Home | History | Annotate | Download | only in util
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1 (at) gmail.com>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #ifndef EIGEN_XPRHELPER_H
     12 #define EIGEN_XPRHELPER_H
     13 
     14 // just a workaround because GCC seems to not really like empty structs
     15 // FIXME: gcc 4.3 generates bad code when strict-aliasing is enabled
     16 // so currently we simply disable this optimization for gcc 4.3
     17 #if (defined __GNUG__) && !((__GNUC__==4) && (__GNUC_MINOR__==3))
     18   #define EIGEN_EMPTY_STRUCT_CTOR(X) \
     19     EIGEN_STRONG_INLINE X() {} \
     20     EIGEN_STRONG_INLINE X(const X& ) {}
     21 #else
     22   #define EIGEN_EMPTY_STRUCT_CTOR(X)
     23 #endif
     24 
     25 namespace Eigen {
     26 
     27 typedef EIGEN_DEFAULT_DENSE_INDEX_TYPE DenseIndex;
     28 
     29 namespace internal {
     30 
     31 //classes inheriting no_assignment_operator don't generate a default operator=.
     32 class no_assignment_operator
     33 {
     34   private:
     35     no_assignment_operator& operator=(const no_assignment_operator&);
     36 };
     37 
     38 /** \internal return the index type with the largest number of bits */
     39 template<typename I1, typename I2>
     40 struct promote_index_type
     41 {
     42   typedef typename conditional<(sizeof(I1)<sizeof(I2)), I2, I1>::type type;
     43 };
     44 
     45 /** \internal If the template parameter Value is Dynamic, this class is just a wrapper around a T variable that
     46   * can be accessed using value() and setValue().
     47   * Otherwise, this class is an empty structure and value() just returns the template parameter Value.
     48   */
     49 template<typename T, int Value> class variable_if_dynamic
     50 {
     51   public:
     52     EIGEN_EMPTY_STRUCT_CTOR(variable_if_dynamic)
     53     explicit variable_if_dynamic(T v) { EIGEN_ONLY_USED_FOR_DEBUG(v); assert(v == T(Value)); }
     54     static T value() { return T(Value); }
     55     void setValue(T) {}
     56 };
     57 
     58 template<typename T> class variable_if_dynamic<T, Dynamic>
     59 {
     60     T m_value;
     61     variable_if_dynamic() { assert(false); }
     62   public:
     63     explicit variable_if_dynamic(T value) : m_value(value) {}
     64     T value() const { return m_value; }
     65     void setValue(T value) { m_value = value; }
     66 };
     67 
     68 template<typename T> struct functor_traits
     69 {
     70   enum
     71   {
     72     Cost = 10,
     73     PacketAccess = false
     74   };
     75 };
     76 
     77 template<typename T> struct packet_traits;
     78 
     79 template<typename T> struct unpacket_traits
     80 {
     81   typedef T type;
     82   enum {size=1};
     83 };
     84 
     85 template<typename _Scalar, int _Rows, int _Cols,
     86          int _Options = AutoAlign |
     87                           ( (_Rows==1 && _Cols!=1) ? RowMajor
     88                           : (_Cols==1 && _Rows!=1) ? ColMajor
     89                           : EIGEN_DEFAULT_MATRIX_STORAGE_ORDER_OPTION ),
     90          int _MaxRows = _Rows,
     91          int _MaxCols = _Cols
     92 > class make_proper_matrix_type
     93 {
     94     enum {
     95       IsColVector = _Cols==1 && _Rows!=1,
     96       IsRowVector = _Rows==1 && _Cols!=1,
     97       Options = IsColVector ? (_Options | ColMajor) & ~RowMajor
     98               : IsRowVector ? (_Options | RowMajor) & ~ColMajor
     99               : _Options
    100     };
    101   public:
    102     typedef Matrix<_Scalar, _Rows, _Cols, Options, _MaxRows, _MaxCols> type;
    103 };
    104 
    105 template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
    106 class compute_matrix_flags
    107 {
    108     enum {
    109       row_major_bit = Options&RowMajor ? RowMajorBit : 0,
    110       is_dynamic_size_storage = MaxRows==Dynamic || MaxCols==Dynamic,
    111 
    112       aligned_bit =
    113       (
    114             ((Options&DontAlign)==0)
    115         && (
    116 #if EIGEN_ALIGN_STATICALLY
    117              ((!is_dynamic_size_storage) && (((MaxCols*MaxRows*int(sizeof(Scalar))) % 16) == 0))
    118 #else
    119              0
    120 #endif
    121 
    122           ||
    123 
    124 #if EIGEN_ALIGN
    125              is_dynamic_size_storage
    126 #else
    127              0
    128 #endif
    129 
    130           )
    131       ) ? AlignedBit : 0,
    132       packet_access_bit = packet_traits<Scalar>::Vectorizable && aligned_bit ? PacketAccessBit : 0
    133     };
    134 
    135   public:
    136     enum { ret = LinearAccessBit | LvalueBit | DirectAccessBit | NestByRefBit | packet_access_bit | row_major_bit | aligned_bit };
    137 };
    138 
    139 template<int _Rows, int _Cols> struct size_at_compile_time
    140 {
    141   enum { ret = (_Rows==Dynamic || _Cols==Dynamic) ? Dynamic : _Rows * _Cols };
    142 };
    143 
    144 /* plain_matrix_type : the difference from eval is that plain_matrix_type is always a plain matrix type,
    145  * whereas eval is a const reference in the case of a matrix
    146  */
    147 
    148 template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct plain_matrix_type;
