Home | History | Annotate | Download | only in Core
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 #ifndef EIGEN_FUNCTORS_H
     11 #define EIGEN_FUNCTORS_H
     12 
     13 namespace Eigen {
     14 
     15 namespace internal {
     16 
     17 // associative functors:
     18 
     19 /** \internal
     20   * \brief Template functor to compute the sum of two scalars
     21   *
     22   * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum()
     23   */
     24 template<typename Scalar> struct scalar_sum_op {
     25   EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op)
     26   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; }
     27   template<typename Packet>
     28   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
     29   { return internal::padd(a,b); }
     30   template<typename Packet>
     31   EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
     32   { return internal::predux(a); }
     33 };
     34 template<typename Scalar>
     35 struct functor_traits<scalar_sum_op<Scalar> > {
     36   enum {
     37     Cost = NumTraits<Scalar>::AddCost,
     38     PacketAccess = packet_traits<Scalar>::HasAdd
     39   };
     40 };
     41 
     42 /** \internal
     43   * \brief Template functor to compute the product of two scalars
     44   *
     45   * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux()
     46   */
     47 template<typename LhsScalar,typename RhsScalar> struct scalar_product_op {
     48   enum {
     49     // TODO vectorize mixed product
     50     Vectorizable = is_same<LhsScalar,RhsScalar>::value && packet_traits<LhsScalar>::HasMul && packet_traits<RhsScalar>::HasMul
     51   };
     52   typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
     53   EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op)
     54   EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; }
     55   template<typename Packet>
     56   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
     57   { return internal::pmul(a,b); }
     58   template<typename Packet>
     59   EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const
     60   { return internal::predux_mul(a); }
     61 };
     62 template<typename LhsScalar,typename RhsScalar>
     63 struct functor_traits<scalar_product_op<LhsScalar,RhsScalar> > {
     64   enum {
     65     Cost = (NumTraits<LhsScalar>::MulCost + NumTraits<RhsScalar>::MulCost)/2, // rough estimate!
     66     PacketAccess = scalar_product_op<LhsScalar,RhsScalar>::Vectorizable
     67   };
     68 };
     69 
     70 /** \internal
     71   * \brief Template functor to compute the conjugate product of two scalars
     72   *
     73   * This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y)
     74   */
     75 template<typename LhsScalar,typename RhsScalar> struct scalar_conj_product_op {
     76 
     77   enum {
     78     Conj = NumTraits<LhsScalar>::IsComplex
     79   };
     80 
     81   typedef typename scalar_product_traits<LhsScalar,RhsScalar>::ReturnType result_type;
     82 
     83   EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op)
     84   EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const
     85   { return conj_helper<LhsScalar,RhsScalar,Conj,false>().pmul(a,b); }
     86 
     87   template<typename Packet>
     88   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
     89   { return conj_helper<Packet,Packet,Conj,false>().pmul(a,b); }
     90 };
     91 template<typename LhsScalar,typename RhsScalar>
     92 struct functor_traits<scalar_conj_product_op<LhsScalar,RhsScalar> > {
     93   enum {
     94     Cost = NumTraits<LhsScalar>::MulCost,
     95     PacketAccess = internal::is_same<LhsScalar, RhsScalar>::value && packet_traits<LhsScalar>::HasMul
     96   };
     97 };
     98 
     99 /** \internal
    100   * \brief Template functor to compute the min of two scalars
    101   *
    102   * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff()
    103   */
    104 template<typename Scalar> struct scalar_min_op {
    105   EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op)
    106   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::min; return (min)(a, b); }
    107   template<typename Packet>
    108   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
    109   { return internal::pmin(a,b); }
    110   template<typename Packet>
    111   EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
    112   { return internal::predux_min(a); }
    113 };
    114 template<typename Scalar>
    115 struct functor_traits<scalar_min_op<Scalar> > {
    116   enum {
    117     Cost = NumTraits<Scalar>::AddCost,
    118     PacketAccess = packet_traits<Scalar>::HasMin
    119   };
    120 };
    121 
    122 /** \internal
    123   * \brief Template functor to compute the max of two scalars
