Home | History | Annotate | Download | only in compiler
      1 //
      2 // Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
      3 // Use of this source code is governed by a BSD-style license that can be
      4 // found in the LICENSE file.
      5 //
      6 
      7 #ifndef _SYMBOL_TABLE_INCLUDED_
      8 #define _SYMBOL_TABLE_INCLUDED_
      9 
     10 //
     11 // Symbol table for parsing.  Has these design characteristics:
     12 //
     13 // * Same symbol table can be used to compile many shaders, to preserve
     14 //   effort of creating and loading with the large numbers of built-in
     15 //   symbols.
     16 //
     17 // * Name mangling will be used to give each function a unique name
     18 //   so that symbol table lookups are never ambiguous.  This allows
     19 //   a simpler symbol table structure.
     20 //
     21 // * Pushing and popping of scope, so symbol table will really be a stack
     22 //   of symbol tables.  Searched from the top, with new inserts going into
     23 //   the top.
     24 //
     25 // * Constants:  Compile time constant symbols will keep their values
     26 //   in the symbol table.  The parser can substitute constants at parse
     27 //   time, including doing constant folding and constant propagation.
     28 //
     29 // * No temporaries:  Temporaries made from operations (+, --, .xy, etc.)
     30 //   are tracked in the intermediate representation, not the symbol table.
     31 //
     32 
     33 #include <assert.h>
     34 
     35 #include "common/angleutils.h"
     36 #include "compiler/InfoSink.h"
     37 #include "compiler/intermediate.h"
     38 
     39 //
     40 // Symbol base class.  (Can build functions or variables out of these...)
     41 //
     42 class TSymbol {
     43 public:
     44     POOL_ALLOCATOR_NEW_DELETE();
     45     TSymbol(const TString* n) :  uniqueId(0), name(n) { }
     46     virtual ~TSymbol() { /* don't delete name, it's from the pool */ }
     47 
     48     const TString& getName() const { return *name; }
     49     virtual const TString& getMangledName() const { return getName(); }
     50     virtual bool isFunction() const { return false; }
     51     virtual bool isVariable() const { return false; }
     52     void setUniqueId(int id) { uniqueId = id; }
     53     int getUniqueId() const { return uniqueId; }
     54     virtual void dump(TInfoSink &infoSink) const = 0;
     55     void relateToExtension(const TString& ext) { extension = ext; }
     56     const TString& getExtension() const { return extension; }
     57 
     58 private:
     59     DISALLOW_COPY_AND_ASSIGN(TSymbol);
     60 
     61     int uniqueId;      // For real comparing during code generation
     62     const TString *name;
     63     TString extension;
     64 };
     65 
     66 //
     67 // Variable class, meaning a symbol that's not a function.
     68 //
     69 // There could be a separate class heirarchy for Constant variables;
     70 // Only one of int, bool, or float, (or none) is correct for
     71 // any particular use, but it's easy to do this way, and doesn't
     72 // seem worth having separate classes, and "getConst" can't simply return
     73 // different values for different types polymorphically, so this is
     74 // just simple and pragmatic.
     75 //
     76 class TVariable : public TSymbol {
     77 public:
     78     TVariable(const TString *name, const TType& t, bool uT = false ) : TSymbol(name), type(t), userType(uT), unionArray(0) { }
     79     virtual ~TVariable() { }
     80     virtual bool isVariable() const { return true; }
     81     TType& getType() { return type; }
     82     const TType& getType() const { return type; }
     83     bool isUserType() const { return userType; }
     84     void setQualifier(TQualifier qualifier) { type.setQualifier(qualifier); }
     85 
     86     virtual void dump(TInfoSink &infoSink) const;
     87 
     88     ConstantUnion* getConstPointer()
     89     {
     90         if (!unionArray)
     91             unionArray = new ConstantUnion[type.getObjectSize()];
     92 
     93         return unionArray;
     94     }
     95 
     96     ConstantUnion* getConstPointer() const { return unionArray; }
     97 
     98     void shareConstPointer( ConstantUnion *constArray)
     99     {
    100         if (unionArray == constArray)
    101             return;
    102 
    103         delete[] unionArray;
    104         unionArray = constArray;
    105     }
    106 
    107 private:
    108     DISALLOW_COPY_AND_ASSIGN(TVariable);
    109 
    110     TType type;
    111     bool userType;
    112     // we are assuming that Pool Allocator will free the memory allocated to unionArray
    113     // when this object is destroyed
    114     ConstantUnion *unionArray;
    115 };
    116 
    117 //
    118 // The function sub-class of symbols and the parser will need to
    119 // share this definition of a function parameter.
