1 /* 2 * Copyright 2009 Nokia Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 21 * DEALINGS IN THE SOFTWARE. 22 * 23 * Author: Siarhei Siamashka (siarhei.siamashka (at) nokia.com) 24 */ 25 26 /* 27 * This file contains a macro ('generate_composite_function') which can 28 * construct 2D image processing functions, based on a common template. 29 * Any combinations of source, destination and mask images with 8bpp, 30 * 16bpp, 24bpp, 32bpp color formats are supported. 31 * 32 * This macro takes care of: 33 * - handling of leading and trailing unaligned pixels 34 * - doing most of the work related to L2 cache preload 35 * - encourages the use of software pipelining for better instructions 36 * scheduling 37 * 38 * The user of this macro has to provide some configuration parameters 39 * (bit depths for the images, prefetch distance, etc.) and a set of 40 * macros, which should implement basic code chunks responsible for 41 * pixels processing. See 'pixman-arm-neon-asm.S' file for the usage 42 * examples. 43 * 44 * TODO: 45 * - try overlapped pixel method (from Ian Rickards) when processing 46 * exactly two blocks of pixels 47 * - maybe add an option to do reverse scanline processing 48 */ 49 50 /* 51 * Bit flags for 'generate_composite_function' macro which are used 52 * to tune generated functions behavior. 53 */ 54 .set FLAG_DST_WRITEONLY, 0 55 .set FLAG_DST_READWRITE, 1 56 .set FLAG_DEINTERLEAVE_32BPP, 2 57 58 /* 59 * Offset in stack where mask and source pointer/stride can be accessed 60 * from 'init' macro. This is useful for doing special handling for solid mask. 61 */ 62 .set ARGS_STACK_OFFSET, 40 63 64 /* 65 * Constants for selecting preferable prefetch type. 66 */ 67 .set PREFETCH_TYPE_NONE, 0 /* No prefetch at all */ 68 .set PREFETCH_TYPE_SIMPLE, 1 /* A simple, fixed-distance-ahead prefetch */ 69 .set PREFETCH_TYPE_ADVANCED, 2 /* Advanced fine-grained prefetch */ 70 71 /* 72 * Definitions of supplementary pixld/pixst macros (for partial load/store of 73 * pixel data). 74 */ 75 76 .macro pixldst1 op, elem_size, reg1, mem_operand, abits 77 .if abits > 0 78 op&.&elem_size {d®1}, [&mem_operand&, :&abits&]! 79 .else 80 op&.&elem_size {d®1}, [&mem_operand&]! 81 .endif 82 .endm 83 84 .macro pixldst2 op, elem_size, reg1, reg2, mem_operand, abits 85 .if abits > 0 86 op&.&elem_size {d®1, d®2}, [&mem_operand&, :&abits&]! 87 .else 88 op&.&elem_size {d®1, d®2}, [&mem_operand&]! 89 .endif 90 .endm 91 92 .macro pixldst4 op, elem_size, reg1, reg2, reg3, reg4, mem_operand, abits 93 .if abits > 0 94 op&.&elem_size {d®1, d®2, d®3, d®4}, [&mem_operand&, :&abits&]! 95 .else 96 op&.&elem_size {d®1, d®2, d®3, d®4}, [&mem_operand&]! 97 .endif 98 .endm 99 100 .macro pixldst0 op, elem_size, reg1, idx, mem_operand, abits 101 op&.&elem_size {d®1[idx]}, [&mem_operand&]! 102 .endm 103 104 .macro pixldst3 op, elem_size, reg1, reg2, reg3, mem_operand 105 op&.&elem_size {d®1, d®2, d®3}, [&mem_operand&]! 106 .endm 107 108 .macro pixldst30 op, elem_size, reg1, reg2, reg3, idx, mem_operand 109 op&.&elem_size {d®1[idx], d®2[idx], d®3[idx]}, [&mem_operand&]! 110 .endm 111 112 .macro pixldst numbytes, op, elem_size, basereg, mem_operand, abits 113 .if numbytes == 32 114 pixldst4 op, elem_size, %(basereg+4), %(basereg+5), \ 115 %(basereg+6), %(basereg+7), mem_operand, abits 116 .elseif numbytes == 16 117 pixldst2 op, elem_size, %(basereg+2), %(basereg+3), mem_operand, abits 118 .elseif numbytes == 8 119 pixldst1 op, elem_size, %(basereg+1), mem_operand, abits 120 .elseif numbytes == 4 121 .if !RESPECT_STRICT_ALIGNMENT || (elem_size == 32) 122 pixldst0 op, 32, %(basereg+0), 1, mem_operand, abits 123 .elseif elem_size == 16 124 pixldst0 op, 16, %(basereg+0), 2, mem_operand, abits 125 pixldst0 op, 16, %(basereg+0), 3, mem_operand, abits 126 .else 127 pixldst0 op, 8, %(basereg+0), 4, mem_operand, abits 128 pixldst0 op, 8, %(basereg+0), 5, mem_operand, abits 129 pixldst0 op, 8, %(basereg+0), 6, mem_operand, abits 130 pixldst0 op, 8, %(basereg+0), 7, mem_operand, abits 131 .endif 132 .elseif numbytes == 2 133 .if !RESPECT_STRICT_ALIGNMENT || (elem_size == 16) 134 pixldst0 op, 16, %(basereg+0), 1, mem_operand, abits 135 .else 136 pixldst0 op, 8, %(basereg+0), 2, mem_operand, abits 137 pixldst0 op, 8, %(basereg+0), 3, mem_operand, abits 138 .endif 139 .elseif numbytes == 1 140 pixldst0 op, 8, %(basereg+0), 1, mem_operand, abits 141 .else 142 .error "unsupported size: numbytes" 143 .endif 144 .endm 145 146 .macro pixld numpix, bpp, basereg, mem_operand, abits=0 147 .if bpp > 0 148 .if (bpp == 32) && (numpix == 8) && (DEINTERLEAVE_32BPP_ENABLED != 0) 149 pixldst4 vld4, 