root getters.  We have versions with and without type::cast() here.
   1245   // You can't use type::cast during GC because the assert fails.
   1246   // TODO(1490): Try removing the unchecked accessors, now that GC marking does
   1247   // not corrupt the map.
   1248 #define ROOT_ACCESSOR(type, name, camel_name)                                  \
   1249   type* name() {                                                               \
   1250     return type::cast(roots_[k##camel_name##RootIndex]);                       \
   1251   }                                                                            \
   1252   type* raw_unchecked_##name() {                                               \
   1253     return reinterpret_cast<type*>(roots_[k##camel_name##RootIndex]);          \
   1254   }
   1255   ROOT_LIST(ROOT_ACCESSOR)
   1256 #undef ROOT_ACCESSOR
   1257 
   1258 // Utility type maps
   1259 #define STRUCT_MAP_ACCESSOR(NAME, Name, name)                                  \
   1260     Map* name##_map() {                                                        \
   1261       return Map::cast(roots_[k##Name##MapRootIndex]);                         \
   1262     }
   1263   STRUCT_LIST(STRUCT_MAP_ACCESSOR)
   1264 #undef STRUCT_MAP_ACCESSOR
   1265 
   1266 #define STRING_ACCESSOR(name, str) String* name() {                            \
   1267     return String::cast(roots_[k##name##RootIndex]);                           \
   1268   }
   1269   INTERNALIZED_STRING_LIST(STRING_ACCESSOR)
   1270 #undef STRING_ACCESSOR
   1271 
   1272   // The hidden_string is special because it is the empty string, but does
   1273   // not match the empty string.
   1274   String* hidden_string() { return hidden_string_; }
   1275 
   1276   void set_native_contexts_list(Object* object) {
   1277     native_contexts_list_ = object;
   1278   }
   1279   Object* native_contexts_list() { return native_contexts_list_; }
   1280 
   1281   void set_array_buffers_list(Object* object) {
   1282     array_buffers_list_ = object;
   1283   }
   1284   Object* array_buffers_list() { return array_buffers_list_; }
   1285 
   1286   void set_allocation_sites_list(Object* object) {
   1287     allocation_sites_list_ = object;
   1288   }
   1289   Object* allocation_sites_list() { return allocation_sites_list_; }
   1290   Object** allocation_sites_list_address() { return &allocation_sites_list_; }
   1291 
   1292   Object* weak_object_to_code_table() { return weak_object_to_code_table_; }
   1293 
   1294   // Number of mark-sweeps.
   1295   unsigned int ms_count() { return ms_count_; }
   1296 
   1297   // Iterates over all roots in the heap.
   1298   void IterateRoots(ObjectVisitor* v, VisitMode mode);
   1299   // Iterates over all strong roots in the heap.
   1300   void IterateStrongRoots(ObjectVisitor* v, VisitMode mode);
   1301   // Iterates over all the other roots in the heap.
   1302   void IterateWeakRoots(ObjectVisitor* v, VisitMode mode);
   1303 
   1304   // Iterate pointers to from semispace of new space found in memory interval
   1305   // from start to end.
   1306   void IterateAndMarkPointersToFromSpace(Address start,
   1307                                          Address end,
   1308                                          ObjectSlotCallback callback);
   1309 
   1310   // Returns whether the object resides in new space.
   1311   inline bool InNewSpace(Object* object);
   1312   inline bool InNewSpace(Address address);
   1313   inline bool InNewSpacePage(Address address);
   1314   inline bool InFromSpace(Object* object);
   1315   inline bool InToSpace(Object* object);
   1316 
   1317   // Returns whether the object resides in old pointer space.
   1318   inline bool InOldPointerSpace(Address address);
   1319   inline bool InOldPointerSpace(Object* object);
   1320 
   1321   // Returns whether the object resides in old data space.
   1322   inline bool InOldDataSpace(Address address);
   1323   inline bool InOldDataSpace(Object* object);
   1324 
   1325   // Checks whether an address/object in the heap (including auxiliary
   1326   // area and unused area).
   1327   bool Contains(Address addr);
   1328   bool Contains(HeapObject* value);
   1329 
   1330   // Checks whether an address/object in a space.
   1331   // Currently used by tests, serialization and heap verification only.
   1332   bool InSpace(Address addr, AllocationSpace space);
   1333   bool InSpace(HeapObject* value, AllocationSpace space);
   1334 
   1335   // Finds out which space an object should get promoted to based on its type.
   1336   inline OldSpace* TargetSpace(HeapObject* object);
   1337   static inline AllocationSpace TargetSpaceId(InstanceType type);
   1338 
   1339   // Checks whether the given object is allowed to be migrated from it's
   1340   // current space into the given destination space. Used for debugging.
   1341   inline bool AllowedToBeMigrated(HeapObject* object, AllocationSpace dest);
   1342 
   1343   // Sets the stub_cache_ (only used when expanding the dictionary).
   1344   void public_set_code_stubs(UnseededNumberDictionary* value) {
   1345     roots_[kCodeStubsRootIndex] = value;
   1346   }
   1347 
   1348   // Support for computing object sizes for old objects during GCs. Returns
   1349   // a function that is guaranteed to be safe for computing object sizes in
   1350   // the current GC phase.
   1351   HeapObjectCallback GcSafeSizeOfOldObjectFunction() {
   1352     return gc_safe_size_of_old_object_;
   1353   }
   1354 
   1355   // Sets the non_monomorphic_cache_ (only used when expanding the dictionary).
   1356   void public_set_non_monomorphic_cache(UnseededNumberDictionary* value) {
   1357     roots_[kNonMonomorphicCacheRootIndex] = value;
   1358   }
   1359 
   1360   void public_set_empty_script(Script* script) {
   1361     roots_[kEmptyScriptRootIndex] = script;
   1362   }
   1363 
   1364   void public_set_store_buffer_top(Address* top) {
   1365     roots_[kStoreBufferTopRootIndex] = reinterpret_cast<Smi*>(top);
   1366   }
   1367 
   1368   // Generated code can embed this address to get access to the roots.
   1369   Object** roots_array_start() { return roots_; }
   1370 
   1371   Address* store_buffer_top_address() {
   1372     return reinterpret_cast<Address*>(&roots_[kStoreBufferTopRootIndex]);
   1373   }
   1374 
   1375   // Get address of native contexts list for serialization support.
   1376   Object** native_contexts_list_address() {
   1377     return &native_contexts_list_;
   1378   }
   1379 
   1380 #ifdef VERIFY_HEAP
   1381   // Verify the heap is in its normal state before or after a GC.
   1382   void Verify();
   1383 
   1384 
   1385   bool weak_embedded_objects_verification_enabled() {
   1386     return no_weak_object_verification_scope_depth_ == 0;
   1387   }
   1388 #endif
   1389 
   1390 #ifdef DEBUG
   1391   void Print();
   1392   void PrintHandles();
   1393 
   1394   void OldPointerSpaceCheckStoreBuffer();
   1395   void MapSpaceCheckStoreBuffer();
   1396   void LargeObjectSpaceCheckStoreBuffer();
   1397 
   1398   // Report heap statistics.
   1399   void ReportHeapStatistics(const char* title);
   1400   void ReportCodeStatistics(const char* title);
   1401 #endif
   1402 
   1403   // Zapping is needed for verify heap, and always done in debug builds.
   1404   static inline bool ShouldZapGarbage() {
   1405 #ifdef DEBUG
   1406     return true;
   1407 #else
   1408 #ifdef VERIFY_HEAP
   1409     return FLAG_verify_heap;
   1410 #else
   1411     return false;
   1412 #endif
   1413 #endif
   1414   }
   1415 
   1416   // Print short heap statistics.
   1417   void PrintShortHeapStatistics();
   1418 
   1419   // Makes a new internalized string object
   1420   // Returns Failure::RetryAfterGC(requested_bytes, space) if the allocation
   1421   // failed.
   1422   // Please note this function does not perform a garbage collection.
   1423   MUST_USE_RESULT MaybeObject* CreateInternalizedString(
   1424       const char* str, int length, int hash);
   1425   MUST_USE_RESULT MaybeObject* CreateInternalizedString(String* str);
   1426 
   1427   // Write barrier support for address[offset] = o.
   1428   INLINE(void RecordWrite(Address address, int offset));
   1429 
   1430   // Write barrier support for address[start : start + len[ = o.
   1431   INLINE(void RecordWrites(Address address, int start, int len));
   1432 
   1433   enum HeapState { NOT_IN_GC, SCAVENGE, MARK_COMPACT };
   1434   inline HeapState gc_state() { return gc_state_; }
   1435 
   1436   inline bool IsInGCPostProcessing() { return gc_post_processing_depth_ > 0; }
   1437 
   1438 #ifdef DEBUG
   1439   void set_allocation_timeout(int timeout) {
   1440     allocation_timeout_ = timeout;
   1441   }
   1442 
   1443   bool disallow_allocation_failure() {
   1444     return disallow_allocation_failure_;
   1445   }
   1446 
   1447   void TracePathToObjectFrom(Object* target, Object* root);
   1448   void TracePathToObject(Object* target);
   1449   void TracePathToGlobal();
   1450 #endif
   1451 
   1452   // Callback function passed to Heap::Iterate etc.  Copies an object if
   1453   // necessary, the object might be promoted to an old space.  The caller must
   1454   // ensure the precondition that the object is (a) a heap object and (b) in
   1455   // the heap's from space.
   1456   static inline void ScavengePointer(HeapObject** p);
   1457   static inline void ScavengeObject(HeapObject** p, HeapObject* object);
   1458 
   1459   // An object may have an AllocationSite associated with it through a trailing
   1460   // AllocationMemento. Its feedback should be updated when objects are found
   1461   // in the heap.