    120 //
    121 struct TParameter {
    122     TString *name;
    123     TType* type;
    124 };
    125 
    126 //
    127 // The function sub-class of a symbol.
    128 //
    129 class TFunction : public TSymbol {
    130 public:
    131     TFunction(TOperator o) :
    132         TSymbol(0),
    133         returnType(TType(EbtVoid, EbpUndefined)),
    134         op(o),
    135         defined(false) { }
    136     TFunction(const TString *name, TType& retType, TOperator tOp = EOpNull) :
    137         TSymbol(name),
    138         returnType(retType),
    139         mangledName(TFunction::mangleName(*name)),
    140         op(tOp),
    141         defined(false) { }
    142     virtual ~TFunction();
    143     virtual bool isFunction() const { return true; }
    144 
    145     static TString mangleName(const TString& name) { return name + '('; }
    146     static TString unmangleName(const TString& mangledName)
    147     {
    148         return TString(mangledName.c_str(), mangledName.find_first_of('('));
    149     }
    150 
    151     void addParameter(TParameter& p)
    152     {
    153         parameters.push_back(p);
    154         mangledName = mangledName + p.type->getMangledName();
    155     }
    156 
    157     const TString& getMangledName() const { return mangledName; }
    158     const TType& getReturnType() const { return returnType; }
    159 
    160     void relateToOperator(TOperator o) { op = o; }
    161     TOperator getBuiltInOp() const { return op; }
    162 
    163     void setDefined() { defined = true; }
    164     bool isDefined() { return defined; }
    165 
    166     size_t getParamCount() const { return parameters.size(); }
    167     const TParameter& getParam(size_t i) const { return parameters[i]; }
    168 
    169     virtual void dump(TInfoSink &infoSink) const;
    170 
    171 private:
    172     DISALLOW_COPY_AND_ASSIGN(TFunction);
    173 
    174     typedef TVector<TParameter> TParamList;
    175     TParamList parameters;
    176     TType returnType;
    177     TString mangledName;
    178     TOperator op;
    179     bool defined;
    180 };
    181 
    182 
    183 class TSymbolTableLevel {
    184 public:
    185     typedef TMap<TString, TSymbol*> tLevel;
    186     typedef tLevel::const_iterator const_iterator;
    187     typedef const tLevel::value_type tLevelPair;
    188     typedef std::pair<tLevel::iterator, bool> tInsertResult;
    189 
    190     TSymbolTableLevel() { }
    191     ~TSymbolTableLevel();
    192 
    193     bool insert(const TString &name, TSymbol &symbol)
    194     {
    195         //
    196         // returning true means symbol was added to the table
    197         //
    198         tInsertResult result = level.insert(tLevelPair(name, &symbol));
    199 
    200         return result.second;
    201     }
    202 
    203     bool insert(TSymbol &symbol)
    204     {
    205         return insert(symbol.getMangledName(), symbol);
    206     }
    207 
    208     TSymbol* find(const TString& name) const
    209     {
    210         tLevel::const_iterator it = level.find(name);
    211         if (it == level.end())
    212             return 0;
    213         else
    214             return (*it).second;
    215     }
    216 
    217     const_iterator begin() const
    218     {
    219         return level.begin();
    220     }
    221 
    222     const_iterator end() const
    223     {
    224         return level.end();
    225     }
    226 
    227     void relateToOperator(const char* name, TOperator op);
    228     void relateToExtension(const char* name, const TString& ext);
    229     void dump(TInfoSink &infoSink) const;
    230 
    231 protected:
    232     tLevel level;
    233 };
    234 
    235 class TSymbolTable {
    236 public:
    237     TSymbolTable() : uniqueId(0)
    238     {
    239         //
    240         // The symbol table cannot be used until push() is called, but
    241         // the lack of an initial call to push() can be used to detect
    242         // that the symbol table has not been preloaded with built-ins.
    243         //
    244     }
    245     ~TSymbolTable();
    246 
    247     //
    248     // When the symbol table is initialized with the built-ins, there should
    249     // 'push' calls, so that built-ins are at level 0 and the shader
    250     // globals are at level 1.