8, %(basereg+4), %(basereg+5), \ 150 %(basereg+6), %(basereg+7), mem_operand, abits 151 .elseif (bpp == 24) && (numpix == 8) 152 pixldst3 vld3, 8, %(basereg+3), %(basereg+4), %(basereg+5), mem_operand 153 .elseif (bpp == 24) && (numpix == 4) 154 pixldst30 vld3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 4, mem_operand 155 pixldst30 vld3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 5, mem_operand 156 pixldst30 vld3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 6, mem_operand 157 pixldst30 vld3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 7, mem_operand 158 .elseif (bpp == 24) && (numpix == 2) 159 pixldst30 vld3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 2, mem_operand 160 pixldst30 vld3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 3, mem_operand 161 .elseif (bpp == 24) && (numpix == 1) 162 pixldst30 vld3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 1, mem_operand 163 .else 164 pixldst %(numpix * bpp / 8), vld1, %(bpp), basereg, mem_operand, abits 165 .endif 166 .endif 167 .endm 168 169 .macro pixst numpix, bpp, basereg, mem_operand, abits=0 170 .if bpp > 0 171 .if (bpp == 32) && (numpix == 8) && (DEINTERLEAVE_32BPP_ENABLED != 0) 172 pixldst4 vst4, 8, %(basereg+4), %(basereg+5), \ 173 %(basereg+6), %(basereg+7), mem_operand, abits 174 .elseif (bpp == 24) && (numpix == 8) 175 pixldst3 vst3, 8, %(basereg+3), %(basereg+4), %(basereg+5), mem_operand 176 .elseif (bpp == 24) && (numpix == 4) 177 pixldst30 vst3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 4, mem_operand 178 pixldst30 vst3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 5, mem_operand 179 pixldst30 vst3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 6, mem_operand 180 pixldst30 vst3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 7, mem_operand 181 .elseif (bpp == 24) && (numpix == 2) 182 pixldst30 vst3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 2, mem_operand 183 pixldst30 vst3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 3, mem_operand 184 .elseif (bpp == 24) && (numpix == 1) 185 pixldst30 vst3, 8, %(basereg+0), %(basereg+1), %(basereg+2), 1, mem_operand 186 .else 187 pixldst %(numpix * bpp / 8), vst1, %(bpp), basereg, mem_operand, abits 188 .endif 189 .endif 190 .endm 191 192 .macro pixld_a numpix, bpp, basereg, mem_operand 193 .if (bpp * numpix) <= 128 194 pixld numpix, bpp, basereg, mem_operand, %(bpp * numpix) 195 .else 196 pixld numpix, bpp, basereg, mem_operand, 128 197 .endif 198 .endm 199 200 .macro pixst_a numpix, bpp, basereg, mem_operand 201 .if (bpp * numpix) <= 128 202 pixst numpix, bpp, basereg, mem_operand, %(bpp * numpix) 203 .else 204 pixst numpix, bpp, basereg, mem_operand, 128 205 .endif 206 .endm 207 208 /* 209 * Pixel fetcher for nearest scaling (needs TMP1, TMP2, VX, UNIT_X register 210 * aliases to be defined) 211 */ 212 .macro pixld1_s elem_size, reg1, mem_operand 213 .if elem_size == 16 214 mov TMP1, VX, asr #16 215 adds VX, VX, UNIT_X 216 5: subpls VX, VX, SRC_WIDTH_FIXED 217 bpl 5b 218 add TMP1, mem_operand, TMP1, asl #1 219 mov TMP2, VX, asr #16 220 adds VX, VX, UNIT_X 221 5: subpls VX, VX, SRC_WIDTH_FIXED 222 bpl 5b 223 add TMP2, mem_operand, TMP2, asl #1 224 vld1.16 {d®1&[0]}, [TMP1, :16] 225 mov TMP1, VX, asr #16 226 adds VX, VX, UNIT_X 227 5: subpls VX, VX, SRC_WIDTH_FIXED 228 bpl 5b 229 add TMP1, mem_operand, TMP1, asl #1 230 vld1.16 {d®1&[1]}, [TMP2, :16] 231 mov TMP2, VX, asr #16 232 adds VX, VX, UNIT_X 233 5: subpls VX, VX, SRC_WIDTH_FIXED 234 bpl 5b 235 add TMP2, mem_operand, TMP2, asl #1 236 vld1.16 {d®1&[2]}, [TMP1, :16] 237 vld1.16 {d®1&[3]}, [TMP2, :16] 238 .elseif elem_size == 32 239 mov TMP1, VX, asr #16 240 adds VX, VX, UNIT_X 241 5: subpls VX, VX, SRC_WIDTH_FIXED 242 bpl 5b 243 add TMP1, mem_operand, TMP1, asl #2 244 mov TMP2, VX, asr #16 245 adds VX, VX, UNIT_X 246 5: subpls VX, VX, SRC_WIDTH_FIXED 247 bpl 5b 248 add TMP2, mem_operand, TMP2, asl #2 249 vld1.32 {d®1&[0]}, [TMP1, :32] 250 vld1.32 {d®1&[1]}, [TMP2, :32] 251 .else 252 .error "unsupported" 253 .endif 254 .endm 255 256 .macro pixld2_s elem_size, reg1, reg2, mem_operand 257 .if 0 /* elem_size == 32 */ 258 mov TMP1, VX, asr #16 259 add VX, VX, UNIT_X, asl #1 260 add TMP1, mem_operand, TMP1, asl #2 261 mov TMP2, VX, asr #16 262 sub VX, VX, UNIT_X 263 add TMP2, mem_operand, TMP2, asl #2 264 vld1.32 {d®1&[0]}, [TMP1, :32] 265 mov TMP1, VX, asr #16 266 add VX, VX, UNIT_X, asl #1 267 add TMP1, mem_operand, TMP1, asl #2 268 vld1.32 {d®2&[0]}, [TMP2, :32] 269 mov TMP2, VX, asr #16 270 add VX, VX, UNIT_X 271 add TMP2, mem_operand, TMP2, asl #2 272 vld1.32 {d®1&[1]}, [TMP1, :32] 273 vld1.32 {d®2&[1]}, [TMP2, :32] 274 .else 275 pixld1_s elem_size, reg1, mem_operand 276 pixld1_s elem_size, reg2, mem_operand 277 .endif 278 .endm 279 280 .macro pixld0_s elem_size, reg1, idx, mem_operand 281 .if elem_size == 16 282 mov TMP1, VX, asr #16 283 adds VX, VX, UNIT_X 284 5: subpls VX, VX, SRC_WIDTH_FIXED 285 bpl 5b 286 add TMP1, mem_operand, TMP1, asl #1 287 vld1.16 {d®1&[idx]}, [TMP1, :16] 288 .elseif elem_size == 32 289 mov TMP1, VX, asr #16 290 adds VX, VX, UNIT_X 291 5: subpls VX, VX, SRC_WIDTH_FIXED 292 bpl 5b 293 add TMP1, mem_operand, TMP1, asl #2 294 vld1.32 {d®1&[idx]}, [TMP1, :32] 295 .endif 296 .endm 297 298 .macro pixld_s_internal numbytes, elem_size, basereg, mem_operand 299 .if numbytes == 32 300 pixld2_s elem_size, %(basereg+4), %(basereg+5), mem_operand 301 pixld2_s elem_size, %(basereg+6), %(basereg+7), mem_operand 302 pixdeinterleave elem_size, %(basereg+4) 303 .elseif numbytes == 16 304 pixld2_s elem_size, %(basereg+2), %(basereg+3), mem_operand 305 .elseif numbytes == 8 306 pixld1_s elem_size, %(basereg+1), mem_operand 307 .elseif numbytes == 4 308 .if elem_size == 32 309 pixld0_s elem_size, %(basereg+0), 1, mem_operand 310 .elseif elem_size == 16 311 pixld0_s elem_size, %(basereg+0), 2, mem_operand 312 pixld0_s elem_size, %(basereg+0), 3, mem_operand 313 .else 314 pixld0_s elem_size, %(basereg+0), 4, mem_operand 315 pixld0_s elem_size, %(basereg+0), 5, mem_operand 316 pixld0_s elem_size, %(basereg+0), 6, mem_operand 317 pixld0_s elem_size, %(basereg+0), 7, mem_operand 318 .endif 319 .elseif numbytes == 2 320 .if elem_size == 16 321 pixld0_s elem_size, %(basereg+0), 1, mem_operand 322 .else 323 pixld0_s elem_size, %(basereg+0), 2, mem_operand 324 pixld0_s elem_size, %(basereg+0), 3, mem_operand 325 .endif 326 .elseif numbytes == 1 327 pixld0_s elem_size, %(basereg+0), 1, mem_operand 328 .else 329 .error "unsupported size: numbytes" 330 .endif 331 .endm 332 333 .macro pixld_s numpix, bpp, basereg, mem_operand 334 .if bpp > 0 335 pixld_s_internal %(numpix * bpp / 8), %(bpp), basereg, mem_operand 336 .endif 337 .endm 338 339 .macro vuzp8 reg1, reg2 340 vuzp.8 d®1, d®2 341 .endm 342 343 .macro vzip8 reg1, reg2 344 vzip.8 d®1, d®2 345 .endm 346 347 /* deinterleave B, G, R, A channels for eight 32bpp pixels in 4 registers */ 348 .macro pixdeinterleave bpp, basereg 349 .if (bpp == 32) && (DEINTERLEAVE_32BPP_ENABLED != 0) 350 vuzp8 %(basereg+0), %(basereg+1) 351 vuzp8 %(basereg+2), %(basereg+3) 352 vuzp8 %(basereg+1), %(basereg+3) 353 vuzp8 %(basereg+0), %(basereg+2) 354 .endif 355 .endm 356 357 /* interleave B, G, R, A channels for eight 32bpp pixels in 4 registers */ 358 .macro pixinterleave bpp, basereg 359 .if (bpp == 32) && (DEINTERLEAVE_32BPP_ENABLED != 0) 360 vzip8 %(basereg+0), %(basereg+2) 361 vzip8 %(basereg+1), %(basereg+3) 362 vzip8 %(basereg+2), %(basereg+3) 363 vzip8 %(basereg+0), %(basereg+1) 364 .endif 365 .endm 366 367 /* 368 * This is a macro for implementing cache preload. The main idea is that 369 * cache preload logic is mostly independent from the rest of pixels 370 * processing code. It starts at the top left pixel and moves forward 371 * across pixels and can jump across scanlines. Prefetch distance is 372 * handled in an 'incremental' way: it starts from 0 and advances to the 373 * optimal distance over time. After reaching optimal prefetch distance, 374 * it is kept constant. There are some checks which prevent prefetching 375 * unneeded pixel lines below the image (but it still can prefetch a bit 376 * more data on the right side of the image - not a big issue and may 377 * be actually helpful when rendering text glyphs). Additional trick is 378 * the use of LDR instruction for prefetch instead of PLD when moving to 379 * the next line, the point is that we have a high chance of getting TLB 380 * miss in this case, and PLD would be useless. 381 * 382 * This sounds like it may introduce a noticeable overhead (when working with 383 * fully cached data). But in reality, due to having a separate pipeline and 384 * instruction queue for NEON unit in ARM Cortex-A8, normal ARM code can 385 * execute simultaneously with NEON and be completely shadowed by it. Thus 386 * we get no performance overhead at all (*). This looks like a very nice 387 * feature of Cortex-A8, if used wisely. We don't have a hardware prefetcher, 388 * but still can implement some rather advanced prefetch logic in software 389 * for almost zero cost! 390 * 391 * (*) The overhead of the prefetcher is visible when running some trivial 392 * pixels processing like simple copy. Anyway, having prefetch is a must 393 * when working with the