1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: sameeragarwal (at) google.com (Sameer Agarwal) 30 // 31 // For generalized bi-partite Jacobian matrices that arise in 32 // Structure from Motion related problems, it is sometimes useful to 33 // have access to the two parts of the matrix as linear operators 34 // themselves. This class provides that functionality. 35 36 #ifndef CERES_INTERNAL_PARTITIONED_MATRIX_VIEW_H_ 37 #define CERES_INTERNAL_PARTITIONED_MATRIX_VIEW_H_ 38 39 #include "ceres/block_sparse_matrix.h" 40 41 namespace ceres { 42 namespace internal { 43 44 // Given generalized bi-partite matrix A = [E F], with the same block 45 // structure as required by the Schur complement based solver, found 46 // in explicit_schur_complement_solver.h, provide access to the 47 // matrices E and F and their outer products E'E and F'F with 48 // themselves. 49 // 50 // Lack of BlockStructure object will result in a crash and if the 51 // block structure of the matrix does not satisfy the requirements of 52 // the Schur complement solver it will result in unpredictable and 53 // wrong output. 54 // 55 // This class lives in the internal name space as its a utility class 56 // to be used by the IterativeSchurComplementSolver class, found in 57 // iterative_schur_complement_solver.h, and is not meant for general 58 // consumption. 59 class PartitionedMatrixView { 60 public: 61 // matrix = [E F], where the matrix E contains the first 62 // num_col_blocks_a column blocks. 63 PartitionedMatrixView(const BlockSparseMatrix& matrix, 64 int num_col_blocks_a); 65 ~PartitionedMatrixView(); 66 67 // y += E'x 68 void LeftMultiplyE(const double* x, double* y) const; 69 70 // y += F'x 71 void LeftMultiplyF(const double* x, double* y) const; 72 73 // y += Ex 74 void RightMultiplyE(const double* x, double* y) const; 75 76 // y += Fx 77 void RightMultiplyF(const double* x, double* y) const; 78 79 // Create and return the block diagonal of the matrix E'E. 80 BlockSparseMatrix* CreateBlockDiagonalEtE() const; 81 82 // Create and return the block diagonal of the matrix F'F. 83 BlockSparseMatrix* CreateBlockDiagonalFtF() const; 84 85 // Compute the block diagonal of the matrix E'E and store it in 86 // block_diagonal. The matrix block_diagonal is expected to have a 87 // BlockStructure (preferably created using 88 // CreateBlockDiagonalMatrixEtE) which is has the same structure as 89 // the block diagonal of E'E. 90 void UpdateBlockDiagonalEtE(BlockSparseMatrix* block_diagonal) const; 91 92 // Compute the block diagonal of the matrix F'F and store it in 93 // block_diagonal. The matrix block_diagonal is expected to have a 94 // BlockStructure (preferably created using 95 // CreateBlockDiagonalMatrixFtF) which is has the same structure as 96 // the block diagonal of F'F. 97 void UpdateBlockDiagonalFtF(BlockSparseMatrix* block_diagonal) const; 98 99 int num_col_blocks_e() const { return num_col_blocks_e_; } 100 int num_col_blocks_f() const { return num_col_blocks_f_; } 101 int num_cols_e() const { return num_cols_e_; } 102 int num_cols_f() const { return num_cols_f_; } 103 int num_rows() const { return matrix_.num_rows(); } 104 int num_cols() const { return matrix_.num_cols(); } 105 106 private: 107 BlockSparseMatrix* CreateBlockDiagonalMatrixLayout(int start_col_block, 108 int end_col_block) const; 109 110 const BlockSparseMatrix& matrix_; 111 int num_row_blocks_e_; 112 int num_col_blocks_e_; 113 int num_col_blocks_f_; 114 int num_cols_e_; 115 int num_cols_f_; 116 }; 117 118 } // namespace internal 119 } // namespace ceres 120 121 #endif // CERES_INTERNAL_PARTITIONED_MATRIX_VIEW_H_ 122