   1462   static inline void UpdateAllocationSiteFeedback(HeapObject* object);
   1463 
   1464   // Support for partial snapshots.  After calling this we have a linear
   1465   // space to write objects in each space.
   1466   void ReserveSpace(int *sizes, Address* addresses);
   1467 
   1468   //
   1469   // Support for the API.
   1470   //
   1471 
   1472   bool CreateApiObjects();
   1473 
   1474   // Attempt to find the number in a small cache.  If we finds it, return
   1475   // the string representation of the number.  Otherwise return undefined.
   1476   Object* GetNumberStringCache(Object* number);
   1477 
   1478   // Update the cache with a new number-string pair.
   1479   void SetNumberStringCache(Object* number, String* str);
   1480 
   1481   // Adjusts the amount of registered external memory.
   1482   // Returns the adjusted value.
   1483   inline int64_t AdjustAmountOfExternalAllocatedMemory(
   1484       int64_t change_in_bytes);
   1485 
   1486   // This is only needed for testing high promotion mode.
   1487   void SetNewSpaceHighPromotionModeActive(bool mode) {
   1488     new_space_high_promotion_mode_active_ = mode;
   1489   }
   1490 
   1491   // Returns the allocation mode (pre-tenuring) based on observed promotion
   1492   // rates of previous collections.
   1493   inline PretenureFlag GetPretenureMode() {
   1494     return FLAG_pretenuring && new_space_high_promotion_mode_active_
   1495         ? TENURED : NOT_TENURED;
   1496   }
   1497 
   1498   inline Address* NewSpaceHighPromotionModeActiveAddress() {
   1499     return reinterpret_cast<Address*>(&new_space_high_promotion_mode_active_);
   1500   }
   1501 
   1502   inline intptr_t PromotedTotalSize() {
   1503     int64_t total = PromotedSpaceSizeOfObjects() + PromotedExternalMemorySize();
   1504     if (total > kMaxInt) return static_cast<intptr_t>(kMaxInt);
   1505     if (total < 0) return 0;
   1506     return static_cast<intptr_t>(total);
   1507   }
   1508 
   1509   inline intptr_t OldGenerationSpaceAvailable() {
   1510     return old_generation_allocation_limit_ - PromotedTotalSize();
   1511   }
   1512 
   1513   inline intptr_t OldGenerationCapacityAvailable() {
   1514     return max_old_generation_size_ - PromotedTotalSize();
   1515   }
   1516 
   1517   static const intptr_t kMinimumOldGenerationAllocationLimit =
   1518       8 * (Page::kPageSize > MB ? Page::kPageSize : MB);
   1519 
   1520   intptr_t OldGenerationAllocationLimit(intptr_t old_gen_size) {
   1521     const int divisor = FLAG_stress_compaction ? 10 :
   1522         new_space_high_promotion_mode_active_ ? 1 : 3;
   1523     intptr_t limit =
   1524         Max(old_gen_size + old_gen_size / divisor,
   1525             kMinimumOldGenerationAllocationLimit);
   1526     limit += new_space_.Capacity();
   1527     // TODO(hpayer): Can be removed when when pretenuring is supported for all
   1528     // allocation sites.
   1529     if (IsHighSurvivalRate() && IsStableOrIncreasingSurvivalTrend()) {
   1530       limit *= 2;
   1531     }
   1532     intptr_t halfway_to_the_max = (old_gen_size + max_old_generation_size_) / 2;
   1533     return Min(limit, halfway_to_the_max);
   1534   }
   1535 
   1536   // Indicates whether inline bump-pointer allocation has been disabled.
   1537   bool inline_allocation_disabled() { return inline_allocation_disabled_; }
   1538 
   1539   // Switch whether inline bump-pointer allocation should be used.
   1540   void EnableInlineAllocation();
   1541   void DisableInlineAllocation();
   1542 
   1543   // Implements the corresponding V8 API function.
   1544   bool IdleNotification(int hint);
   1545 
   1546   // Declare all the root indices.
   1547   enum RootListIndex {
   1548 #define ROOT_INDEX_DECLARATION(type, name, camel_name) k##camel_name##RootIndex,
   1549     STRONG_ROOT_LIST(ROOT_INDEX_DECLARATION)
   1550 #undef ROOT_INDEX_DECLARATION
   1551 
   1552 #define STRING_INDEX_DECLARATION(name, str) k##name##RootIndex,
   1553     INTERNALIZED_STRING_LIST(STRING_INDEX_DECLARATION)
   1554 #undef STRING_DECLARATION
   1555 
   1556     // Utility type maps
   1557 #define DECLARE_STRUCT_MAP(NAME, Name, name) k##Name##MapRootIndex,
   1558     STRUCT_LIST(DECLARE_STRUCT_MAP)
   1559 #undef DECLARE_STRUCT_MAP
   1560 
   1561     kStringTableRootIndex,
   1562     kStrongRootListLength = kStringTableRootIndex,
   1563     kRootListLength
   1564   };
   1565 
   1566   STATIC_CHECK(kUndefinedValueRootIndex == Internals::kUndefinedValueRootIndex);
   1567   STATIC_CHECK(kNullValueRootIndex == Internals::kNullValueRootIndex);
   1568   STATIC_CHECK(kTrueValueRootIndex == Internals::kTrueValueRootIndex);
   1569   STATIC_CHECK(kFalseValueRootIndex == Internals::kFalseValueRootIndex);
   1570   STATIC_CHECK(kempty_stringRootIndex == Internals::kEmptyStringRootIndex);
   1571 
   1572   // Generated code can embed direct references to non-writable roots if
   1573   // they are in new space.
   1574   static bool RootCanBeWrittenAfterInitialization(RootListIndex root_index);
   1575   // Generated code can treat direct references to this root as constant.
   1576   bool RootCanBeTreatedAsConstant(RootListIndex root_index);
   1577 
   1578   MUST_USE_RESULT MaybeObject* NumberToString(
   1579       Object* number, bool check_number_string_cache = true,
   1580       PretenureFlag pretenure = NOT_TENURED);
   1581   MUST_USE_RESULT MaybeObject* Uint32ToString(
   1582       uint32_t value, bool check_number_string_cache = true);
   1583 
   1584   Map* MapForExternalArrayType(ExternalArrayType array_type);
   1585   RootListIndex RootIndexForExternalArrayType(
   1586       ExternalArrayType array_type);
   1587 
   1588   RootListIndex RootIndexForEmptyExternalArray(ElementsKind kind);
   1589   ExternalArray* EmptyExternalArrayForMap(Map* map);
   1590 
   1591   void RecordStats(HeapStats* stats, bool take_snapshot = false);
   1592 
   1593   // Copy block of memory from src to dst. Size of block should be aligned
   1594   // by pointer size.
   1595   static inline void CopyBlock(Address dst, Address src, int byte_size);
   1596 
   1597   // Optimized version of memmove for blocks with pointer size aligned sizes and
   1598   // pointer size aligned addresses.
   1599   static inline void MoveBlock(Address dst, Address src, int byte_size);
   1600 
   1601   // Check new space expansion criteria and expand semispaces if it was hit.
   1602   void CheckNewSpaceExpansionCriteria();
   1603 
   1604   inline void IncrementYoungSurvivorsCounter(int survived) {
   1605     ASSERT(survived >= 0);
   1606     young_survivors_after_last_gc_ = survived;
   1607     survived_since_last_expansion_ += survived;
   1608   }
   1609 
   1610   inline bool NextGCIsLikelyToBeFull() {
   1611     if (FLAG_gc_global) return true;
   1612 
   1613     if (FLAG_stress_compaction && (gc_count_ & 1) != 0) return true;
   1614 
   1615     intptr_t adjusted_allocation_limit =
   1616         old_generation_allocation_limit_ - new_space_.Capacity();
   1617 
   1618     if (PromotedTotalSize() >= adjusted_allocation_limit) return true;
   1619 
   1620     return false;
   1621   }
   1622 
   1623   void UpdateNewSpaceReferencesInExternalStringTable(
   1624       ExternalStringTableUpdaterCallback updater_func);
   1625 
   1626   void UpdateReferencesInExternalStringTable(
   1627       ExternalStringTableUpdaterCallback updater_func);
   1628 
   1629   void ProcessWeakReferences(WeakObjectRetainer* retainer);
   1630 
   1631   void VisitExternalResources(v8::ExternalResourceVisitor* visitor);
   1632 
   1633   // Helper function that governs the promotion policy from new space to
   1634   // old.  If the object's old address lies below the new space's age
   1635   // mark or if we've already filled the bottom 1/16th of the to space,
   1636   // we try to promote this object.
   1637   inline bool ShouldBePromoted(Address old_address, int object_size);
   1638 
   1639   void ClearJSFunctionResultCaches();
   1640 
   1641   void ClearNormalizedMapCaches();
   1642 
   1643   GCTracer* tracer() { return tracer_; }
   1644 
   1645   // Returns the size of objects residing in non new spaces.
   1646   intptr_t PromotedSpaceSizeOfObjects();
   1647 
   1648   double total_regexp_code_generated() { return total_regexp_code_generated_; }
   1649   void IncreaseTotalRegexpCodeGenerated(int size) {
   1650     total_regexp_code_generated_ += size;
   1651   }
   1652 
   1653   void IncrementCodeGeneratedBytes(bool is_crankshafted, int size) {
   1654     if (is_crankshafted) {
   1655       crankshaft_codegen_bytes_generated_ += size;
   1656     } else {
   1657       full_codegen_bytes_generated_ += size;
   1658     }
   1659   }
   1660 
   1661   // Returns maximum GC pause.
   1662   double get_max_gc_pause() { return max_gc_pause_; }
   1663 
   1664   // Returns maximum size of objects alive after GC.
   1665   intptr_t get_max_alive_after_gc() { return max_alive_after_gc_; }
   1666 
   1667   // Returns minimal interval between two subsequent collections.
