Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 //
     31 // Abstract interface for objects solving linear systems of various
     32 // kinds.
     33 
     34 #ifndef CERES_INTERNAL_LINEAR_SOLVER_H_
     35 #define CERES_INTERNAL_LINEAR_SOLVER_H_
     36 
     37 #include <cstddef>
     38 #include <map>
     39 #include <string>
     40 #include <vector>
     41 #include "ceres/block_sparse_matrix.h"
     42 #include "ceres/casts.h"
     43 #include "ceres/compressed_row_sparse_matrix.h"
     44 #include "ceres/dense_sparse_matrix.h"
     45 #include "ceres/execution_summary.h"
     46 #include "ceres/triplet_sparse_matrix.h"
     47 #include "ceres/types.h"
     48 #include "glog/logging.h"
     49 
     50 namespace ceres {
     51 namespace internal {
     52 
     53 class LinearOperator;
     54 
     55 // Abstract base class for objects that implement algorithms for
     56 // solving linear systems
     57 //
     58 //   Ax = b
     59 //
     60 // It is expected that a single instance of a LinearSolver object
     61 // maybe used multiple times for solving multiple linear systems with
     62 // the same sparsity structure. This allows them to cache and reuse
     63 // information across solves. This means that calling Solve on the
     64 // same LinearSolver instance with two different linear systems will
     65 // result in undefined behaviour.
     66 //
     67 // Subclasses of LinearSolver use two structs to configure themselves.
     68 // The Options struct configures the LinearSolver object for its
     69 // lifetime. The PerSolveOptions struct is used to specify options for
     70 // a particular Solve call.
     71 class LinearSolver {
     72  public:
     73   struct Options {
     74     Options()
     75         : type(SPARSE_NORMAL_CHOLESKY),
     76           preconditioner_type(JACOBI),
     77           dense_linear_algebra_library_type(EIGEN),
     78           sparse_linear_algebra_library_type(SUITE_SPARSE),
     79           use_postordering(false),
     80           min_num_iterations(1),
     81           max_num_iterations(1),
     82           num_threads(1),
     83           residual_reset_period(10),
     84           row_block_size(Eigen::Dynamic),
     85           e_block_size(Eigen::Dynamic),
     86           f_block_size(Eigen::Dynamic) {
     87     }
     88 
     89     LinearSolverType type;
     90 
     91     PreconditionerType preconditioner_type;
     92 
     93     DenseLinearAlgebraLibraryType dense_linear_algebra_library_type;
     94     SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type;
     95 
     96     // See solver.h for information about this flag.
     97     bool use_postordering;
     98 
     99     // Number of internal iterations that the solver uses. This
    100     // parameter only makes sense for iterative solvers like CG.
    101     int min_num_iterations;
    102     int max_num_iterations;
    103 
    104     // If possible, how many threads can the solver use.
    105     int num_threads;
    106 
    107     // Hints about the order in which the parameter blocks should be
    108     // eliminated by the linear solver.
    109     //
    110     // For example if elimination_groups is a vector of size k, then
    111     // the linear solver is informed that it should eliminate the
    112     // parameter blocks 0 ... elimination_groups[0] - 1 first, and
    113     // then elimination_groups[0] ... elimination_groups[1] - 1 and so
    114     // on. Within each elimination group, the linear solver is free to
    115     // choose how the parameter blocks are ordered. Different linear
    116     // solvers have differing requirements on elimination_groups.
    117     //
    118     // The most common use is for Schur type solvers, where there
    119     // should be at least two elimination groups and the first
    120     // elimination group must form an independent set in the normal
    121     // equations. The first elimination group corresponds to the
    122     // num_eliminate_blocks in the Schur type solvers.
    123     vector<int> elimination_groups;
    124 
    125     // Iterative solvers, e.g. Preconditioned Conjugate Gradients
    126     // maintain a cheap estimate of the residual which may become
    127     // inaccurate over time. Thus for non-zero values of this
    128     // parameter, the solver can be told to recalculate the value of
    129     // the residual using a |b - Ax| evaluation.
