1 // Ceres Solver - A fast non-linear least squares minimizer 2 // Copyright 2012 Google Inc. All rights reserved. 3 // http://code.google.com/p/ceres-solver/ 4 // 5 // Redistribution and use in source and binary forms, with or without 6 // modification, are permitted provided that the following conditions are met: 7 // 8 // * Redistributions of source code must retain the above copyright notice, 9 // this list of conditions and the following disclaimer. 10 // * Redistributions in binary form must reproduce the above copyright notice, 11 // this list of conditions and the following disclaimer in the documentation 12 // and/or other materials provided with the distribution. 13 // * Neither the name of Google Inc. nor the names of its contributors may be 14 // used to endorse or promote products derived from this software without 15 // specific prior written permission. 16 // 17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 27 // POSSIBILITY OF SUCH DAMAGE. 28 // 29 // Author: sameeragarwal (at) google.com (Sameer Agarwal) 30 // 31 // Interface for and implementation of various Line search algorithms. 32 33 #ifndef CERES_INTERNAL_LINE_SEARCH_H_ 34 #define CERES_INTERNAL_LINE_SEARCH_H_ 35 36 #ifndef CERES_NO_LINE_SEARCH_MINIMIZER 37 38 #include <string> 39 #include <vector> 40 #include "ceres/internal/eigen.h" 41 #include "ceres/internal/port.h" 42 #include "ceres/types.h" 43 44 namespace ceres { 45 namespace internal { 46 47 class Evaluator; 48 struct FunctionSample; 49 50 // Line search is another name for a one dimensional optimization 51 // algorithm. The name "line search" comes from the fact one 52 // dimensional optimization problems that arise as subproblems of 53 // general multidimensional optimization problems. 54 // 55 // While finding the exact minimum of a one dimensionl function is 56 // hard, instances of LineSearch find a point that satisfies a 57 // sufficient decrease condition. Depending on the particular 58 // condition used, we get a variety of different line search 59 // algorithms, e.g., Armijo, Wolfe etc. 60 class LineSearch { 61 public: 62 class Function; 63 64 struct Options { 65 Options() 66 : interpolation_type(CUBIC), 67 sufficient_decrease(1e-4), 68 max_step_contraction(1e-3), 69 min_step_contraction(0.9), 70 min_step_size(1e-9), 71 max_num_iterations(20), 72 sufficient_curvature_decrease(0.9), 73 max_step_expansion(10.0), 74 function(NULL) {} 75 76 // Degree of the polynomial used to approximate the objective 77 // function. 78 LineSearchInterpolationType interpolation_type; 79 80 // Armijo and Wolfe line search parameters. 81 82 // Solving the line search problem exactly is computationally 83 // prohibitive. Fortunately, line search based optimization 84 // algorithms can still guarantee convergence if instead of an 85 // exact solution, the line search algorithm returns a solution 86 // which decreases the value of the objective function 87 // sufficiently. More precisely, we are looking for a step_size 88 // s.t. 89 // 90 // f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size 91 double sufficient_decrease; 92 93 // In each iteration of the Armijo / Wolfe line search, 94 // 95 // new_step_size >= max_step_contraction * step_size 96 // 97 // Note that by definition, for contraction: 98 // 99 // 0 < max_step_contraction < min_step_contraction < 1 100 // 101 double max_step_contraction; 102 103 // In each iteration of the Armijo / Wolfe line search, 104 // 105 // new_step_size <= min_step_contraction * step_size 106 // Note that by definition, for contraction: 107 // 108 // 0 < max_step_contraction < min_step_contraction < 1 109 // 110 double min_step_contraction; 111 112 // If during the line search, the step_size falls below this 113 // value, it is truncated to zero. 114 double min_step_size; 115 116 // Maximum number of trial step size iterations during each line search, 117 // if a step size satisfying the search conditions cannot be found within 118 // this number of trials, the line search will terminate. 119 int max_num_iterations; 120 121 // Wolfe-specific line search parameters. 122 123 // The strong Wolfe conditions consist of the Armijo sufficient 124 // decrease condition, and an additional requirement that the 125 // step-size be chosen s.t. the _magnitude_ ('strong' Wolfe 126 // conditions) of the gradient along the search direction 127 // decreases sufficiently. Precisely, this second condition 128 // is that we seek a step_size s.t. 129 // 130 // |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)| 131 // 132 // Where f() is the line search objective and f'() is the derivative 133 // of f w.r.t step_size (d f / d step_size). 134 double sufficient_curvature_decrease; 135 136 // During the bracketing phase of the Wolfe search, the step size is 137 // increased until either a point satisfying the Wolfe conditions is 138 // found, or an upper bound for a bracket containing a point satisfying 139 // the conditions is found. Precisely, at each iteration of the 140 // expansion: 141 // 142 // new_step_size <= max_step_expansion * step_size. 143 // 144 // By definition for expansion, max_step_expansion > 1.0. 