graphics data. 394 */ 395 .macro PF a, x:vararg 396 .if (PREFETCH_TYPE_CURRENT == PREFETCH_TYPE_ADVANCED) 397 a x 398 .endif 399 .endm 400 401 .macro cache_preload std_increment, boost_increment 402 .if (src_bpp_shift >= 0) || (dst_r_bpp != 0) || (mask_bpp_shift >= 0) 403 .if regs_shortage 404 PF ldr ORIG_W, [sp] /* If we are short on regs, ORIG_W is kept on stack */ 405 .endif 406 .if std_increment != 0 407 PF add PF_X, PF_X, #std_increment 408 .endif 409 PF tst PF_CTL, #0xF 410 PF addne PF_X, PF_X, #boost_increment 411 PF subne PF_CTL, PF_CTL, #1 412 PF cmp PF_X, ORIG_W 413 .if src_bpp_shift >= 0 414 PF pld, [PF_SRC, PF_X, lsl #src_bpp_shift] 415 .endif 416 .if dst_r_bpp != 0 417 PF pld, [PF_DST, PF_X, lsl #dst_bpp_shift] 418 .endif 419 .if mask_bpp_shift >= 0 420 PF pld, [PF_MASK, PF_X, lsl #mask_bpp_shift] 421 .endif 422 PF subge PF_X, PF_X, ORIG_W 423 PF subges PF_CTL, PF_CTL, #0x10 424 .if src_bpp_shift >= 0 425 PF ldrgeb DUMMY, [PF_SRC, SRC_STRIDE, lsl #src_bpp_shift]! 426 .endif 427 .if dst_r_bpp != 0 428 PF ldrgeb DUMMY, [PF_DST, DST_STRIDE, lsl #dst_bpp_shift]! 429 .endif 430 .if mask_bpp_shift >= 0 431 PF ldrgeb DUMMY, [PF_MASK, MASK_STRIDE, lsl #mask_bpp_shift]! 432 .endif 433 .endif 434 .endm 435 436 .macro cache_preload_simple 437 .if (PREFETCH_TYPE_CURRENT == PREFETCH_TYPE_SIMPLE) 438 .if src_bpp > 0 439 pld [SRC, #(PREFETCH_DISTANCE_SIMPLE * src_bpp / 8)] 440 .endif 441 .if dst_r_bpp > 0 442 pld [DST_R, #(PREFETCH_DISTANCE_SIMPLE * dst_r_bpp / 8)] 443 .endif 444 .if mask_bpp > 0 445 pld [MASK, #(PREFETCH_DISTANCE_SIMPLE * mask_bpp / 8)] 446 .endif 447 .endif 448 .endm 449 450 .macro fetch_mask_pixblock 451 pixld pixblock_size, mask_bpp, \ 452 (mask_basereg - pixblock_size * mask_bpp / 64), MASK 453 .endm 454 455 /* 456 * Macro which is used to process leading pixels until destination 457 * pointer is properly aligned (at 16 bytes boundary). When destination 458 * buffer uses 16bpp format, this is unnecessary, or even pointless. 459 */ 460 .macro ensure_destination_ptr_alignment process_pixblock_head, \ 461 process_pixblock_tail, \ 462 process_pixblock_tail_head 463 .if dst_w_bpp != 24 464 tst DST_R, #0xF 465 beq 2f 466 467 .irp lowbit, 1, 2, 4, 8, 16 468 local skip1 469 .if (dst_w_bpp <= (lowbit * 8)) && ((lowbit * 8) < (pixblock_size * dst_w_bpp)) 470 .if lowbit < 16 /* we don't need more than 16-byte alignment */ 471 tst DST_R, #lowbit 472 beq 1f 473 .endif 474 pixld_src (lowbit * 8 / dst_w_bpp), src_bpp, src_basereg, SRC 475 pixld (lowbit * 8 / dst_w_bpp), mask_bpp, mask_basereg, MASK 476 .if dst_r_bpp > 0 477 pixld_a (lowbit * 8 / dst_r_bpp), dst_r_bpp, dst_r_basereg, DST_R 478 .else 479 add DST_R, DST_R, #lowbit 480 .endif 481 PF add PF_X, PF_X, #(lowbit * 8 / dst_w_bpp) 482 sub W, W, #(lowbit * 8 / dst_w_bpp) 483 1: 484 .endif 485 .endr 486 pixdeinterleave src_bpp, src_basereg 487 pixdeinterleave mask_bpp, mask_basereg 488 pixdeinterleave dst_r_bpp, dst_r_basereg 489 490 process_pixblock_head 491 cache_preload 0, pixblock_size 492 cache_preload_simple 493 process_pixblock_tail 494 495 pixinterleave dst_w_bpp, dst_w_basereg 496 .irp lowbit, 1, 2, 4, 8, 16 497 .if (dst_w_bpp <= (lowbit * 8)) && ((lowbit * 8) < (pixblock_size * dst_w_bpp)) 498 .if lowbit < 16 /* we don't need more than 16-byte alignment */ 499 tst DST_W, #lowbit 500 beq 1f 501 .endif 502 pixst_a (lowbit * 8 / dst_w_bpp), dst_w_bpp, dst_w_basereg, DST_W 503 1: 504 .endif 505 .endr 506 .endif 507 2: 508 .endm 509 510 /* 511 * Special code for processing up to (pixblock_size - 1) remaining 512 * trailing pixels. As SIMD processing performs operation on 513 * pixblock_size pixels, anything smaller than this has to be loaded 514 * and stored in a special way. Loading and storing of pixel data is 515 * performed in such a way that we fill some 'slots' in the NEON 516 * registers (some slots naturally are unused), then perform compositing 517 * operation as usual. In the end, the data is taken from these 'slots' 518 * and saved to memory. 