    130     int residual_reset_period;
    131 
    132     // If the block sizes in a BlockSparseMatrix are fixed, then in
    133     // some cases the Schur complement based solvers can detect and
    134     // specialize on them.
    135     //
    136     // It is expected that these parameters are set programmatically
    137     // rather than manually.
    138     //
    139     // Please see schur_complement_solver.h and schur_eliminator.h for
    140     // more details.
    141     int row_block_size;
    142     int e_block_size;
    143     int f_block_size;
    144   };
    145 
    146   // Options for the Solve method.
    147   struct PerSolveOptions {
    148     PerSolveOptions()
    149         : D(NULL),
    150           preconditioner(NULL),
    151           r_tolerance(0.0),
    152           q_tolerance(0.0) {
    153     }
    154 
    155     // This option only makes sense for unsymmetric linear solvers
    156     // that can solve rectangular linear systems.
    157     //
    158     // Given a matrix A, an optional diagonal matrix D as a vector,
    159     // and a vector b, the linear solver will solve for
    160     //
    161     //   | A | x = | b |
    162     //   | D |     | 0 |
    163     //
    164     // If D is null, then it is treated as zero, and the solver returns
    165     // the solution to
    166     //
    167     //   A x = b
    168     //
    169     // In either case, x is the vector that solves the following
    170     // optimization problem.
    171     //
    172     //   arg min_x ||Ax - b||^2 + ||Dx||^2
    173     //
    174     // Here A is a matrix of size m x n, with full column rank. If A
    175     // does not have full column rank, the results returned by the
    176     // solver cannot be relied on. D, if it is not null is an array of
    177     // size n.  b is an array of size m and x is an array of size n.
    178     double * D;
    179 
    180     // This option only makes sense for iterative solvers.
    181     //
    182     // In general the performance of an iterative linear solver
    183     // depends on the condition number of the matrix A. For example
    184     // the convergence rate of the conjugate gradients algorithm
    185     // is proportional to the square root of the condition number.
    186     //
    187     // One particularly useful technique for improving the
    188     // conditioning of a linear system is to precondition it. In its
    189     // simplest form a preconditioner is a matrix M such that instead
    190     // of solving Ax = b, we solve the linear system AM^{-1} y = b
    191     // instead, where M is such that the condition number k(AM^{-1})
    192     // is smaller than the conditioner k(A). Given the solution to
    193     // this system, x = M^{-1} y. The iterative solver takes care of
    194     // the mechanics of solving the preconditioned system and
    195     // returning the corrected solution x. The user only needs to
    196     // supply a linear operator.
    197     //
    198     // A null preconditioner is equivalent to an identity matrix being
    199     // used a preconditioner.
    200     LinearOperator* preconditioner;
    201 
    202 
    203     // The following tolerance related options only makes sense for
    204     // iterative solvers. Direct solvers ignore them.
    205 
    206     // Solver terminates when
    207     //
    208     //   |Ax - b| <= r_tolerance * |b|.
    209     //
    210     // This is the most commonly used termination criterion for
    211     // iterative solvers.
    212     double r_tolerance;
    213 
    214     // For PSD matrices A, let
    215     //
    216     //   Q(x) = x'Ax - 2b'x
    217     //
    218     // be the cost of the quadratic function defined by A and b. Then,
    219     // the solver terminates at iteration i if
    220     //
    221     //   i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance.
    222     //
    223     // This termination criterion is more useful when using CG to
    224     // solve the Newton step. This particular convergence test comes
    225     // from Stephen Nash's work on truncated Newton
    226     // methods. References:
    227     //
    228     //   1. Stephen G. Nash & Ariela Sofer, Assessing A Search
    229     //      Direction Within A Truncated Newton Method, Operation
    230     //      Research Letters 9(1990) 219-221.