    251     //
    252     bool isEmpty() { return table.size() == 0; }
    253     bool atBuiltInLevel() { return table.size() == 1; }
    254     bool atGlobalLevel() { return table.size() <= 2; }
    255     void push()
    256     {
    257         table.push_back(new TSymbolTableLevel);
    258         precisionStack.push_back(new PrecisionStackLevel);
    259     }
    260 
    261     void pop()
    262     {
    263         delete table.back();
    264         table.pop_back();
    265 
    266         delete precisionStack.back();
    267         precisionStack.pop_back();
    268     }
    269 
    270     bool insert(TSymbol& symbol)
    271     {
    272         symbol.setUniqueId(++uniqueId);
    273         return table[currentLevel()]->insert(symbol);
    274     }
    275 
    276     bool insertConstInt(const char *name, int value)
    277     {
    278         TVariable *constant = new TVariable(NewPoolTString(name), TType(EbtInt, EbpUndefined, EvqConst, 1));
    279         constant->getConstPointer()->setIConst(value);
    280         return insert(*constant);
    281     }
    282 
    283     bool insertBuiltIn(TType *rvalue, const char *name, TType *ptype1, TType *ptype2 = 0, TType *ptype3 = 0)
    284     {
    285         TFunction *function = new TFunction(NewPoolTString(name), *rvalue);
    286 
    287         TParameter param1 = {NULL, ptype1};
    288         function->addParameter(param1);
    289 
    290         if(ptype2)
    291         {
    292             TParameter param2 = {NULL, ptype2};
    293             function->addParameter(param2);
    294         }
    295 
    296         if(ptype3)
    297         {
    298             TParameter param3 = {NULL, ptype3};
    299             function->addParameter(param3);
    300         }
    301 
    302         return insert(*function);
    303     }
    304 
    305     TSymbol* find(const TString& name, bool* builtIn = 0, bool *sameScope = 0)
    306     {
    307         int level = currentLevel();
    308         TSymbol* symbol;
    309         do {
    310             symbol = table[level]->find(name);
    311             --level;
    312         } while (symbol == 0 && level >= 0);
    313         level++;
    314         if (builtIn)
    315             *builtIn = level == 0;
    316         if (sameScope)
    317             *sameScope = level == currentLevel();
    318         return symbol;
    319     }
    320 
    321     TSymbol* findBuiltIn(const TString &name)
    322     {
    323         return table[0]->find(name);
    324     }
    325 
    326     TSymbolTableLevel* getOuterLevel() {
    327         assert(table.size() >= 2);
    328         return table[currentLevel() - 1];
    329     }
    330 
    331     void relateToOperator(const char* name, TOperator op) {
    332         table[0]->relateToOperator(name, op);
    333     }
    334     void relateToExtension(const char* name, const TString& ext) {
    335         table[0]->relateToExtension(name, ext);
    336     }
    337     void dump(TInfoSink &infoSink) const;
    338 
    339     bool setDefaultPrecision(const TPublicType& type, TPrecision prec) {
    340         if (!supportsPrecision(type.type))
    341             return false;
    342         if (type.size != 1 || type.matrix || type.array)
    343             return false; // Not allowed to set for aggregate types
    344         int indexOfLastElement = static_cast<int>(precisionStack.size()) - 1;
    345         (*precisionStack[indexOfLastElement])[type.type] = prec; // Uses map operator [], overwrites the current value
    346         return true;
    347     }
    348 
    349     // Searches down the precisionStack for a precision qualifier for the specified TBasicType
    350     TPrecision getDefaultPrecision(TBasicType type) {
    351         if (!supportsPrecision(type))
    352             return EbpUndefined;
    353         int level = static_cast<int>(precisionStack.size()) - 1;
    354         assert(level >= 0); // Just to be safe. Should not happen.
    355         PrecisionStackLevel::iterator it;
    356         TPrecision prec = EbpUndefined; // If we dont find anything we return this. Should we error check this?
    357         while (level >= 0) {
    358             it = precisionStack[level]->find(type);
    359             if (it != precisionStack[level]->end()) {
    360                 prec = (*it).second;
    361                 break;
    362             }
    363             level--;
    364         }
    365         return prec;
    366     }
    367 
    368 private:
    369     int currentLevel() const { return static_cast<int>(table.size()) - 1; }
    370 
    371     bool supportsPrecision(TBasicType type) {
    372       // Only supports precision for int, float, and sampler types.
    373       return type == EbtFloat || type == EbtInt || IsSampler(type);
    374     }
    375 
    376     int uniqueId;     // for unique identification in code generation
    377     std::vector<TSymbolTableLevel*> table;
    378     typedef TMap<TBasicType, TPrecision> PrecisionStackLevel;
    379     std::vector<PrecisionStackLevel*> precisionStack;
    380 };
    381 
    382 #endif // _SYMBOL_TABLE_INCLUDED_
    383