   1668   double get_min_in_mutator() { return min_in_mutator_; }
   1669 
   1670   // TODO(hpayer): remove, should be handled by GCTracer
   1671   void AddMarkingTime(double marking_time) {
   1672     marking_time_ += marking_time;
   1673   }
   1674 
   1675   double marking_time() const {
   1676     return marking_time_;
   1677   }
   1678 
   1679   // TODO(hpayer): remove, should be handled by GCTracer
   1680   void AddSweepingTime(double sweeping_time) {
   1681     sweeping_time_ += sweeping_time;
   1682   }
   1683 
   1684   double sweeping_time() const {
   1685     return sweeping_time_;
   1686   }
   1687 
   1688   MarkCompactCollector* mark_compact_collector() {
   1689     return &mark_compact_collector_;
   1690   }
   1691 
   1692   StoreBuffer* store_buffer() {
   1693     return &store_buffer_;
   1694   }
   1695 
   1696   Marking* marking() {
   1697     return &marking_;
   1698   }
   1699 
   1700   IncrementalMarking* incremental_marking() {
   1701     return &incremental_marking_;
   1702   }
   1703 
   1704   bool IsSweepingComplete() {
   1705     return !mark_compact_collector()->IsConcurrentSweepingInProgress() &&
   1706            old_data_space()->IsLazySweepingComplete() &&
   1707            old_pointer_space()->IsLazySweepingComplete();
   1708   }
   1709 
   1710   bool AdvanceSweepers(int step_size);
   1711 
   1712   bool EnsureSweepersProgressed(int step_size) {
   1713     bool sweeping_complete = old_data_space()->EnsureSweeperProgress(step_size);
   1714     sweeping_complete &= old_pointer_space()->EnsureSweeperProgress(step_size);
   1715     return sweeping_complete;
   1716   }
   1717 
   1718   ExternalStringTable* external_string_table() {
   1719     return &external_string_table_;
   1720   }
   1721 
   1722   // Returns the current sweep generation.
   1723   int sweep_generation() {
   1724     return sweep_generation_;
   1725   }
   1726 
   1727   inline Isolate* isolate();
   1728 
   1729   void CallGCPrologueCallbacks(GCType gc_type, GCCallbackFlags flags);
   1730   void CallGCEpilogueCallbacks(GCType gc_type);
   1731 
   1732   inline bool OldGenerationAllocationLimitReached();
   1733 
   1734   inline void DoScavengeObject(Map* map, HeapObject** slot, HeapObject* obj) {
   1735     scavenging_visitors_table_.GetVisitor(map)(map, slot, obj);
   1736   }
   1737 
   1738   void QueueMemoryChunkForFree(MemoryChunk* chunk);
   1739   void FreeQueuedChunks();
   1740 
   1741   int gc_count() const { return gc_count_; }
   1742 
   1743   // Completely clear the Instanceof cache (to stop it keeping objects alive
   1744   // around a GC).
   1745   inline void CompletelyClearInstanceofCache();
   1746 
   1747   // The roots that have an index less than this are always in old space.
   1748   static const int kOldSpaceRoots = 0x20;
   1749 
   1750   uint32_t HashSeed() {
   1751     uint32_t seed = static_cast<uint32_t>(hash_seed()->value());
   1752     ASSERT(FLAG_randomize_hashes || seed == 0);
   1753     return seed;
   1754   }
   1755 
   1756   void SetArgumentsAdaptorDeoptPCOffset(int pc_offset) {
   1757     ASSERT(arguments_adaptor_deopt_pc_offset() == Smi::FromInt(0));
   1758     set_arguments_adaptor_deopt_pc_offset(Smi::FromInt(pc_offset));
   1759   }
   1760 
   1761   void SetConstructStubDeoptPCOffset(int pc_offset) {
   1762     ASSERT(construct_stub_deopt_pc_offset() == Smi::FromInt(0));
   1763     set_construct_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
   1764   }
   1765 
   1766   void SetGetterStubDeoptPCOffset(int pc_offset) {
   1767     ASSERT(getter_stub_deopt_pc_offset() == Smi::FromInt(0));
   1768     set_getter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
   1769   }
   1770 
   1771   void SetSetterStubDeoptPCOffset(int pc_offset) {
   1772     ASSERT(setter_stub_deopt_pc_offset() == Smi::FromInt(0));
   1773     set_setter_stub_deopt_pc_offset(Smi::FromInt(pc_offset));
   1774   }
   1775 
   1776   // For post mortem debugging.
   1777   void RememberUnmappedPage(Address page, bool compacted);
   1778 
   1779   // Global inline caching age: it is incremented on some GCs after context
   1780   // disposal. We use it to flush inline caches.
   1781   int global_ic_age() {
   1782     return global_ic_age_;
   1783   }
   1784 
   1785   void AgeInlineCaches() {
   1786     global_ic_age_ = (global_ic_age_ + 1) & SharedFunctionInfo::ICAgeBits::kMax;
   1787   }
   1788 
   1789   bool flush_monomorphic_ics() { return flush_monomorphic_ics_; }
   1790 
   1791   int64_t amount_of_external_allocated_memory() {
   1792     return amount_of_external_allocated_memory_;
   1793   }
   1794 
   1795   // ObjectStats are kept in two arrays, counts and sizes. Related stats are
   1796   // stored in a contiguous linear buffer. Stats groups are stored one after
   1797   // another.
   1798   enum {
   1799     FIRST_CODE_KIND_SUB_TYPE = LAST_TYPE + 1,
   1800     FIRST_FIXED_ARRAY_SUB_TYPE =
   1801         FIRST_CODE_KIND_SUB_TYPE + Code::NUMBER_OF_KINDS,
   1802     FIRST_CODE_AGE_SUB_TYPE =
   1803         FIRST_FIXED_ARRAY_SUB_TYPE + LAST_FIXED_ARRAY_SUB_TYPE + 1,
   1804     OBJECT_STATS_COUNT = FIRST_CODE_AGE_SUB_TYPE + Code::kCodeAgeCount + 1
   1805   };
   1806 
   1807   void RecordObjectStats(InstanceType type, size_t size) {
   1808     ASSERT(type <= LAST_TYPE);
   1809     object_counts_[type]++;
   1810     object_sizes_[type] += size;
   1811   }
   1812 
   1813   void RecordCodeSubTypeStats(int code_sub_type, int code_age, size_t size) {
   1814     int code_sub_type_index = FIRST_CODE_KIND_SUB_TYPE + code_sub_type;
   1815     int code_age_index =
   1816         FIRST_CODE_AGE_SUB_TYPE + code_age - Code::kFirstCodeAge;
   1817     ASSERT(code_sub_type_index >= FIRST_CODE_KIND_SUB_TYPE &&
   1818            code_sub_type_index < FIRST_CODE_AGE_SUB_TYPE);
   1819     ASSERT(code_age_index >= FIRST_CODE_AGE_SUB_TYPE &&
   1820            code_age_index < OBJECT_STATS_COUNT);
   1821     object_counts_[code_sub_type_index]++;
   1822     object_sizes_[code_sub_type_index] += size;
   1823     object_counts_[code_age_index]++;
   1824     object_sizes_[code_age_index] += size;
   1825   }
   1826 
   1827   void RecordFixedArraySubTypeStats(int array_sub_type, size_t size) {
   1828     ASSERT(array_sub_type <= LAST_FIXED_ARRAY_SUB_TYPE);
   1829     object_counts_[FIRST_FIXED_ARRAY_SUB_TYPE + array_sub_type]++;
   1830     object_sizes_[FIRST_FIXED_ARRAY_SUB_TYPE + array_sub_type] += size;
   1831   }
   1832 
   1833   void CheckpointObjectStats();
   1834 
   1835   // We don't use a LockGuard here since we want to lock the heap
   1836   // only when FLAG_concurrent_recompilation is true.
   1837   class RelocationLock {
   1838    public:
   1839     explicit RelocationLock(Heap* heap) : heap_(heap) {
   1840       if (FLAG_concurrent_recompilation) {
   1841         heap_->relocation_mutex_->Lock();
   1842       }
   1843     }
   1844 
   1845 
   1846     ~RelocationLock() {
   1847       if (FLAG_concurrent_recompilation) {
   1848         heap_->relocation_mutex_->Unlock();
   1849       }
   1850     }
   1851 
   1852    private:
   1853     Heap* heap_;
   1854   };
   1855 
   1856   MaybeObject* AddWeakObjectToCodeDependency(Object* obj, DependentCode* dep);
   1857 
   1858   DependentCode* LookupWeakObjectToCodeDependency(Object* obj);
   1859 
   1860   void InitializeWeakObjectToCodeTable() {
   1861     set_weak_object_to_code_table(undefined_value());
   1862   }
   1863 
   1864   void EnsureWeakObjectToCodeTable();
   1865 
   1866  private:
   1867   Heap();
   1868 
   1869   // This can be calculated directly from a pointer to the heap; however, it is
   1870   // more expedient to get at the isolate directly from within Heap methods.
   1871   Isolate* isolate_;
   1872 
   1873   Object* roots_[kRootListLength];
   1874 
   1875   intptr_t code_range_size_;
   1876   int reserved_semispace_size_;
   1877   int max_semispace_size_;
   1878   int initial_semispace_size_;
   1879   intptr_t max_old_generation_size_;
   1880   intptr_t max_executable_size_;
   1881   intptr_t maximum_committed_;
   1882 
   1883   // For keeping track of how much data has survived
   1884   // scavenge since last new space expansion.
   1885   int survived_since_last_expansion_;
   1886 
   1887   // For keeping track on when to flush RegExp code.
   1888   int sweep_generation_;
   1889 
   1890   int always_allocate_scope_depth_;
   1891   int linear_allocation_scope_depth_;
   1892 
   1893   // For keeping track of context disposals.