    149 template<typename T, typename BaseClassType> struct plain_matrix_type_dense;
    150 template<typename T> struct plain_matrix_type<T,Dense>
    151 {
    152   typedef typename plain_matrix_type_dense<T,typename traits<T>::XprKind>::type type;
    153 };
    154 
    155 template<typename T> struct plain_matrix_type_dense<T,MatrixXpr>
    156 {
    157   typedef Matrix<typename traits<T>::Scalar,
    158                 traits<T>::RowsAtCompileTime,
    159                 traits<T>::ColsAtCompileTime,
    160                 AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
    161                 traits<T>::MaxRowsAtCompileTime,
    162                 traits<T>::MaxColsAtCompileTime
    163           > type;
    164 };
    165 
    166 template<typename T> struct plain_matrix_type_dense<T,ArrayXpr>
    167 {
    168   typedef Array<typename traits<T>::Scalar,
    169                 traits<T>::RowsAtCompileTime,
    170                 traits<T>::ColsAtCompileTime,
    171                 AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
    172                 traits<T>::MaxRowsAtCompileTime,
    173                 traits<T>::MaxColsAtCompileTime
    174           > type;
    175 };
    176 
    177 /* eval : the return type of eval(). For matrices, this is just a const reference
    178  * in order to avoid a useless copy
    179  */
    180 
    181 template<typename T, typename StorageKind = typename traits<T>::StorageKind> struct eval;
    182 
    183 template<typename T> struct eval<T,Dense>
    184 {
    185   typedef typename plain_matrix_type<T>::type type;
    186 //   typedef typename T::PlainObject type;
    187 //   typedef T::Matrix<typename traits<T>::Scalar,
    188 //                 traits<T>::RowsAtCompileTime,
    189 //                 traits<T>::ColsAtCompileTime,
    190 //                 AutoAlign | (traits<T>::Flags&RowMajorBit ? RowMajor : ColMajor),
    191 //                 traits<T>::MaxRowsAtCompileTime,
    192 //                 traits<T>::MaxColsAtCompileTime
    193 //           > type;
    194 };
    195 
    196 // for matrices, no need to evaluate, just use a const reference to avoid a useless copy
    197 template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
    198 struct eval<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
    199 {
    200   typedef const Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
    201 };
    202 
    203 template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
    204 struct eval<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>, Dense>
    205 {
    206   typedef const Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>& type;
    207 };
    208 
    209 
    210 
    211 /* plain_matrix_type_column_major : same as plain_matrix_type but guaranteed to be column-major
    212  */
    213 template<typename T> struct plain_matrix_type_column_major
    214 {
    215   enum { Rows = traits<T>::RowsAtCompileTime,
    216          Cols = traits<T>::ColsAtCompileTime,
    217          MaxRows = traits<T>::MaxRowsAtCompileTime,
    218          MaxCols = traits<T>::MaxColsAtCompileTime
    219   };
    220   typedef Matrix<typename traits<T>::Scalar,
    221                 Rows,
    222                 Cols,
    223                 (MaxRows==1&&MaxCols!=1) ? RowMajor : ColMajor,
    224                 MaxRows,
    225                 MaxCols
    226           > type;
    227 };
    228 
    229 /* plain_matrix_type_row_major : same as plain_matrix_type but guaranteed to be row-major
    230  */
    231 template<typename T> struct plain_matrix_type_row_major
    232 {
    233   enum { Rows = traits<T>::RowsAtCompileTime,
    234          Cols = traits<T>::ColsAtCompileTime,
    235          MaxRows = traits<T>::MaxRowsAtCompileTime,
    236          MaxCols = traits<T>::MaxColsAtCompileTime
    237   };
    238   typedef Matrix<typename traits<T>::Scalar,
    239                 Rows,
    240                 Cols,
    241                 (MaxCols==1&&MaxRows!=1) ? RowMajor : ColMajor,
    242                 MaxRows,
    243                 MaxCols
    244           > type;
    245 };
    246 
    247 // we should be able to get rid of this one too
    248 template<typename T> struct must_nest_by_value { enum { ret = false }; };
    249 
    250 /** \internal The reference selector for template expressions. The idea is that we don't
    251   * need to use references for expressions since they are light weight proxy
    252   * objects which should generate no copying overhead. */
    253 template <typename T>
    254 struct ref_selector
    255 {
    256   typedef typename conditional<
    257     bool(traits<T>::Flags & NestByRefBit),
    258     T const&,
    259     const T
    260   >::type type;
    261 };
    262 
    263 /** \internal Adds the const qualifier on the value-type of T2 if and only if T1 is a const type */
    264 template<typename T1, typename T2>
    265 struct transfer_constness
    266 {
    267   typedef typename conditional<
    268     bool(internal::is_const<T1>::value),
    269     typename internal::add_const_on_value_type<T2>::type,
    270     T2
    271   >::type type;
    272 };
    273 
    274 /** \internal Determines how a given expression should be nested into another one.