519 * 520 * cache_preload_flag - allows to suppress prefetch if 521 * set to 0 522 * dst_aligned_flag - selects whether destination buffer 523 * is aligned 524 */ 525 .macro process_trailing_pixels cache_preload_flag, \ 526 dst_aligned_flag, \ 527 process_pixblock_head, \ 528 process_pixblock_tail, \ 529 process_pixblock_tail_head 530 tst W, #(pixblock_size - 1) 531 beq 2f 532 .irp chunk_size, 16, 8, 4, 2, 1 533 .if pixblock_size > chunk_size 534 tst W, #chunk_size 535 beq 1f 536 pixld_src chunk_size, src_bpp, src_basereg, SRC 537 pixld chunk_size, mask_bpp, mask_basereg, MASK 538 .if dst_aligned_flag != 0 539 pixld_a chunk_size, dst_r_bpp, dst_r_basereg, DST_R 540 .else 541 pixld chunk_size, dst_r_bpp, dst_r_basereg, DST_R 542 .endif 543 .if cache_preload_flag != 0 544 PF add PF_X, PF_X, #chunk_size 545 .endif 546 1: 547 .endif 548 .endr 549 pixdeinterleave src_bpp, src_basereg 550 pixdeinterleave mask_bpp, mask_basereg 551 pixdeinterleave dst_r_bpp, dst_r_basereg 552 553 process_pixblock_head 554 .if cache_preload_flag != 0 555 cache_preload 0, pixblock_size 556 cache_preload_simple 557 .endif 558 process_pixblock_tail 559 pixinterleave dst_w_bpp, dst_w_basereg 560 .irp chunk_size, 16, 8, 4, 2, 1 561 .if pixblock_size > chunk_size 562 tst W, #chunk_size 563 beq 1f 564 .if dst_aligned_flag != 0 565 pixst_a chunk_size, dst_w_bpp, dst_w_basereg, DST_W 566 .else 567 pixst chunk_size, dst_w_bpp, dst_w_basereg, DST_W 568 .endif 569 1: 570 .endif 571 .endr 572 2: 573 .endm 574 575 /* 576 * Macro, which performs all the needed operations to switch to the next 577 * scanline and start the next loop iteration unless all the scanlines 578 * are already processed. 579 */ 580 .macro advance_to_next_scanline start_of_loop_label 581 .if regs_shortage 582 ldrd W, [sp] /* load W and H (width and height) from stack */ 583 .else 584 mov W, ORIG_W 585 .endif 586 add DST_W, DST_W, DST_STRIDE, lsl #dst_bpp_shift 587 .if src_bpp != 0 588 add SRC, SRC, SRC_STRIDE, lsl #src_bpp_shift 589 .endif 590 .if mask_bpp != 0 591 add MASK, MASK, MASK_STRIDE, lsl #mask_bpp_shift 592 .endif 593 .if (dst_w_bpp != 24) 594 sub DST_W, DST_W, W, lsl #dst_bpp_shift 595 .endif 596 .if (src_bpp != 24) && (src_bpp != 0) 597 sub SRC, SRC, W, lsl #src_bpp_shift 598 .endif 599 .if (mask_bpp != 24) && (mask_bpp != 0) 600 sub MASK, MASK, W, lsl #mask_bpp_shift 601 .endif 602 subs H, H, #1 603 mov DST_R, DST_W 604 .if regs_shortage 605 str H, [sp, #4] /* save updated height to stack */ 606 .endif 607 bge start_of_loop_label 608 .endm 609 610 /* 611 * Registers are allocated in the following way by default: 612 * d0, d1, d2, d3 - reserved for loading source pixel data 613 * d4, d5, d6, d7 - reserved for loading destination pixel data 614 * d24, d25, d26, d27 - reserved for loading mask pixel data 615 * d28, d29, d30, d31 - final destination pixel data for writeback to memory 616 */ 617 .macro generate_composite_function fname, \ 618 src_bpp_, \ 619 mask_bpp_, \ 620 dst_w_bpp_, \ 621 flags, \ 622 pixblock_size_, \ 623 prefetch_distance, \ 624 init, \ 625 cleanup, \ 626 process_pixblock_head, \ 627 process_pixblock_tail, \ 628 process_pixblock_tail_head, \ 629 dst_w_basereg_ = 28, \ 630 dst_r_basereg_ = 4, \ 631 src_basereg_ = 0, \ 632 mask_basereg_ = 24 633 634 .func fname 635 .global fname 636 /* For ELF format also set function visibility to hidden */ 637 #ifdef __ELF__ 638 .hidden fname 639 .type fname, %function 640 #endif 641 fname: 642 push {r4-r12, lr} /* save all registers */ 643 644 /* 645 * Select prefetch type for this function. If prefetch distance is 646 * set to 0 or one of the color formats is 24bpp, SIMPLE prefetch 647 * has to be used instead of ADVANCED. 648 */ 649 .set PREFETCH_TYPE_CURRENT, PREFETCH_TYPE_DEFAULT 650 .if prefetch_distance == 0 651 .set PREFETCH_TYPE_CURRENT, PREFETCH_TYPE_NONE 652 .elseif (PREFETCH_TYPE_CURRENT > PREFETCH_TYPE_SIMPLE) && \ 653 ((src_bpp_ == 24) || (mask_bpp_ == 24) || (dst_w_bpp_ == 24)) 654 .set PREFETCH_TYPE_CURRENT, PREFETCH_TYPE_SIMPLE 655 .endif 656 657 /* 658 * Make some macro arguments globally visible and accessible 659 * from other macros 660 */ 661 .set src_bpp, src_bpp_ 662 .set mask_bpp, mask_bpp_ 663 .set dst_w_bpp, dst_w_bpp_ 664 .set pixblock_size, pixblock_size_ 665 .set dst_w_basereg, dst_w_basereg_ 666 .set dst_r_basereg, dst_r_basereg_ 667 .set src_basereg, src_basereg_ 668 .set mask_basereg, mask_basereg_ 669 670 .macro pixld_src x:vararg 671 pixld x 672 .endm 673 .macro fetch_src_pixblock 674 pixld_src pixblock_size, src_bpp, \ 675 (src_basereg - pixblock_size * src_bpp / 64), SRC 676 .endm 677 /* 678 * Assign symbolic names to registers 679 */ 680 W .req r0 /* width (is updated during processing) */ 681 H .req r1 /* height (is updated during processing) */ 682 DST_W .req r2 /* destination buffer pointer for writes */ 683 DST_STRIDE .req r3 /* destination image stride */ 684 SRC .req r4 /* source buffer pointer */ 685 SRC_STRIDE .req r5 /* source image stride */ 686 DST_R .req r6 /* destination buffer pointer for reads */ 687 688 MASK .req r7 /* mask pointer */ 689 MASK_STRIDE .req r8 /* mask stride */ 690 691 PF_CTL .req r9 /* combined lines counter and prefetch */ 692 /* distance increment counter */ 693 PF_X .req r10 /* pixel index in a scanline for current */ 694 /* pretetch position */ 695 PF_SRC .req r11 /* pointer to source scanline start */ 696 /* for prefetch purposes */ 697 PF_DST .req r12 /* pointer to destination scanline start */ 698 /* for prefetch purposes */ 699 PF_MASK .req r14 /* pointer to mask scanline start */ 700 /* for prefetch purposes */ 701 /* 702 * Check whether we have enough registers for all the local variables. 