    124   *
    125   * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff()
    126   */
    127 template<typename Scalar> struct scalar_max_op {
    128   EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op)
    129   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::max; return (max)(a, b); }
    130   template<typename Packet>
    131   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
    132   { return internal::pmax(a,b); }
    133   template<typename Packet>
    134   EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const
    135   { return internal::predux_max(a); }
    136 };
    137 template<typename Scalar>
    138 struct functor_traits<scalar_max_op<Scalar> > {
    139   enum {
    140     Cost = NumTraits<Scalar>::AddCost,
    141     PacketAccess = packet_traits<Scalar>::HasMax
    142   };
    143 };
    144 
    145 /** \internal
    146   * \brief Template functor to compute the hypot of two scalars
    147   *
    148   * \sa MatrixBase::stableNorm(), class Redux
    149   */
    150 template<typename Scalar> struct scalar_hypot_op {
    151   EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op)
    152 //   typedef typename NumTraits<Scalar>::Real result_type;
    153   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const
    154   {
    155     using std::max;
    156     using std::min;
    157     Scalar p = (max)(_x, _y);
    158     Scalar q = (min)(_x, _y);
    159     Scalar qp = q/p;
    160     return p * sqrt(Scalar(1) + qp*qp);
    161   }
    162 };
    163 template<typename Scalar>
    164 struct functor_traits<scalar_hypot_op<Scalar> > {
    165   enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess=0 };
    166 };
    167 
    168 /** \internal
    169   * \brief Template functor to compute the pow of two scalars
    170   */
    171 template<typename Scalar, typename OtherScalar> struct scalar_binary_pow_op {
    172   EIGEN_EMPTY_STRUCT_CTOR(scalar_binary_pow_op)
    173   inline Scalar operator() (const Scalar& a, const OtherScalar& b) const { return internal::pow(a, b); }
    174 };
    175 template<typename Scalar, typename OtherScalar>
    176 struct functor_traits<scalar_binary_pow_op<Scalar,OtherScalar> > {
    177   enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false };
    178 };
    179 
    180 // other binary functors:
    181 
    182 /** \internal
    183   * \brief Template functor to compute the difference of two scalars
    184   *
    185   * \sa class CwiseBinaryOp, MatrixBase::operator-
    186   */
    187 template<typename Scalar> struct scalar_difference_op {
    188   EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op)
    189   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; }
    190   template<typename Packet>
    191   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
    192   { return internal::psub(a,b); }
    193 };
    194 template<typename Scalar>
    195 struct functor_traits<scalar_difference_op<Scalar> > {
    196   enum {
    197     Cost = NumTraits<Scalar>::AddCost,
    198     PacketAccess = packet_traits<Scalar>::HasSub
    199   };
    200 };
    201 
    202 /** \internal
    203   * \brief Template functor to compute the quotient of two scalars
    204   *
    205   * \sa class CwiseBinaryOp, Cwise::operator/()
    206   */
    207 template<typename Scalar> struct scalar_quotient_op {
    208   EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op)
    209   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; }
    210   template<typename Packet>
    211   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const
    212   { return internal::pdiv(a,b); }
    213 };
    214 template<typename Scalar>
    215 struct functor_traits<scalar_quotient_op<Scalar> > {
    216   enum {
    217     Cost = 2 * NumTraits<Scalar>::MulCost,
    218     PacketAccess = packet_traits<Scalar>::HasDiv
    219   };
    220 };
    221 
    222 /** \internal
    223   * \brief Template functor to compute the and of two booleans
    224   *
    225   * \sa class CwiseBinaryOp, ArrayBase::operator&&
    226   */
    227 struct scalar_boolean_and_op {
    228   EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op)
    229   EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; }
    230 };
    231 template<> struct functor_traits<scalar_boolean_and_op> {
    232   enum {
    233     Cost = NumTraits<bool>::AddCost,
    234     PacketAccess = false
    235   };
    236 };
    237 
    238 /** \internal
    239   * \brief Template functor to compute the or of two booleans
    240   *
    241   * \sa class CwiseBinaryOp, ArrayBase::operator||
    242   */
    243 struct scalar_boolean_or_op {
    244   EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op)
    245   EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; }