   1894   int contexts_disposed_;
   1895 
   1896   int global_ic_age_;
   1897 
   1898   bool flush_monomorphic_ics_;
   1899 
   1900   int scan_on_scavenge_pages_;
   1901 
   1902   NewSpace new_space_;
   1903   OldSpace* old_pointer_space_;
   1904   OldSpace* old_data_space_;
   1905   OldSpace* code_space_;
   1906   MapSpace* map_space_;
   1907   CellSpace* cell_space_;
   1908   PropertyCellSpace* property_cell_space_;
   1909   LargeObjectSpace* lo_space_;
   1910   HeapState gc_state_;
   1911   int gc_post_processing_depth_;
   1912 
   1913   // Returns the amount of external memory registered since last global gc.
   1914   int64_t PromotedExternalMemorySize();
   1915 
   1916   unsigned int ms_count_;  // how many mark-sweep collections happened
   1917   unsigned int gc_count_;  // how many gc happened
   1918 
   1919   // For post mortem debugging.
   1920   static const int kRememberedUnmappedPages = 128;
   1921   int remembered_unmapped_pages_index_;
   1922   Address remembered_unmapped_pages_[kRememberedUnmappedPages];
   1923 
   1924   // Total length of the strings we failed to flatten since the last GC.
   1925   int unflattened_strings_length_;
   1926 
   1927 #define ROOT_ACCESSOR(type, name, camel_name)                                  \
   1928   inline void set_##name(type* value) {                                        \
   1929     /* The deserializer makes use of the fact that these common roots are */   \
   1930     /* never in new space and never on a page that is being compacted.    */   \
   1931     ASSERT(k##camel_name##RootIndex >= kOldSpaceRoots || !InNewSpace(value));  \
   1932     roots_[k##camel_name##RootIndex] = value;                                  \
   1933   }
   1934   ROOT_LIST(ROOT_ACCESSOR)
   1935 #undef ROOT_ACCESSOR
   1936 
   1937 #ifdef DEBUG
   1938   // If the --gc-interval flag is set to a positive value, this
   1939   // variable holds the value indicating the number of allocations
   1940   // remain until the next failure and garbage collection.
   1941   int allocation_timeout_;
   1942 
   1943   // Do we expect to be able to handle allocation failure at this
   1944   // time?
   1945   bool disallow_allocation_failure_;
   1946 #endif  // DEBUG
   1947 
   1948   // Indicates that the new space should be kept small due to high promotion
   1949   // rates caused by the mutator allocating a lot of long-lived objects.
   1950   // TODO(hpayer): change to bool if no longer accessed from generated code
   1951   intptr_t new_space_high_promotion_mode_active_;
   1952 
   1953   // Limit that triggers a global GC on the next (normally caused) GC.  This
   1954   // is checked when we have already decided to do a GC to help determine
   1955   // which collector to invoke, before expanding a paged space in the old
   1956   // generation and on every allocation in large object space.
   1957   intptr_t old_generation_allocation_limit_;
   1958 
   1959   // Used to adjust the limits that control the timing of the next GC.
   1960   intptr_t size_of_old_gen_at_last_old_space_gc_;
   1961 
   1962   // Limit on the amount of externally allocated memory allowed
   1963   // between global GCs. If reached a global GC is forced.
   1964   intptr_t external_allocation_limit_;
   1965 
   1966   // The amount of external memory registered through the API kept alive
   1967   // by global handles
   1968   int64_t amount_of_external_allocated_memory_;
   1969 
   1970   // Caches the amount of external memory registered at the last global gc.
   1971   int64_t amount_of_external_allocated_memory_at_last_global_gc_;
   1972 
   1973   // Indicates that an allocation has failed in the old generation since the
   1974   // last GC.
   1975   bool old_gen_exhausted_;
   1976 
   1977   // Indicates that inline bump-pointer allocation has been globally disabled
   1978   // for all spaces. This is used to disable allocations in generated code.
   1979   bool inline_allocation_disabled_;
   1980 
   1981   // Weak list heads, threaded through the objects.
   1982   // List heads are initilized lazily and contain the undefined_value at start.
   1983   Object* native_contexts_list_;
   1984   Object* array_buffers_list_;
   1985   Object* allocation_sites_list_;
   1986 
   1987   // WeakHashTable that maps objects embedded in optimized code to dependent
   1988   // code list. It is initilized lazily and contains the undefined_value at
   1989   // start.
   1990   Object* weak_object_to_code_table_;
   1991 
   1992   StoreBufferRebuilder store_buffer_rebuilder_;
   1993 
   1994   struct StringTypeTable {
   1995     InstanceType type;
   1996     int size;
   1997     RootListIndex index;
   1998   };
   1999 
   2000   struct ConstantStringTable {
   2001     const char* contents;
   2002     RootListIndex index;
   2003   };
   2004 
   2005   struct StructTable {
   2006     InstanceType type;
   2007     int size;
   2008     RootListIndex index;
   2009   };
   2010 
   2011   static const StringTypeTable string_type_table[];
   2012   static const ConstantStringTable constant_string_table[];
   2013   static const StructTable struct_table[];
   2014 
   2015   // The special hidden string which is an empty string, but does not match
   2016   // any string when looked up in properties.
   2017   String* hidden_string_;
   2018 
   2019   // GC callback function, called before and after mark-compact GC.
   2020   // Allocations in the callback function are disallowed.
   2021   struct GCPrologueCallbackPair {
   2022     GCPrologueCallbackPair(v8::Isolate::GCPrologueCallback callback,
   2023                            GCType gc_type,
   2024                            bool pass_isolate)
   2025         : callback(callback), gc_type(gc_type), pass_isolate_(pass_isolate) {
   2026     }
   2027     bool operator==(const GCPrologueCallbackPair& pair) const {
   2028       return pair.callback == callback;
   2029     }
   2030     v8::Isolate::GCPrologueCallback callback;
   2031     GCType gc_type;
   2032     // TODO(dcarney): remove variable
   2033     bool pass_isolate_;
   2034   };
   2035   List<GCPrologueCallbackPair> gc_prologue_callbacks_;
   2036 
   2037   struct GCEpilogueCallbackPair {
   2038     GCEpilogueCallbackPair(v8::Isolate::GCPrologueCallback callback,
   2039                            GCType gc_type,
   2040                            bool pass_isolate)
   2041         : callback(callback), gc_type(gc_type), pass_isolate_(pass_isolate) {
   2042     }
   2043     bool operator==(const GCEpilogueCallbackPair& pair) const {
   2044       return pair.callback == callback;
   2045     }
   2046     v8::Isolate::GCPrologueCallback callback;
   2047     GCType gc_type;
   2048     // TODO(dcarney): remove variable
   2049     bool pass_isolate_;
   2050   };
   2051   List<GCEpilogueCallbackPair> gc_epilogue_callbacks_;
   2052 
   2053   // Support for computing object sizes during GC.
   2054   HeapObjectCallback gc_safe_size_of_old_object_;
   2055   static int GcSafeSizeOfOldObject(HeapObject* object);
   2056 
   2057   // Update the GC state. Called from the mark-compact collector.
   2058   void MarkMapPointersAsEncoded(bool encoded) {
   2059     ASSERT(!encoded);
   2060     gc_safe_size_of_old_object_ = &GcSafeSizeOfOldObject;
   2061   }
   2062 
   2063   // Code that should be run before and after each GC.  Includes some
   2064   // reporting/verification activities when compiled with DEBUG set.
   2065   void GarbageCollectionPrologue();
   2066   void GarbageCollectionEpilogue();
   2067 
   2068   // Checks whether a global GC is necessary
   2069   GarbageCollector SelectGarbageCollector(AllocationSpace space,
   2070                                           const char** reason);
   2071 
   2072   // Performs garbage collection operation.
   2073   // Returns whether there is a chance that another major GC could
   2074   // collect more garbage.
   2075   bool CollectGarbage(AllocationSpace space,
   2076                       GarbageCollector collector,
   2077                       const char* gc_reason,
   2078                       const char* collector_reason);
   2079 
   2080   // Performs garbage collection
   2081   // Returns whether there is a chance another major GC could
   2082   // collect more garbage.
   2083   bool PerformGarbageCollection(GarbageCollector collector,
   2084                                 GCTracer* tracer);
   2085 
   2086   inline void UpdateOldSpaceLimits();
   2087 
   2088   // Selects the proper allocation space depending on the given object
   2089   // size, pretenuring decision, and preferred old-space.
   2090   static AllocationSpace SelectSpace(int object_size,
   2091                                      AllocationSpace preferred_old_space,
   2092                                      PretenureFlag pretenure) {
   2093     ASSERT(preferred_old_space == OLD_POINTER_SPACE ||
   2094            preferred_old_space == OLD_DATA_SPACE);
   2095     if (object_size > Page::kMaxNonCodeHeapObjectSize) return LO_SPACE;
   2096     return (pretenure == TENURED) ? preferred_old_space : NEW_SPACE;
   2097   }
   2098 
   2099   // Allocate an uninitialized fixed array.
   2100   MUST_USE_RESULT MaybeObject* AllocateRawFixedArray(
   2101       int length, PretenureFlag pretenure);
   2102 
   2103   // Allocate an uninitialized fixed double array.
   2104   MUST_USE_RESULT MaybeObject* AllocateRawFixedDoubleArray(
   2105       int length, PretenureFlag pretenure);
   2106 
   2107   // Allocate an initialized fixed array with the given filler value.
   2108   MUST_USE_RESULT MaybeObject* AllocateFixedArrayWithFiller(
   2109       int length, PretenureFlag pretenure, Object* filler);
   2110 
   2111   // Initializes a JSObject based on its map.