    275   * For example, when you do a * (b+c), Eigen will determine how the expression b+c should be
    276   * nested into the bigger product expression. The choice is between nesting the expression b+c as-is, or
    277   * evaluating that expression b+c into a temporary variable d, and nest d so that the resulting expression is
    278   * a*d. Evaluating can be beneficial for example if every coefficient access in the resulting expression causes
    279   * many coefficient accesses in the nested expressions -- as is the case with matrix product for example.
    280   *
    281   * \param T the type of the expression being nested
    282   * \param n the number of coefficient accesses in the nested expression for each coefficient access in the bigger expression.
    283   *
    284   * Note that if no evaluation occur, then the constness of T is preserved.
    285   *
    286   * Example. Suppose that a, b, and c are of type Matrix3d. The user forms the expression a*(b+c).
    287   * b+c is an expression "sum of matrices", which we will denote by S. In order to determine how to nest it,
    288   * the Product expression uses: nested<S, 3>::ret, which turns out to be Matrix3d because the internal logic of
    289   * nested determined that in this case it was better to evaluate the expression b+c into a temporary. On the other hand,
    290   * since a is of type Matrix3d, the Product expression nests it as nested<Matrix3d, 3>::ret, which turns out to be
    291   * const Matrix3d&, because the internal logic of nested determined that since a was already a matrix, there was no point
    292   * in copying it into another matrix.
    293   */
    294 template<typename T, int n=1, typename PlainObject = typename eval<T>::type> struct nested
    295 {
    296   enum {
    297     // for the purpose of this test, to keep it reasonably simple, we arbitrarily choose a value of Dynamic values.
    298     // the choice of 10000 makes it larger than any practical fixed value and even most dynamic values.
    299     // in extreme cases where these assumptions would be wrong, we would still at worst suffer performance issues
    300     // (poor choice of temporaries).
    301     // it's important that this value can still be squared without integer overflowing.
    302     DynamicAsInteger = 10000,
    303     ScalarReadCost = NumTraits<typename traits<T>::Scalar>::ReadCost,
    304     ScalarReadCostAsInteger = ScalarReadCost == Dynamic ? DynamicAsInteger : ScalarReadCost,
    305     CoeffReadCost = traits<T>::CoeffReadCost,
    306     CoeffReadCostAsInteger = CoeffReadCost == Dynamic ? DynamicAsInteger : CoeffReadCost,
    307     NAsInteger = n == Dynamic ? int(DynamicAsInteger) : n,
    308     CostEvalAsInteger   = (NAsInteger+1) * ScalarReadCostAsInteger + CoeffReadCostAsInteger,
    309     CostNoEvalAsInteger = NAsInteger * CoeffReadCostAsInteger
    310   };
    311 
    312   typedef typename conditional<
    313       ( (int(traits<T>::Flags) & EvalBeforeNestingBit) ||
    314         int(CostEvalAsInteger) < int(CostNoEvalAsInteger)
    315       ),
    316       PlainObject,
    317       typename ref_selector<T>::type
    318   >::type type;
    319 };
    320 
    321 template<typename T>
    322 T* const_cast_ptr(const T* ptr)
    323 {
    324   return const_cast<T*>(ptr);
    325 }
    326 
    327 template<typename Derived, typename XprKind = typename traits<Derived>::XprKind>
    328 struct dense_xpr_base
    329 {
    330   /* dense_xpr_base should only ever be used on dense expressions, thus falling either into the MatrixXpr or into the ArrayXpr cases */
    331 };
    332 
    333 template<typename Derived>
    334 struct dense_xpr_base<Derived, MatrixXpr>
    335 {
    336   typedef MatrixBase<Derived> type;
    337 };
    338 
    339 template<typename Derived>
    340 struct dense_xpr_base<Derived, ArrayXpr>
    341 {
    342   typedef ArrayBase<Derived> type;
    343 };
    344 
    345 /** \internal Helper base class to add a scalar multiple operator
    346   * overloads for complex types */
    347 template<typename Derived,typename Scalar,typename OtherScalar,
    348          bool EnableIt = !is_same<Scalar,OtherScalar>::value >
    349 struct special_scalar_op_base : public DenseCoeffsBase<Derived>
    350 {
    351   // dummy operator* so that the