703 * If we don't have enough registers, original width and height are 704 * kept on top of stack (and 'regs_shortage' variable is set to indicate 705 * this for the rest of code). Even if there are enough registers, the 706 * allocation scheme may be a bit different depending on whether source 707 * or mask is not used. 708 */ 709 .if (PREFETCH_TYPE_CURRENT < PREFETCH_TYPE_ADVANCED) 710 ORIG_W .req r10 /* saved original width */ 711 DUMMY .req r12 /* temporary register */ 712 .set regs_shortage, 0 713 .elseif mask_bpp == 0 714 ORIG_W .req r7 /* saved original width */ 715 DUMMY .req r8 /* temporary register */ 716 .set regs_shortage, 0 717 .elseif src_bpp == 0 718 ORIG_W .req r4 /* saved original width */ 719 DUMMY .req r5 /* temporary register */ 720 .set regs_shortage, 0 721 .else 722 ORIG_W .req r1 /* saved original width */ 723 DUMMY .req r1 /* temporary register */ 724 .set regs_shortage, 1 725 .endif 726 727 .set mask_bpp_shift, -1 728 .if src_bpp == 32 729 .set src_bpp_shift, 2 730 .elseif src_bpp == 24 731 .set src_bpp_shift, 0 732 .elseif src_bpp == 16 733 .set src_bpp_shift, 1 734 .elseif src_bpp == 8 735 .set src_bpp_shift, 0 736 .elseif src_bpp == 0 737 .set src_bpp_shift, -1 738 .else 739 .error "requested src bpp (src_bpp) is not supported" 740 .endif 741 .if mask_bpp == 32 742 .set mask_bpp_shift, 2 743 .elseif mask_bpp == 24 744 .set mask_bpp_shift, 0 745 .elseif mask_bpp == 8 746 .set mask_bpp_shift, 0 747 .elseif mask_bpp == 0 748 .set mask_bpp_shift, -1 749 .else 750 .error "requested mask bpp (mask_bpp) is not supported" 751 .endif 752 .if dst_w_bpp == 32 753 .set dst_bpp_shift, 2 754 .elseif dst_w_bpp == 24 755 .set dst_bpp_shift, 0 756 .elseif dst_w_bpp == 16 757 .set dst_bpp_shift, 1 758 .elseif dst_w_bpp == 8 759 .set dst_bpp_shift, 0 760 .else 761 .error "requested dst bpp (dst_w_bpp) is not supported" 762 .endif 763 764 .if (((flags) & FLAG_DST_READWRITE) != 0) 765 .set dst_r_bpp, dst_w_bpp 766 .else 767 .set dst_r_bpp, 0 768 .endif 769 .if (((flags) & FLAG_DEINTERLEAVE_32BPP) != 0) 770 .set DEINTERLEAVE_32BPP_ENABLED, 1 771 .else 772 .set DEINTERLEAVE_32BPP_ENABLED, 0 773 .endif 774 775 .if prefetch_distance < 0 || prefetch_distance > 15 776 .error "invalid prefetch distance (prefetch_distance)" 777 .endif 778 779 .if src_bpp > 0 780 ldr SRC, [sp, #40] 781 .endif 782 .if mask_bpp > 0 783 ldr MASK, [sp, #48] 784 .endif 785 PF mov PF_X, #0 786 .if src_bpp > 0 787 ldr SRC_STRIDE, [sp, #44] 788 .endif 789 .if mask_bpp > 0 790 ldr MASK_STRIDE, [sp, #52] 791 .endif 792 mov DST_R, DST_W 793 794 .if src_bpp == 24 795 sub SRC_STRIDE, SRC_STRIDE, W 796 sub SRC_STRIDE, SRC_STRIDE, W, lsl #1 797 .endif 798 .if mask_bpp == 24 799 sub MASK_STRIDE, MASK_STRIDE, W 800 sub MASK_STRIDE, MASK_STRIDE, W, lsl #1 801 .endif 802 .if dst_w_bpp == 24 803 sub DST_STRIDE, DST_STRIDE, W 804 sub DST_STRIDE, DST_STRIDE, W, lsl #1 805 .endif 806 807 /* 808 * Setup advanced prefetcher initial state 809 */ 810 PF mov PF_SRC, SRC 811 PF mov PF_DST, DST_R 812 PF mov PF_MASK, MASK 813 /* PF_CTL = prefetch_distance | ((h - 1) << 4) */ 814 PF mov PF_CTL, H, lsl #4 815 PF add PF_CTL, #(prefetch_distance - 0x10) 816 817 init 818 .if regs_shortage 819 push {r0, r1} 820 .endif 821 subs H, H, #1 822 .if regs_shortage 823 str H, [sp, #4] /* save updated height to stack */ 824 .else 825 mov ORIG_W, W 826 .endif 827 blt 9f 828 cmp W, #(pixblock_size * 2) 829 blt 8f 830 /* 831 * This is the start of the pipelined loop, which if optimized for 832 * long scanlines 833 */ 834 0: 835 ensure_destination_ptr_alignment process_pixblock_head, \ 836 process_pixblock_tail, \ 837 process_pixblock_tail_head 838 839 /* Implement "head (tail_head) ... (tail_head) tail" loop pattern */ 840 pixld_a pixblock_size, dst_r_bpp, \ 841 (dst_r_basereg - pixblock_size * dst_r_bpp / 64), DST_R 842 fetch_src_pixblock 843 pixld pixblock_size, mask_bpp, \ 844 (mask_basereg - pixblock_size * mask_bpp / 64), MASK 845 PF add PF_X, PF_X, #pixblock_size 846 process_pixblock_head 847 cache_preload 0, pixblock_size 848 cache_preload_simple 849 subs W, W, #(pixblock_size * 2) 850 blt 2f 851 1: 852 process_pixblock_tail_head 853 cache_preload_simple 854 subs W, W, #pixblock_size 855 bge 1b 