   2112   void InitializeJSObjectFromMap(JSObject* obj,
   2113                                  FixedArray* properties,
   2114                                  Map* map);
   2115   void InitializeAllocationMemento(AllocationMemento* memento,
   2116                                    AllocationSite* allocation_site);
   2117 
   2118   bool CreateInitialMaps();
   2119   bool CreateInitialObjects();
   2120 
   2121   // These five Create*EntryStub functions are here and forced to not be inlined
   2122   // because of a gcc-4.4 bug that assigns wrong vtable entries.
   2123   NO_INLINE(void CreateJSEntryStub());
   2124   NO_INLINE(void CreateJSConstructEntryStub());
   2125 
   2126   void CreateFixedStubs();
   2127   void CreateStubsRequiringBuiltins();
   2128 
   2129   MUST_USE_RESULT MaybeObject* CreateOddball(const char* to_string,
   2130                                              Object* to_number,
   2131                                              byte kind);
   2132 
   2133   // Allocate a JSArray with no elements
   2134   MUST_USE_RESULT MaybeObject* AllocateJSArray(
   2135       ElementsKind elements_kind,
   2136       PretenureFlag pretenure = NOT_TENURED);
   2137 
   2138   // Allocate empty fixed array.
   2139   MUST_USE_RESULT MaybeObject* AllocateEmptyFixedArray();
   2140 
   2141   // Allocate empty external array of given type.
   2142   MUST_USE_RESULT MaybeObject* AllocateEmptyExternalArray(
   2143       ExternalArrayType array_type);
   2144 
   2145   // Allocate empty fixed double array.
   2146   MUST_USE_RESULT MaybeObject* AllocateEmptyFixedDoubleArray();
   2147 
   2148   // Allocate a tenured simple cell.
   2149   MUST_USE_RESULT MaybeObject* AllocateCell(Object* value);
   2150 
   2151   // Allocate a tenured JS global property cell initialized with the hole.
   2152   MUST_USE_RESULT MaybeObject* AllocatePropertyCell();
   2153 
   2154   // Allocate Box.
   2155   MUST_USE_RESULT MaybeObject* AllocateBox(Object* value,
   2156                                            PretenureFlag pretenure);
   2157 
   2158   // Performs a minor collection in new generation.
   2159   void Scavenge();
   2160 
   2161   // Commits from space if it is uncommitted.
   2162   void EnsureFromSpaceIsCommitted();
   2163 
   2164   // Uncommit unused semi space.
   2165   bool UncommitFromSpace() { return new_space_.UncommitFromSpace(); }
   2166 
   2167   // Fill in bogus values in from space
   2168   void ZapFromSpace();
   2169 
   2170   static String* UpdateNewSpaceReferenceInExternalStringTableEntry(
   2171       Heap* heap,
   2172       Object** pointer);
   2173 
   2174   Address DoScavenge(ObjectVisitor* scavenge_visitor, Address new_space_front);
   2175   static void ScavengeStoreBufferCallback(Heap* heap,
   2176                                           MemoryChunk* page,
   2177                                           StoreBufferEvent event);
   2178 
   2179   // Performs a major collection in the whole heap.
   2180   void MarkCompact(GCTracer* tracer);
   2181 
   2182   // Code to be run before and after mark-compact.
   2183   void MarkCompactPrologue();
   2184 
   2185   void ProcessNativeContexts(WeakObjectRetainer* retainer, bool record_slots);
   2186   void ProcessArrayBuffers(WeakObjectRetainer* retainer, bool record_slots);
   2187   void ProcessAllocationSites(WeakObjectRetainer* retainer, bool record_slots);
   2188 
   2189   // Called on heap tear-down.
   2190   void TearDownArrayBuffers();
   2191 
   2192   // Record statistics before and after garbage collection.
   2193   void ReportStatisticsBeforeGC();
   2194   void ReportStatisticsAfterGC();
   2195 
   2196   // Slow part of scavenge object.
   2197   static void ScavengeObjectSlow(HeapObject** p, HeapObject* object);
   2198 
   2199   // Initializes a function with a shared part and prototype.
   2200   // Note: this code was factored out of AllocateFunction such that
   2201   // other parts of the VM could use it. Specifically, a function that creates
   2202   // instances of type JS_FUNCTION_TYPE benefit from the use of this function.
   2203   // Please note this does not perform a garbage collection.
   2204   inline void InitializeFunction(
   2205       JSFunction* function,
   2206       SharedFunctionInfo* shared,
   2207       Object* prototype);
   2208 
   2209   // Total RegExp code ever generated
   2210   double total_regexp_code_generated_;
   2211 
   2212   GCTracer* tracer_;
   2213 
   2214   // Allocates a small number to string cache.
   2215   MUST_USE_RESULT MaybeObject* AllocateInitialNumberStringCache();
   2216   // Creates and installs the full-sized number string cache.
   2217   void AllocateFullSizeNumberStringCache();
   2218   // Get the length of the number to string cache based on the max semispace
   2219   // size.
   2220   int FullSizeNumberStringCacheLength();
   2221   // Flush the number to string cache.
   2222   void FlushNumberStringCache();
   2223 
   2224   void UpdateSurvivalRateTrend(int start_new_space_size);
   2225 
   2226   enum SurvivalRateTrend { INCREASING, STABLE, DECREASING, FLUCTUATING };
   2227 
   2228   static const int kYoungSurvivalRateHighThreshold = 90;
   2229   static const int kYoungSurvivalRateLowThreshold = 10;
   2230   static const int kYoungSurvivalRateAllowedDeviation = 15;
   2231 
   2232   int young_survivors_after_last_gc_;
   2233   int high_survival_rate_period_length_;
   2234   int low_survival_rate_period_length_;
   2235   double survival_rate_;
   2236   SurvivalRateTrend previous_survival_rate_trend_;
   2237   SurvivalRateTrend survival_rate_trend_;
   2238 
   2239   void set_survival_rate_trend(SurvivalRateTrend survival_rate_trend) {
   2240     ASSERT(survival_rate_trend != FLUCTUATING);
   2241     previous_survival_rate_trend_ = survival_rate_trend_;
   2242     survival_rate_trend_ = survival_rate_trend;
   2243   }
   2244 
   2245   SurvivalRateTrend survival_rate_trend() {
   2246     if (survival_rate_trend_ == STABLE) {
   2247       return STABLE;
   2248     } else if (previous_survival_rate_trend_ == STABLE) {
   2249       return survival_rate_trend_;
   2250     } else if (survival_rate_trend_ != previous_survival_rate_trend_) {
   2251       return FLUCTUATING;
   2252     } else {
   2253       return survival_rate_trend_;
   2254     }
   2255   }
   2256 
   2257   bool IsStableOrIncreasingSurvivalTrend() {
   2258     switch (survival_rate_trend()) {
   2259       case STABLE:
   2260       case INCREASING:
   2261         return true;
   2262       default:
   2263         return false;
   2264     }
   2265   }
   2266 
   2267   bool IsStableOrDecreasingSurvivalTrend() {
   2268     switch (survival_rate_trend()) {
   2269       case STABLE:
   2270       case DECREASING:
   2271         return true;
   2272       default:
   2273         return false;
   2274     }
   2275   }
   2276 
   2277   bool IsIncreasingSurvivalTrend() {
   2278     return survival_rate_trend() == INCREASING;
   2279   }
   2280 
   2281   bool IsHighSurvivalRate() {
   2282     return high_survival_rate_period_length_ > 0;
   2283   }
   2284 
   2285   bool IsLowSurvivalRate() {
   2286     return low_survival_rate_period_length_ > 0;
   2287   }
   2288 
   2289   void SelectScavengingVisitorsTable();
   2290 
   2291   void StartIdleRound() {
   2292     mark_sweeps_since_idle_round_started_ = 0;
   2293   }
   2294 
   2295   void FinishIdleRound() {
   2296     mark_sweeps_since_idle_round_started_ = kMaxMarkSweepsInIdleRound;
   2297     scavenges_since_last_idle_round_ = 0;
   2298   }
   2299 
   2300   bool EnoughGarbageSinceLastIdleRound() {
   2301     return (scavenges_since_last_idle_round_ >= kIdleScavengeThreshold);
   2302   }
   2303 
   2304   // Estimates how many milliseconds a Mark-Sweep would take to complete.
   2305   // In idle notification handler we assume that this function will return:
   2306   // - a number less than 10 for small heaps, which are less than 8Mb.
   2307   // - a number greater than 10 for large heaps, which are greater than 32Mb.
   2308   int TimeMarkSweepWouldTakeInMs() {
   2309     // Rough estimate of how many megabytes of heap can be processed in 1 ms.
   2310     static const int kMbPerMs = 2;
   2311 
   2312     int heap_size_mb = static_cast<int>(SizeOfObjects() / MB);
   2313     return heap_size_mb / kMbPerMs;
   2314   }
   2315 
   2316   // Returns true if no more GC work is left.
   2317   bool IdleGlobalGC();
   2318 
   2319   void AdvanceIdleIncrementalMarking(intptr_t step_size);
   2320 
   2321   void ClearObjectStats(bool clear_last_time_stats = false);
   2322 
   2323   void set_weak_object_to_code_table(Object* value) {
   2324     ASSERT(!InNewSpace(value));
   2325     weak_object_to_code_table_ = value;
   2326   }
   2327 
   2328   Object** weak_object_to_code_table_address() {
   2329     return &weak_object_to_code_table_;
   2330   }
   2331 
   2332   static const int kInitialStringTableSize = 2048;
   2333   static const int kInitialEvalCacheSize = 64;
   2334   static const int kInitialNumberStringCacheSize = 256;
   2335 
   2336   // Object counts and used memory by InstanceType
   2337   size_t object_counts_[OBJECT_STATS_COUNT];
   2338   size_t object_counts_last_time_[OBJECT_STATS_COUNT];
   2339   size_t object_sizes_[OBJECT_STATS_COUNT];
   2340   size_t object_sizes_last_time_[OBJECT_STATS_COUNT];
   2341 
   2342   // Maximum GC pause.