    352   // "using special_scalar_op_base::operator*" compiles
    353   void operator*() const;
    354 };
    355 
    356 template<typename Derived,typename Scalar,typename OtherScalar>
    357 struct special_scalar_op_base<Derived,Scalar,OtherScalar,true>  : public DenseCoeffsBase<Derived>
    358 {
    359   const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
    360   operator*(const OtherScalar& scalar) const
    361   {
    362     return CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
    363       (*static_cast<const Derived*>(this), scalar_multiple2_op<Scalar,OtherScalar>(scalar));
    364   }
    365 
    366   inline friend const CwiseUnaryOp<scalar_multiple2_op<Scalar,OtherScalar>, Derived>
    367   operator*(const OtherScalar& scalar, const Derived& matrix)
    368   { return static_cast<const special_scalar_op_base&>(matrix).operator*(scalar); }
    369 };
    370 
    371 template<typename XprType, typename CastType> struct cast_return_type
    372 {
    373   typedef typename XprType::Scalar CurrentScalarType;
    374   typedef typename remove_all<CastType>::type _CastType;
    375   typedef typename _CastType::Scalar NewScalarType;
    376   typedef typename conditional<is_same<CurrentScalarType,NewScalarType>::value,
    377                               const XprType&,CastType>::type type;
    378 };
    379 
    380 template <typename A, typename B> struct promote_storage_type;
    381 
    382 template <typename A> struct promote_storage_type<A,A>
    383 {
    384   typedef A ret;
    385 };
    386 
    387 /** \internal gives the plain matrix or array type to store a row/column/diagonal of a matrix type.
    388   * \param Scalar optional parameter allowing to pass a different scalar type than the one of the MatrixType.
    389   */
    390 template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
    391 struct plain_row_type
    392 {
    393   typedef Matrix<Scalar, 1, ExpressionType::ColsAtCompileTime,
    394                  ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> MatrixRowType;
    395   typedef Array<Scalar, 1, ExpressionType::ColsAtCompileTime,
    396                  ExpressionType::PlainObject::Options | RowMajor, 1, ExpressionType::MaxColsAtCompileTime> ArrayRowType;
    397 
    398   typedef typename conditional<
    399     is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
    400     MatrixRowType,
    401     ArrayRowType
    402   >::type type;
    403 };
    404 
    405 template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
    406 struct plain_col_type
    407 {
    408   typedef Matrix<Scalar, ExpressionType::RowsAtCompileTime, 1,
    409                  ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> MatrixColType;
    410   typedef Array<Scalar, ExpressionType::RowsAtCompileTime, 1,
    411                  ExpressionType::PlainObject::Options & ~RowMajor, ExpressionType::MaxRowsAtCompileTime, 1> ArrayColType;
    412 
    413   typedef typename conditional<
    414     is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
    415     MatrixColType,
    416     ArrayColType
    417   >::type type;
    418 };
    419 
    420 template<typename ExpressionType, typename Scalar = typename ExpressionType::Scalar>
    421 struct plain_diag_type
    422 {
    423   enum { diag_size = EIGEN_SIZE_MIN_PREFER_DYNAMIC(ExpressionType::RowsAtCompileTime, ExpressionType::ColsAtCompileTime),
    424          max_diag_size = EIGEN_SIZE_MIN_PREFER_FIXED(ExpressionType::MaxRowsAtCompileTime, ExpressionType::MaxColsAtCompileTime)
    425   };
    426   typedef Matrix<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> MatrixDiagType;
    427   typedef Array<Scalar, diag_size, 1, ExpressionType::PlainObject::Options & ~RowMajor, max_diag_size, 1> ArrayDiagType;
    428 
    429   typedef typename conditional<
    430     is_same< typename traits<ExpressionType>::XprKind, MatrixXpr >::value,
    431     MatrixDiagType,
    432     ArrayDiagType
    433   >::type type;
    434 };
    435 
    436 template<typename ExpressionType>
    437 struct is_lvalue
    438 {
    439   enum { value = !bool(is_const<ExpressionType>::value) &&
    440                  bool(traits<ExpressionType>::Flags & LvalueBit) };
    441 };
    442 
    443 } // end namespace internal
    444 
    445 } // end namespace Eigen
    446 
    447 #endif // EIGEN_XPRHELPER_H
    448