145 double max_step_expansion; 146 147 // The one dimensional function that the line search algorithm 148 // minimizes. 149 Function* function; 150 }; 151 152 // An object used by the line search to access the function values 153 // and gradient of the one dimensional function being optimized. 154 // 155 // In practice, this object will provide access to the objective 156 // function value and the directional derivative of the underlying 157 // optimization problem along a specific search direction. 158 // 159 // See LineSearchFunction for an example implementation. 160 class Function { 161 public: 162 virtual ~Function() {} 163 // Evaluate the line search objective 164 // 165 // f(x) = p(position + x * direction) 166 // 167 // Where, p is the objective function of the general optimization 168 // problem. 169 // 170 // g is the gradient f'(x) at x. 171 // 172 // f must not be null. The gradient is computed only if g is not null. 173 virtual bool Evaluate(double x, double* f, double* g) = 0; 174 }; 175 176 // Result of the line search. 177 struct Summary { 178 Summary() 179 : success(false), 180 optimal_step_size(0.0), 181 num_function_evaluations(0), 182 num_gradient_evaluations(0), 183 num_iterations(0) {} 184 185 bool success; 186 double optimal_step_size; 187 int num_function_evaluations; 188 int num_gradient_evaluations; 189 int num_iterations; 190 string error; 191 }; 192 193 explicit LineSearch(const LineSearch::Options& options); 194 virtual ~LineSearch() {} 195 196 static LineSearch* Create(const LineSearchType line_search_type, 197 const LineSearch::Options& options, 198 string* error); 199 200 // Perform the line search. 201 // 202 // step_size_estimate must be a positive number. 203 // 204 // initial_cost and initial_gradient are the values and gradient of 205 // the function at zero. 206 // summary must not be null and will contain the result of the line 207 // search. 208 // 209 // Summary::success is true if a non-zero step size is found. 210 virtual void Search(double step_size_estimate, 211 double initial_cost, 212 double initial_gradient, 213 Summary* summary) = 0; 214 double InterpolatingPolynomialMinimizingStepSize( 215 const LineSearchInterpolationType& interpolation_type, 216 const FunctionSample& lowerbound_sample, 217 const FunctionSample& previous_sample, 218 const FunctionSample& current_sample, 219 const double min_step_size, 220 const double max_step_size) const; 221 222 protected: 223 const LineSearch::Options& options() const { return options_; } 224 225 private: 226 LineSearch::Options options_; 227 }; 228 229 class LineSearchFunction : public LineSearch::Function { 230 public: 231 explicit LineSearchFunction(Evaluator* evaluator); 232 virtual ~LineSearchFunction() {} 233 void Init(const Vector& position, const Vector& direction); 234 virtual bool Evaluate(double x, double* f, double* g); 235 double DirectionInfinityNorm() const; 236 237 private: 238 Evaluator* evaluator_; 239 Vector position_; 240 Vector direction_; 241 242 // evaluation_point = Evaluator::Plus(position_, x * direction_); 243 Vector evaluation_point_; 244 245 // scaled_direction = x * direction_; 246 Vector scaled_direction_; 247 Vector gradient_; 248 }; 249 250 // Backtracking and interpolation based Armijo line search. This 251 // implementation is based on the Armijo line search that ships in the 252 // minFunc package by Mark Schmidt. 253 // 254 // For more details: http://www.di.ens.fr/~mschmidt/Software/minFunc.html 255 class ArmijoLineSearch : public LineSearch { 256 public: 257 explicit ArmijoLineSearch(const LineSearch::Options& options); 258 virtual ~ArmijoLineSearch() {} 259 virtual void Search(double step_size_estimate, 260 double initial_cost, 261 double initial_gradient, 262 Summary* summary); 263 }; 264 265 // Bracketing / Zoom Strong Wolfe condition line search. This implementation 266 // is based on the pseudo-code algorithm presented in Nocedal & Wright [1] 267 // (p60-61) with inspiration from the WolfeLineSearch which ships with the 268 // minFunc package by Mark Schmidt [2]. 269 // 270 // [1] Nocedal J., Wright S., Numerical Optimization, 2nd Ed., Springer, 1999. 271 // [2] http://www.di.ens.fr/~mschmidt/Software/minFunc.html. 272 class WolfeLineSearch : public LineSearch { 273 public: 274 explicit WolfeLineSearch(const LineSearch::Options& options); 275 virtual ~WolfeLineSearch() {} 276 virtual void Search(double step_size_estimate, 277 double initial_cost, 278 double initial_gradient, 279 Summary* summary); 280 // Returns true iff either a valid point, or valid bracket are found. 281 bool BracketingPhase(const FunctionSample& initial_position, 282 const double step_size_estimate, 283 FunctionSample* bracket_low, 284 FunctionSample* bracket_high, 285 bool* perform_zoom_search, 286 Summary* summary); 287 // Returns true iff final_line_sample satisfies strong Wolfe conditions. 288 bool ZoomPhase(const FunctionSample& initial_position, 289 FunctionSample bracket_low, 290 FunctionSample bracket_high, 291 FunctionSample* solution, 292 Summary* summary); 293 }; 294 295 } // namespace internal 296 } // namespace ceres 297 298 #endif // CERES_NO_LINE_SEARCH_MINIMIZER 299 #endif // CERES_INTERNAL_LINE_SEARCH_H_ 300