   2343   double max_gc_pause_;
   2344 
   2345   // Total time spent in GC.
   2346   double total_gc_time_ms_;
   2347 
   2348   // Maximum size of objects alive after GC.
   2349   intptr_t max_alive_after_gc_;
   2350 
   2351   // Minimal interval between two subsequent collections.
   2352   double min_in_mutator_;
   2353 
   2354   // Size of objects alive after last GC.
   2355   intptr_t alive_after_last_gc_;
   2356 
   2357   double last_gc_end_timestamp_;
   2358 
   2359   // Cumulative GC time spent in marking
   2360   double marking_time_;
   2361 
   2362   // Cumulative GC time spent in sweeping
   2363   double sweeping_time_;
   2364 
   2365   MarkCompactCollector mark_compact_collector_;
   2366 
   2367   StoreBuffer store_buffer_;
   2368 
   2369   Marking marking_;
   2370 
   2371   IncrementalMarking incremental_marking_;
   2372 
   2373   int number_idle_notifications_;
   2374   unsigned int last_idle_notification_gc_count_;
   2375   bool last_idle_notification_gc_count_init_;
   2376 
   2377   int mark_sweeps_since_idle_round_started_;
   2378   unsigned int gc_count_at_last_idle_gc_;
   2379   int scavenges_since_last_idle_round_;
   2380 
   2381   // These two counters are monotomically increasing and never reset.
   2382   size_t full_codegen_bytes_generated_;
   2383   size_t crankshaft_codegen_bytes_generated_;
   2384 
   2385   // If the --deopt_every_n_garbage_collections flag is set to a positive value,
   2386   // this variable holds the number of garbage collections since the last
   2387   // deoptimization triggered by garbage collection.
   2388   int gcs_since_last_deopt_;
   2389 
   2390 #ifdef VERIFY_HEAP
   2391   int no_weak_object_verification_scope_depth_;
   2392 #endif
   2393 
   2394   static const int kMaxMarkSweepsInIdleRound = 7;
   2395   static const int kIdleScavengeThreshold = 5;
   2396 
   2397   // Shared state read by the scavenge collector and set by ScavengeObject.
   2398   PromotionQueue promotion_queue_;
   2399 
   2400   // Flag is set when the heap has been configured.  The heap can be repeatedly
   2401   // configured through the API until it is set up.
   2402   bool configured_;
   2403 
   2404   ExternalStringTable external_string_table_;
   2405 
   2406   VisitorDispatchTable<ScavengingCallback> scavenging_visitors_table_;
   2407 
   2408   MemoryChunk* chunks_queued_for_free_;
   2409 
   2410   Mutex* relocation_mutex_;
   2411 #ifdef DEBUG
   2412   bool relocation_mutex_locked_by_optimizer_thread_;
   2413 #endif  // DEBUG;
   2414 
   2415   friend class Factory;
   2416   friend class GCTracer;
   2417   friend class DisallowAllocationFailure;
   2418   friend class AlwaysAllocateScope;
   2419   friend class Page;
   2420   friend class Isolate;
   2421   friend class MarkCompactCollector;
   2422   friend class MarkCompactMarkingVisitor;
   2423   friend class MapCompact;
   2424 #ifdef VERIFY_HEAP
   2425   friend class NoWeakObjectVerificationScope;
   2426 #endif
   2427 
   2428   DISALLOW_COPY_AND_ASSIGN(Heap);
   2429 };
   2430 
   2431 
   2432 class HeapStats {
   2433  public:
   2434   static const int kStartMarker = 0xDECADE00;
   2435   static const int kEndMarker = 0xDECADE01;
   2436 
   2437   int* start_marker;                    //  0
   2438   int* new_space_size;                  //  1
   2439   int* new_space_capacity;              //  2
   2440   intptr_t* old_pointer_space_size;          //  3
   2441   intptr_t* old_pointer_space_capacity;      //  4
   2442   intptr_t* old_data_space_size;             //  5
   2443   intptr_t* old_data_space_capacity;         //  6
   2444   intptr_t* code_space_size;                 //  7
   2445   intptr_t* code_space_capacity;             //  8
   2446   intptr_t* map_space_size;                  //  9
   2447   intptr_t* map_space_capacity;              // 10
   2448   intptr_t* cell_space_size;                 // 11
   2449   intptr_t* cell_space_capacity;             // 12
   2450   intptr_t* lo_space_size;                   // 13
   2451   int* global_handle_count;             // 14
   2452   int* weak_global_handle_count;        // 15
   2453   int* pending_global_handle_count;     // 16
   2454   int* near_death_global_handle_count;  // 17
   2455   int* free_global_handle_count;        // 18
   2456   intptr_t* memory_allocator_size;           // 19
   2457   intptr_t* memory_allocator_capacity;       // 20
   2458   int* objects_per_type;                // 21
   2459   int* size_per_type;                   // 22
   2460   int* os_error;                        // 23
   2461   int* end_marker;                      // 24
   2462   intptr_t* property_cell_space_size;   // 25
   2463   intptr_t* property_cell_space_capacity;    // 26
   2464 };
   2465 
   2466 
   2467 class DisallowAllocationFailure {
   2468  public:
   2469   inline DisallowAllocationFailure();
   2470   inline ~DisallowAllocationFailure();
   2471 
   2472 #ifdef DEBUG
   2473  private:
   2474   bool old_state_;
   2475 #endif
   2476 };
   2477 
   2478 
   2479 class AlwaysAllocateScope {
   2480  public:
   2481   inline AlwaysAllocateScope();
   2482   inline ~AlwaysAllocateScope();
   2483 
   2484  private:
   2485   // Implicitly disable artificial allocation failures.
   2486   DisallowAllocationFailure disallow_allocation_failure_;
   2487 };
   2488 
   2489 
   2490 #ifdef VERIFY_HEAP
   2491 class NoWeakObjectVerificationScope {
   2492  public:
   2493   inline NoWeakObjectVerificationScope();
   2494   inline ~NoWeakObjectVerificationScope();
   2495 };
   2496 #endif
   2497 
   2498 
   2499 // Visitor class to verify interior pointers in spaces that do not contain
   2500 // or care about intergenerational references. All heap object pointers have to
   2501 // point into the heap to a location that has a map pointer at its first word.
   2502 // Caveat: Heap::Contains is an approximation because it can return true for
   2503 // objects in a heap space but above the allocation pointer.
   2504 class VerifyPointersVisitor: public ObjectVisitor {
   2505  public:
   2506   inline void VisitPointers(Object** start, Object** end);
   2507 };
   2508 
   2509 
   2510 // Space iterator for iterating over all spaces of the heap.  Returns each space
   2511 // in turn, and null when it is done.
   2512 class AllSpaces BASE_EMBEDDED {
   2513  public:
   2514   explicit AllSpaces(Heap* heap) : heap_(heap), counter_(FIRST_SPACE) {}
   2515   Space* next();
   2516  private:
   2517   Heap* heap_;
   2518   int counter_;
   2519 };
   2520 
   2521 
   2522 // Space iterator for iterating over all old spaces of the heap: Old pointer
   2523 // space, old data space and code space.  Returns each space in turn, and null
   2524 // when it is done.
   2525 class OldSpaces BASE_EMBEDDED {
   2526  public:
   2527   explicit OldSpaces(Heap* heap) : heap_(heap), counter_(OLD_POINTER_SPACE) {}
   2528   OldSpace* next();
   2529  private:
   2530   Heap* heap_;
   2531   int counter_;
   2532 };
   2533 
   2534 
   2535 // Space iterator for iterating over all the paged spaces of the heap: Map
   2536 // space, old pointer space, old data space, code space and cell space.  Returns
   2537 // each space in turn, and null when it is done.
   2538 class PagedSpaces BASE_EMBEDDED {
   2539  public:
   2540   explicit PagedSpaces(Heap* heap) : heap_(heap), counter_(OLD_POINTER_SPACE) {}
   2541   PagedSpace* next();
   2542  private:
   2543   Heap* heap_;
   2544   int counter_;
   2545 };
   2546 
   2547 
   2548 // Space iterator for iterating over all spaces of the heap.
   2549 // For each space an object iterator is provided. The deallocation of the
   2550 // returned object iterators is handled by the space iterator.
   2551 class SpaceIterator : public Malloced {
   2552  public:
   2553   explicit SpaceIterator(Heap* heap);
   2554   SpaceIterator(Heap* heap, HeapObjectCallback size_func);
   2555   virtual ~SpaceIterator();
   2556 
   2557   bool has_next();
   2558   ObjectIterator* next();
   2559 
   2560  private:
   2561   ObjectIterator* CreateIterator();
   2562 
   2563   Heap* heap_;
   2564   int current_space_;  // from enum AllocationSpace.
   2565   ObjectIterator* iterator_;  // object iterator for the current space.
   2566   HeapObjectCallback size_func_;
   2567 };
   2568 
   2569 
   2570 // A HeapIterator provides iteration over the whole heap. It
   2571 // aggregates the specific iterators for the different spaces as
   2572 // these can only iterate over one space only.
   2573 //
   2574 // HeapIterator can skip free list nodes (that is, de-allocated heap
   2575 // objects that still remain in the heap). As implementation of free
   2576 // nodes filtering uses GC marks, it can't be used during MS/MC GC
   2577 // phases. Also, it is forbidden to interrupt iteration in this mode,
   2578 // as this will leave heap objects marked (and thus, unusable).
   2579 class HeapObjectsFilter;
   2580 
   2581 class HeapIterator BASE_EMBEDDED {
   2582  public:
   2583   enum HeapObjectsFiltering {
   2584     kNoFiltering,
   2585     kFilterUnreachable
   2586   };
   2587 
   2588   explicit HeapIterator(Heap* heap);
   2589   HeapIterator(Heap* heap, HeapObjectsFiltering filtering);
   2590   ~HeapIterator();
   2591 
   2592   HeapObject* next();
   2593   void reset();
   2594 
   2595  private:
   2596   // Perform the initialization.