856 2: 857 process_pixblock_tail 858 pixst_a pixblock_size, dst_w_bpp, \ 859 (dst_w_basereg - pixblock_size * dst_w_bpp / 64), DST_W 860 861 /* Process the remaining trailing pixels in the scanline */ 862 process_trailing_pixels 1, 1, \ 863 process_pixblock_head, \ 864 process_pixblock_tail, \ 865 process_pixblock_tail_head 866 advance_to_next_scanline 0b 867 868 .if regs_shortage 869 pop {r0, r1} 870 .endif 871 cleanup 872 pop {r4-r12, pc} /* exit */ 873 /* 874 * This is the start of the loop, designed to process images with small width 875 * (less than pixblock_size * 2 pixels). In this case neither pipelining 876 * nor prefetch are used. 877 */ 878 8: 879 /* Process exactly pixblock_size pixels if needed */ 880 tst W, #pixblock_size 881 beq 1f 882 pixld pixblock_size, dst_r_bpp, \ 883 (dst_r_basereg - pixblock_size * dst_r_bpp / 64), DST_R 884 fetch_src_pixblock 885 pixld pixblock_size, mask_bpp, \ 886 (mask_basereg - pixblock_size * mask_bpp / 64), MASK 887 process_pixblock_head 888 process_pixblock_tail 889 pixst pixblock_size, dst_w_bpp, \ 890 (dst_w_basereg - pixblock_size * dst_w_bpp / 64), DST_W 891 1: 892 /* Process the remaining trailing pixels in the scanline */ 893 process_trailing_pixels 0, 0, \ 894 process_pixblock_head, \ 895 process_pixblock_tail, \ 896 process_pixblock_tail_head 897 advance_to_next_scanline 8b 898 9: 899 .if regs_shortage 900 pop {r0, r1} 901 .endif 902 cleanup 903 pop {r4-r12, pc} /* exit */ 904 905 .purgem fetch_src_pixblock 906 .purgem pixld_src 907 908 .unreq SRC 909 .unreq MASK 910 .unreq DST_R 911 .unreq DST_W 912 .unreq ORIG_W 913 .unreq W 914 .unreq H 915 .unreq SRC_STRIDE 916 .unreq DST_STRIDE 917 .unreq MASK_STRIDE 918 .unreq PF_CTL 919 .unreq PF_X 920 .unreq PF_SRC 921 .unreq PF_DST 922 .unreq PF_MASK 923 .unreq DUMMY 924 .endfunc 925 .endm 926 927 /* 928 * A simplified variant of function generation template for a single 929 * scanline processing (for implementing pixman combine functions) 930 */ 931 .macro generate_composite_function_scanline use_nearest_scaling, \ 932 fname, \ 933 src_bpp_, \ 934 mask_bpp_, \ 935 dst_w_bpp_, \ 936 flags, \ 937 pixblock_size_, \ 938 init, \ 939 cleanup, \ 940 process_pixblock_head, \ 941 process_pixblock_tail, \ 942 process_pixblock_tail_head, \ 943 dst_w_basereg_ = 28, \ 944 dst_r_basereg_ = 4, \ 945 src_basereg_ = 0, \ 946 mask_basereg_ = 24 947 948 .func fname 949 .global fname 950 /* For ELF format also set function visibility to hidden */ 951 #ifdef __ELF__ 952 .hidden fname 953 .type fname, %function 954 #endif 955 fname: 956 .set PREFETCH_TYPE_CURRENT, PREFETCH_TYPE_NONE 957 /* 958 * Make some macro arguments globally visible and accessible 959 * from other macros 960 */ 961 .set src_bpp, src_bpp_ 962 .set mask_bpp, mask_bpp_ 963 .set dst_w_bpp, dst_w_bpp_ 964 .set pixblock_size, pixblock_size_ 965 .set dst_w_basereg, dst_w_basereg_ 966 .set dst_r_basereg, dst_r_basereg_ 967 .set src_basereg, src_basereg_ 968 .set mask_basereg, mask_basereg_ 969 970 .if use_nearest_scaling != 0 971 /* 972 * Assign symbolic names to registers for nearest scaling 973 */ 974 W .req r0 975 DST_W .req r1 976 SRC .req r2 977 VX .req r3 978 UNIT_X .req ip 979 MASK .req lr 980 TMP1 .req r4 981 TMP2 .req r5 982 DST_R .req r6 983 SRC_WIDTH_FIXED .req r7 984 985 .macro pixld_src x:vararg 986 pixld_s x 987 .endm 988 989 ldr UNIT_X, [sp] 990 push {r4-r8, lr} 991 ldr SRC_WIDTH_FIXED, [sp, #(24 + 4)] 992 .if mask_bpp != 0 993 ldr MASK, [sp, #(24 + 8)] 994 .endif 995 .else 996 /* 997 * Assign symbolic names to registers 998 */ 999 W .req r0 /* width (is updated during processing) */ 1000 DST_W .req r1 /* destination buffer pointer for writes */ 1001 SRC .req r2 /* source buffer pointer */ 1002 DST_R .req ip /* destination buffer pointer for reads */ 1003 MASK .req r3 /* mask pointer */ 1004 1005 .macro pixld_src x:vararg 1006 pixld x 1007 .endm 1008 .endif 1009 1010 .if (((flags) & FLAG_DST_READWRITE) != 0) 1011 .set dst_r_bpp, dst_w_bpp 1012 .else 1013 .set dst_r_bpp, 0 1014 .endif 1015 .if (((flags) & FLAG_DEINTERLEAVE_32BPP) != 0) 1016 .set DEINTERLEAVE_32BPP_ENABLED, 1 1017 .else 1018 .set DEINTERLEAVE_32BPP_ENABLED, 0 1019 .endif 1020 1021 .macro fetch_src_pixblock 1022 pixld_src pixblock_size, src_bpp, \ 1023 (src_basereg - pixblock_size * src_bpp / 64), SRC 1024 .endm 1025 1026 init 1027 mov DST_R, DST_W 1028 1029 cmp W, #pixblock_size 1030 blt 8f 1031 1032 ensure_destination_ptr_alignment process_pixblock_head, \ 1033 process_pixblock_tail, \ 1034 process_pixblock_tail_head 1035 1036 subs W, W, #pixblock_size 1037 blt 7f 1038 1039 /* Implement "head (tail_head) ... (tail_head) tail" loop