    231     //
    232     //   2. Stephen G. Nash, A Survey of Truncated Newton Methods,
    233     //      Journal of Computational and Applied Mathematics,
    234     //      124(1-2), 45-59, 2000.
    235     //
    236     double q_tolerance;
    237   };
    238 
    239   // Summary of a call to the Solve method. We should move away from
    240   // the true/false method for determining solver success. We should
    241   // let the summary object do the talking.
    242   struct Summary {
    243     Summary()
    244         : residual_norm(0.0),
    245           num_iterations(-1),
    246           termination_type(FAILURE) {
    247     }
    248 
    249     double residual_norm;
    250     int num_iterations;
    251     LinearSolverTerminationType termination_type;
    252   };
    253 
    254   virtual ~LinearSolver();
    255 
    256   // Solve Ax = b.
    257   virtual Summary Solve(LinearOperator* A,
    258                         const double* b,
    259                         const PerSolveOptions& per_solve_options,
    260                         double* x) = 0;
    261 
    262   // The following two methods return copies instead of references so
    263   // that the base class implementation does not have to worry about
    264   // life time issues. Further, these calls are not expected to be
    265   // frequent or performance sensitive.
    266   virtual map<string, int> CallStatistics() const {
    267     return map<string, int>();
    268   }
    269 
    270   virtual map<string, double> TimeStatistics() const {
    271     return map<string, double>();
    272   }
    273 
    274   // Factory
    275   static LinearSolver* Create(const Options& options);
    276 };
    277 
    278 // This templated subclass of LinearSolver serves as a base class for
    279 // other linear solvers that depend on the particular matrix layout of
    280 // the underlying linear operator. For example some linear solvers
    281 // need low level access to the TripletSparseMatrix implementing the
    282 // LinearOperator interface. This class hides those implementation
    283 // details behind a private virtual method, and has the Solve method
    284 // perform the necessary upcasting.
    285 template <typename MatrixType>
    286 class TypedLinearSolver : public LinearSolver {
    287  public:
    288   virtual ~TypedLinearSolver() {}
    289   virtual LinearSolver::Summary Solve(
    290       LinearOperator* A,
    291       const double* b,
    292       const LinearSolver::PerSolveOptions& per_solve_options,
    293       double* x) {
    294     ScopedExecutionTimer total_time("LinearSolver::Solve", &execution_summary_);
    295     CHECK_NOTNULL(A);
    296     CHECK_NOTNULL(b);
    297     CHECK_NOTNULL(x);
    298     return SolveImpl(down_cast<MatrixType*>(A), b, per_solve_options, x);
    299   }
    300 
    301   virtual map<string, int> CallStatistics() const {
    302     return execution_summary_.calls();
    303   }
    304 
    305   virtual map<string, double> TimeStatistics() const {
    306     return execution_summary_.times();
    307   }
    308 
    309  private:
    310   virtual LinearSolver::Summary SolveImpl(
    311       MatrixType* A,
    312       const double* b,
    313       const LinearSolver::PerSolveOptions& per_solve_options,
    314       double* x) = 0;
    315 
    316   ExecutionSummary execution_summary_;
    317 };
    318 
    319 // Linear solvers that depend on acccess to the low level structure of
    320 // a SparseMatrix.
    321 typedef TypedLinearSolver<BlockSparseMatrix>         BlockSparseMatrixSolver;          // NOLINT
    322 typedef TypedLinearSolver<CompressedRowSparseMatrix> CompressedRowSparseMatrixSolver;  // NOLINT
    323 typedef TypedLinearSolver<DenseSparseMatrix>         DenseSparseMatrixSolver;          // NOLINT
    324 typedef TypedLinearSolver<TripletSparseMatrix>       TripletSparseMatrixSolver;        // NOLINT
    325 
    326 }  // namespace internal
    327 }  // namespace ceres
    328 
    329 #endif  // CERES_INTERNAL_LINEAR_SOLVER_H_
    330