   2597   void Init();
   2598   // Perform all necessary shutdown (destruction) work.
   2599   void Shutdown();
   2600   HeapObject* NextObject();
   2601 
   2602   Heap* heap_;
   2603   HeapObjectsFiltering filtering_;
   2604   HeapObjectsFilter* filter_;
   2605   // Space iterator for iterating all the spaces.
   2606   SpaceIterator* space_iterator_;
   2607   // Object iterator for the space currently being iterated.
   2608   ObjectIterator* object_iterator_;
   2609 };
   2610 
   2611 
   2612 // Cache for mapping (map, property name) into field offset.
   2613 // Cleared at startup and prior to mark sweep collection.
   2614 class KeyedLookupCache {
   2615  public:
   2616   // Lookup field offset for (map, name). If absent, -1 is returned.
   2617   int Lookup(Map* map, Name* name);
   2618 
   2619   // Update an element in the cache.
   2620   void Update(Map* map, Name* name, int field_offset);
   2621 
   2622   // Clear the cache.
   2623   void Clear();
   2624 
   2625   static const int kLength = 256;
   2626   static const int kCapacityMask = kLength - 1;
   2627   static const int kMapHashShift = 5;
   2628   static const int kHashMask = -4;  // Zero the last two bits.
   2629   static const int kEntriesPerBucket = 4;
   2630   static const int kNotFound = -1;
   2631 
   2632   // kEntriesPerBucket should be a power of 2.
   2633   STATIC_ASSERT((kEntriesPerBucket & (kEntriesPerBucket - 1)) == 0);
   2634   STATIC_ASSERT(kEntriesPerBucket == -kHashMask);
   2635 
   2636  private:
   2637   KeyedLookupCache() {
   2638     for (int i = 0; i < kLength; ++i) {
   2639       keys_[i].map = NULL;
   2640       keys_[i].name = NULL;
   2641       field_offsets_[i] = kNotFound;
   2642     }
   2643   }
   2644 
   2645   static inline int Hash(Map* map, Name* name);
   2646 
   2647   // Get the address of the keys and field_offsets arrays.  Used in
   2648   // generated code to perform cache lookups.
   2649   Address keys_address() {
   2650     return reinterpret_cast<Address>(&keys_);
   2651   }
   2652 
   2653   Address field_offsets_address() {
   2654     return reinterpret_cast<Address>(&field_offsets_);
   2655   }
   2656 
   2657   struct Key {
   2658     Map* map;
   2659     Name* name;
   2660   };
   2661 
   2662   Key keys_[kLength];
   2663   int field_offsets_[kLength];
   2664 
   2665   friend class ExternalReference;
   2666   friend class Isolate;
   2667   DISALLOW_COPY_AND_ASSIGN(KeyedLookupCache);
   2668 };
   2669 
   2670 
   2671 // Cache for mapping (map, property name) into descriptor index.
   2672 // The cache contains both positive and negative results.
   2673 // Descriptor index equals kNotFound means the property is absent.
   2674 // Cleared at startup and prior to any gc.
   2675 class DescriptorLookupCache {
   2676  public:
   2677   // Lookup descriptor index for (map, name).
   2678   // If absent, kAbsent is returned.
   2679   int Lookup(Map* source, Name* name) {
   2680     if (!name->IsUniqueName()) return kAbsent;
   2681     int index = Hash(source, name);
   2682     Key& key = keys_[index];
   2683     if ((key.source == source) && (key.name == name)) return results_[index];
   2684     return kAbsent;
   2685   }
   2686 
   2687   // Update an element in the cache.
   2688   void Update(Map* source, Name* name, int result) {
   2689     ASSERT(result != kAbsent);
   2690     if (name->IsUniqueName()) {
   2691       int index = Hash(source, name);
   2692       Key& key = keys_[index];
   2693       key.source = source;
   2694       key.name = name;
   2695       results_[index] = result;
   2696     }
   2697   }
   2698 
   2699   // Clear the cache.
   2700   void Clear();
   2701 
   2702   static const int kAbsent = -2;
   2703 
   2704  private:
   2705   DescriptorLookupCache() {
   2706     for (int i = 0; i < kLength; ++i) {
   2707       keys_[i].source = NULL;
   2708       keys_[i].name = NULL;
   2709       results_[i] = kAbsent;
   2710     }
   2711   }
   2712 
   2713   static int Hash(Object* source, Name* name) {
   2714     // Uses only lower 32 bits if pointers are larger.
   2715     uint32_t source_hash =
   2716         static_cast<uint32_t>(reinterpret_cast<uintptr_t>(source))
   2717             >> kPointerSizeLog2;
   2718     uint32_t name_hash =
   2719         static_cast<uint32_t>(reinterpret_cast<uintptr_t>(name))
   2720             >> kPointerSizeLog2;
   2721     return (source_hash ^ name_hash) % kLength;
   2722   }
   2723 
   2724   static const int kLength = 64;
   2725   struct Key {
   2726     Map* source;
   2727     Name* name;
   2728   };
   2729 
   2730   Key keys_[kLength];
   2731   int results_[kLength];
   2732 
   2733   friend class Isolate;
   2734   DISALLOW_COPY_AND_ASSIGN(DescriptorLookupCache);
   2735 };
   2736 
   2737 
   2738 // GCTracer collects and prints ONE line after each garbage collector
   2739 // invocation IFF --trace_gc is used.
   2740 
   2741 class GCTracer BASE_EMBEDDED {
   2742  public:
   2743   class Scope BASE_EMBEDDED {
   2744    public:
   2745     enum ScopeId {
   2746       EXTERNAL,
   2747       MC_MARK,
   2748       MC_SWEEP,
   2749       MC_SWEEP_NEWSPACE,
   2750       MC_EVACUATE_PAGES,
   2751       MC_UPDATE_NEW_TO_NEW_POINTERS,
   2752       MC_UPDATE_ROOT_TO_NEW_POINTERS,
   2753       MC_UPDATE_OLD_TO_NEW_POINTERS,
   2754       MC_UPDATE_POINTERS_TO_EVACUATED,
   2755       MC_UPDATE_POINTERS_BETWEEN_EVACUATED,
   2756       MC_UPDATE_MISC_POINTERS,
   2757       MC_WEAKCOLLECTION_PROCESS,
   2758       MC_WEAKCOLLECTION_CLEAR,
   2759       MC_FLUSH_CODE,
   2760       kNumberOfScopes
   2761     };
   2762 
   2763     Scope(GCTracer* tracer, ScopeId scope)
   2764         : tracer_(tracer),
   2765         scope_(scope) {
   2766       start_time_ = OS::TimeCurrentMillis();
   2767     }
   2768 
   2769     ~Scope() {
   2770       ASSERT(scope_ < kNumberOfScopes);  // scope_ is unsigned.
   2771       tracer_->scopes_[scope_] += OS::TimeCurrentMillis() - start_time_;
   2772     }
   2773 
   2774    private:
   2775     GCTracer* tracer_;
   2776     ScopeId scope_;
   2777     double start_time_;
   2778   };
   2779 
   2780   explicit GCTracer(Heap* heap,
   2781                     const char* gc_reason,
   2782                     const char* collector_reason);
   2783   ~GCTracer();
   2784 
   2785   // Sets the collector.
   2786   void set_collector(GarbageCollector collector) { collector_ = collector; }
   2787 
   2788   // Sets the GC count.
   2789   void set_gc_count(unsigned int count) { gc_count_ = count; }
   2790 
   2791   // Sets the full GC count.
   2792   void set_full_gc_count(int count) { full_gc_count_ = count; }
   2793 
   2794   void increment_promoted_objects_size(int object_size) {
   2795     promoted_objects_size_ += object_size;
   2796   }
   2797 
   2798   void increment_nodes_died_in_new_space() {
   2799     nodes_died_in_new_space_++;
   2800   }
   2801 
   2802   void increment_nodes_copied_in_new_space() {
   2803     nodes_copied_in_new_space_++;
   2804   }
   2805 
   2806   void increment_nodes_promoted() {
   2807     nodes_promoted_++;
   2808   }
   2809 
   2810  private:
   2811   // Returns a string matching the collector.
   2812   const char* CollectorString();
   2813 
   2814   // Returns size of object in heap (in MB).
   2815   inline double SizeOfHeapObjects();
   2816 
   2817   // Timestamp set in the constructor.
   2818   double start_time_;
   2819 
   2820   // Size of objects in heap set in constructor.
   2821   intptr_t start_object_size_;
   2822 
   2823   // Size of memory allocated from OS set in constructor.
   2824   intptr_t start_memory_size_;
   2825 
   2826   // Type of collector.
   2827   GarbageCollector collector_;
   2828 
   2829   // A count (including this one, e.g. the first collection is 1) of the
   2830   // number of garbage collections.
   2831   unsigned int gc_count_;
   2832 
   2833   // A count (including this one) of the number of full garbage collections.
   2834   int full_gc_count_;
   2835 
   2836   // Amounts of time spent in different scopes during GC.
   2837   double scopes_[Scope::kNumberOfScopes];
   2838 
   2839   // Total amount of space either wasted or contained in one of free lists
   2840   // before the current GC.
   2841   intptr_t in_free_list_or_wasted_before_gc_;
   2842 
   2843   // Difference between space used in the heap at the beginning of the current
   2844   // collection and the end of the previous collection.
   2845   intptr_t allocated_since_last_gc_;
   2846 
   2847   // Amount of time spent in mutator that is time elapsed between end of the
   2848   // previous collection and the beginning of the current one.
   2849   double spent_in_mutator_;
   2850 
   2851   // Size of objects promoted during the current collection.