pattern */ 1040 pixld_a pixblock_size, dst_r_bpp, \ 1041 (dst_r_basereg - pixblock_size * dst_r_bpp / 64), DST_R 1042 fetch_src_pixblock 1043 pixld pixblock_size, mask_bpp, \ 1044 (mask_basereg - pixblock_size * mask_bpp / 64), MASK 1045 process_pixblock_head 1046 subs W, W, #pixblock_size 1047 blt 2f 1048 1: 1049 process_pixblock_tail_head 1050 subs W, W, #pixblock_size 1051 bge 1b 1052 2: 1053 process_pixblock_tail 1054 pixst_a pixblock_size, dst_w_bpp, \ 1055 (dst_w_basereg - pixblock_size * dst_w_bpp / 64), DST_W 1056 7: 1057 /* Process the remaining trailing pixels in the scanline (dst aligned) */ 1058 process_trailing_pixels 0, 1, \ 1059 process_pixblock_head, \ 1060 process_pixblock_tail, \ 1061 process_pixblock_tail_head 1062 1063 cleanup 1064 .if use_nearest_scaling != 0 1065 pop {r4-r8, pc} /* exit */ 1066 .else 1067 bx lr /* exit */ 1068 .endif 1069 8: 1070 /* Process the remaining trailing pixels in the scanline (dst unaligned) */ 1071 process_trailing_pixels 0, 0, \ 1072 process_pixblock_head, \ 1073 process_pixblock_tail, \ 1074 process_pixblock_tail_head 1075 1076 cleanup 1077 1078 .if use_nearest_scaling != 0 1079 pop {r4-r8, pc} /* exit */ 1080 1081 .unreq DST_R 1082 .unreq SRC 1083 .unreq W 1084 .unreq VX 1085 .unreq UNIT_X 1086 .unreq TMP1 1087 .unreq TMP2 1088 .unreq DST_W 1089 .unreq MASK 1090 .unreq SRC_WIDTH_FIXED 1091 1092 .else 1093 bx lr /* exit */ 1094 1095 .unreq SRC 1096 .unreq MASK 1097 .unreq DST_R 1098 .unreq DST_W 1099 .unreq W 1100 .endif 1101 1102 .purgem fetch_src_pixblock 1103 .purgem pixld_src 1104 1105 .endfunc 1106 .endm 1107 1108 .macro generate_composite_function_single_scanline x:vararg 1109 generate_composite_function_scanline 0, x 1110 .endm 1111 1112 .macro generate_composite_function_nearest_scanline x:vararg 1113 generate_composite_function_scanline 1, x 1114 .endm 1115 1116 /* Default prologue/epilogue, nothing special needs to be done */ 1117 1118 .macro default_init 1119 .endm 1120 1121 .macro default_cleanup 1122 .endm 1123 1124 /* 1125 * Prologue/epilogue variant which additionally saves/restores d8-d15 1126 * registers (they need to be saved/restored by callee according to ABI). 1127 * This is required if the code needs to use all the NEON registers. 1128 */ 1129 1130 .macro default_init_need_all_regs 1131 vpush {d8-d15} 1132 .endm 1133 1134 .macro default_cleanup_need_all_regs 1135 vpop {d8-d15} 1136 .endm 1137 1138 /******************************************************************************/ 1139 1140 /* 1141 * Conversion of 8 r5g6b6 pixels packed in 128-bit register (in) 1142 * into a planar a8r8g8b8 format (with a, r, g, b color components 1143 * stored into 64-bit registers out_a, out_r, out_g, out_b respectively). 1144 * 1145 * Warning: the conversion is destructive and the original 1146 * value (in) is lost. 1147 */ 1148 .macro convert_0565_to_8888 in, out_a, out_r, out_g, out_b 1149 vshrn.u16 out_r, in, #8 1150 vshrn.u16 out_g, in, #3 1151 vsli.u16 in, in, #5 1152 vmov.u8 out_a, #255 1153 vsri.u8 out_r, out_r, #5 1154 vsri.u8 out_g, out_g, #6 1155 vshrn.u16 out_b, in, #2 1156 .endm 1157 1158 .macro convert_0565_to_x888 in, out_r, out_g, out_b 1159 vshrn.u16 out_r, in, #8 1160 vshrn.u16 out_g, in, #3 1161 vsli.u16 in, in, #5 1162 vsri.u8 out_r, out_r, #5 1163 vsri.u8 out_g, out_g, #6 1164 vshrn.u16 out_b, in, #2 1165 .endm 1166 1167 /* 1168 * Conversion from planar a8r8g8b8 format (with a, r, g, b color components 1169 * in 64-bit registers in_a, in_r, in_g, in_b respectively) into 8 r5g6b6 1170 * pixels packed in 128-bit register (out). Requires two temporary 128-bit 1171 * registers (tmp1, tmp2) 1172 */ 1173 .macro convert_8888_to_0565 in_r, in_g, in_b, out, tmp1, tmp2 1174 vshll.u8 tmp1, in_g, #8 1175 vshll.u8 out, in_r, #8 1176 vshll.u8 tmp2, in_b, #8 1177 vsri.u16 out, tmp1, #5 1178 vsri.u16 out, tmp2, #11 1179 .endm 1180 1181 /* 1182 * Conversion of four r5g6b5 pixels (in) to four x8r8g8b8 pixels 1183 * returned in (out0, out1) registers pair. Requires one temporary 1184 * 64-bit register (tmp). 'out1' and 'in' may overlap, the original 1185 * value from 'in' is lost 1186 */ 1187 .macro convert_four_0565_to_x888_packed in, out0, out1, tmp 1188 vshl.u16 out0, in, #5 /* G top 6 bits */ 1189 vshl.u16 tmp, in, #11 /* B top 5 bits */ 1190 vsri.u16 in, in, #5 /* R is ready in top bits */ 1191 vsri.u16 out0, out0, #6 /* G is ready in top bits */ 1192 vsri.u16 tmp, tmp, #5 /* B is ready in top bits */ 1193 vshr.u16 out1, in, #8 /* R is in place */ 1194 vsri.u16 out0, tmp, #8 /* G & B is in place */ 1195 vzip.u16 out0, out1 /* everything is in place */ 1196 .endm 1197