   2852   intptr_t promoted_objects_size_;
   2853 
   2854   // Number of died nodes in the new space.
   2855   int nodes_died_in_new_space_;
   2856 
   2857   // Number of copied nodes to the new space.
   2858   int nodes_copied_in_new_space_;
   2859 
   2860   // Number of promoted nodes to the old space.
   2861   int nodes_promoted_;
   2862 
   2863   // Incremental marking steps counters.
   2864   int steps_count_;
   2865   double steps_took_;
   2866   double longest_step_;
   2867   int steps_count_since_last_gc_;
   2868   double steps_took_since_last_gc_;
   2869 
   2870   Heap* heap_;
   2871 
   2872   const char* gc_reason_;
   2873   const char* collector_reason_;
   2874 };
   2875 
   2876 
   2877 class RegExpResultsCache {
   2878  public:
   2879   enum ResultsCacheType { REGEXP_MULTIPLE_INDICES, STRING_SPLIT_SUBSTRINGS };
   2880 
   2881   // Attempt to retrieve a cached result.  On failure, 0 is returned as a Smi.
   2882   // On success, the returned result is guaranteed to be a COW-array.
   2883   static Object* Lookup(Heap* heap,
   2884                         String* key_string,
   2885                         Object* key_pattern,
   2886                         ResultsCacheType type);
   2887   // Attempt to add value_array to the cache specified by type.  On success,
   2888   // value_array is turned into a COW-array.
   2889   static void Enter(Heap* heap,
   2890                     String* key_string,
   2891                     Object* key_pattern,
   2892                     FixedArray* value_array,
   2893                     ResultsCacheType type);
   2894   static void Clear(FixedArray* cache);
   2895   static const int kRegExpResultsCacheSize = 0x100;
   2896 
   2897  private:
   2898   static const int kArrayEntriesPerCacheEntry = 4;
   2899   static const int kStringOffset = 0;
   2900   static const int kPatternOffset = 1;
   2901   static const int kArrayOffset = 2;
   2902 };
   2903 
   2904 
   2905 class TranscendentalCache {
   2906  public:
   2907   enum Type {ACOS, ASIN, ATAN, COS, EXP, LOG, SIN, TAN, kNumberOfCaches};
   2908   static const int kTranscendentalTypeBits = 3;
   2909   STATIC_ASSERT((1 << kTranscendentalTypeBits) >= kNumberOfCaches);
   2910 
   2911   // Returns a heap number with f(input), where f is a math function specified
   2912   // by the 'type' argument.
   2913   MUST_USE_RESULT inline MaybeObject* Get(Type type, double input);
   2914 
   2915   // The cache contains raw Object pointers.  This method disposes of
   2916   // them before a garbage collection.
   2917   void Clear();
   2918 
   2919  private:
   2920   class SubCache {
   2921     static const int kCacheSize = 512;
   2922 
   2923     explicit SubCache(Isolate* isolate, Type t);
   2924 
   2925     MUST_USE_RESULT inline MaybeObject* Get(double input);
   2926 
   2927     inline double Calculate(double input);
   2928 
   2929     struct Element {
   2930       uint32_t in[2];
   2931       Object* output;
   2932     };
   2933 
   2934     union Converter {
   2935       double dbl;
   2936       uint32_t integers[2];
   2937     };
   2938 
   2939     inline static int Hash(const Converter& c) {
   2940       uint32_t hash = (c.integers[0] ^ c.integers[1]);
   2941       hash ^= static_cast<int32_t>(hash) >> 16;
   2942       hash ^= static_cast<int32_t>(hash) >> 8;
   2943       return (hash & (kCacheSize - 1));
   2944     }
   2945 
   2946     Element elements_[kCacheSize];
   2947     Type type_;
   2948     Isolate* isolate_;
   2949 
   2950     // Allow access to the caches_ array as an ExternalReference.
   2951     friend class ExternalReference;
   2952     // Inline implementation of the cache.
   2953     friend class TranscendentalCacheStub;
   2954     // For evaluating value.
   2955     friend class TranscendentalCache;
   2956 
   2957     DISALLOW_COPY_AND_ASSIGN(SubCache);
   2958   };
   2959 
   2960   explicit TranscendentalCache(Isolate* isolate) : isolate_(isolate) {
   2961     for (int i = 0; i < kNumberOfCaches; ++i) caches_[i] = NULL;
   2962   }
   2963 
   2964   ~TranscendentalCache() {
   2965     for (int i = 0; i < kNumberOfCaches; ++i) delete caches_[i];
   2966   }
   2967 
   2968   // Used to create an external reference.
   2969   inline Address cache_array_address();
   2970 
   2971   // Instantiation
   2972   friend class Isolate;
   2973   // Inline implementation of the caching.
   2974   friend class TranscendentalCacheStub;
   2975   // Allow access to the caches_ array as an ExternalReference.
   2976   friend class ExternalReference;
   2977 
   2978   Isolate* isolate_;
   2979   SubCache* caches_[kNumberOfCaches];
   2980   DISALLOW_COPY_AND_ASSIGN(TranscendentalCache);
   2981 };
   2982 
   2983 
   2984 // Abstract base class for checking whether a weak object should be retained.
   2985 class WeakObjectRetainer {
   2986  public:
   2987   virtual ~WeakObjectRetainer() {}
   2988 
   2989   // Return whether this object should be retained. If NULL is returned the
   2990   // object has no references. Otherwise the address of the retained object
   2991   // should be returned as in some GC situations the object has been moved.
   2992   virtual Object* RetainAs(Object* object) = 0;
   2993 };
   2994 
   2995 
   2996 // Intrusive object marking uses least significant bit of
   2997 // heap object's map word to mark objects.
   2998 // Normally all map words have least significant bit set
   2999 // because they contain tagged map pointer.
   3000 // If the bit is not set object is marked.
   3001 // All objects should be unmarked before resuming
   3002 // JavaScript execution.
   3003 class IntrusiveMarking {
   3004  public:
   3005   static bool IsMarked(HeapObject* object) {
   3006     return (object->map_word().ToRawValue() & kNotMarkedBit) == 0;
   3007   }
   3008 
   3009   static void ClearMark(HeapObject* object) {
   3010     uintptr_t map_word = object->map_word().ToRawValue();
   3011     object->set_map_word(MapWord::FromRawValue(map_word | kNotMarkedBit));
   3012     ASSERT(!IsMarked(object));
   3013   }
   3014 
   3015   static void SetMark(HeapObject* object) {
   3016     uintptr_t map_word = object->map_word().ToRawValue();
   3017     object->set_map_word(MapWord::FromRawValue(map_word & ~kNotMarkedBit));
   3018     ASSERT(IsMarked(object));
   3019   }
   3020 
   3021   static Map* MapOfMarkedObject(HeapObject* object) {
   3022     uintptr_t map_word = object->map_word().ToRawValue();
   3023     return MapWord::FromRawValue(map_word | kNotMarkedBit).ToMap();
   3024   }
   3025 
   3026   static int SizeOfMarkedObject(HeapObject* object) {
   3027     return object->SizeFromMap(MapOfMarkedObject(object));
   3028   }
   3029 
   3030  private:
   3031   static const uintptr_t kNotMarkedBit = 0x1;
   3032   STATIC_ASSERT((kHeapObjectTag & kNotMarkedBit) != 0);
   3033 };
   3034 
   3035 
   3036 #ifdef DEBUG
   3037 // Helper class for tracing paths to a search target Object from all roots.
   3038 // The TracePathFrom() method can be used to trace paths from a specific
   3039 // object to the search target object.
   3040 class PathTracer : public ObjectVisitor {
   3041  public:
   3042   enum WhatToFind {
   3043     FIND_ALL,   // Will find all matches.
   3044     FIND_FIRST  // Will stop the search after first match.
   3045   };
   3046 
   3047   // For the WhatToFind arg, if FIND_FIRST is specified, tracing will stop
   3048   // after the first match.  If FIND_ALL is specified, then tracing will be
   3049   // done for all matches.
   3050   PathTracer(Object* search_target,
   3051              WhatToFind what_to_find,
   3052              VisitMode visit_mode)
   3053       : search_target_(search_target),
   3054         found_target_(false),
   3055         found_target_in_trace_(false),
   3056         what_to_find_(what_to_find),
   3057         visit_mode_(visit_mode),
   3058         object_stack_(20),
   3059         no_allocation() {}
   3060 
   3061   virtual void VisitPointers(Object** start, Object** end);
   3062 
   3063   void Reset();
   3064   void TracePathFrom(Object** root);
   3065 
   3066   bool found() const { return found_target_; }
   3067 
   3068   static Object* const kAnyGlobalObject;
   3069 
   3070  protected:
   3071   class MarkVisitor;
   3072   class UnmarkVisitor;
   3073 
   3074   void MarkRecursively(Object** p, MarkVisitor* mark_visitor);
   3075   void UnmarkRecursively(Object** p, UnmarkVisitor* unmark_visitor);
   3076   virtual void ProcessResults();
   3077 
   3078   // Tags 0, 1, and 3 are used. Use 2 for marking visited HeapObject.
   3079   static const int kMarkTag = 2;
   3080 
   3081   Object* search_target_;
   3082   bool found_target_;
   3083   bool found_target_in_trace_;
   3084   WhatToFind what_to_find_;
   3085   VisitMode visit_mode_;
   3086   List<Object*> object_stack_;
   3087 
   3088   DisallowHeapAllocation no_allocation;  // i.e. no gc allowed.
   3089 
   3090  private:
   3091   DISALLOW_IMPLICIT_CONSTRUCTORS(PathTracer);
   3092 };
   3093 #endif  // DEBUG
   3094 
   3095 } }  // namespace v8::internal
   3096 
   3097 #endif  // V8_HEAP_H_
   3098