    246 };
    247 template<> struct functor_traits<scalar_boolean_or_op> {
    248   enum {
    249     Cost = NumTraits<bool>::AddCost,
    250     PacketAccess = false
    251   };
    252 };
    253 
    254 // unary functors:
    255 
    256 /** \internal
    257   * \brief Template functor to compute the opposite of a scalar
    258   *
    259   * \sa class CwiseUnaryOp, MatrixBase::operator-
    260   */
    261 template<typename Scalar> struct scalar_opposite_op {
    262   EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op)
    263   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; }
    264   template<typename Packet>
    265   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
    266   { return internal::pnegate(a); }
    267 };
    268 template<typename Scalar>
    269 struct functor_traits<scalar_opposite_op<Scalar> >
    270 { enum {
    271     Cost = NumTraits<Scalar>::AddCost,
    272     PacketAccess = packet_traits<Scalar>::HasNegate };
    273 };
    274 
    275 /** \internal
    276   * \brief Template functor to compute the absolute value of a scalar
    277   *
    278   * \sa class CwiseUnaryOp, Cwise::abs
    279   */
    280 template<typename Scalar> struct scalar_abs_op {
    281   EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op)
    282   typedef typename NumTraits<Scalar>::Real result_type;
    283   EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return internal::abs(a); }
    284   template<typename Packet>
    285   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
    286   { return internal::pabs(a); }
    287 };
    288 template<typename Scalar>
    289 struct functor_traits<scalar_abs_op<Scalar> >
    290 {
    291   enum {
    292     Cost = NumTraits<Scalar>::AddCost,
    293     PacketAccess = packet_traits<Scalar>::HasAbs
    294   };
    295 };
    296 
    297 /** \internal
    298   * \brief Template functor to compute the squared absolute value of a scalar
    299   *
    300   * \sa class CwiseUnaryOp, Cwise::abs2
    301   */
    302 template<typename Scalar> struct scalar_abs2_op {
    303   EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op)
    304   typedef typename NumTraits<Scalar>::Real result_type;
    305   EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return internal::abs2(a); }
    306   template<typename Packet>
    307   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
    308   { return internal::pmul(a,a); }
    309 };
    310 template<typename Scalar>
    311 struct functor_traits<scalar_abs2_op<Scalar> >
    312 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasAbs2 }; };
    313 
    314 /** \internal
    315   * \brief Template functor to compute the conjugate of a complex value
    316   *
    317   * \sa class CwiseUnaryOp, MatrixBase::conjugate()
    318   */
    319 template<typename Scalar> struct scalar_conjugate_op {
    320   EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op)
    321   EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return internal::conj(a); }
    322   template<typename Packet>
    323   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); }
    324 };
    325 template<typename Scalar>
    326 struct functor_traits<scalar_conjugate_op<Scalar> >
    327 {
    328   enum {
    329     Cost = NumTraits<Scalar>::IsComplex ? NumTraits<Scalar>::AddCost : 0,
    330     PacketAccess = packet_traits<Scalar>::HasConj
    331   };
    332 };
    333 
    334 /** \internal
    335   * \brief Template functor to cast a scalar to another type
    336   *
    337   * \sa class CwiseUnaryOp, MatrixBase::cast()
    338   */
    339 template<typename Scalar, typename NewType>
    340 struct scalar_cast_op {
    341   EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op)
    342   typedef NewType result_type;
    343   EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast<Scalar, NewType>(a); }
    344 };
    345 template<typename Scalar, typename NewType>
    346 struct functor_traits<scalar_cast_op<Scalar,NewType> >
    347 { enum { Cost = is_same<Scalar, NewType>::value ? 0 : NumTraits<NewType>::AddCost, PacketAccess = false }; };
    348 
    349 /** \internal
    350   * \brief Template functor to extract the real part of a complex
    351   *
    352   * \sa class CwiseUnaryOp, MatrixBase::real()
    353   */
    354 template<typename Scalar>
    355 struct scalar_real_op {
    356   EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op)
    357   typedef typename NumTraits<Scalar>::Real result_type;
    358   EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return internal::real(a); }
    359 };
    360 template<typename Scalar>
    361 struct functor_traits<scalar_real_op<Scalar> >
    362 { enum { Cost = 0, PacketAccess = false }; };
    363 
    364 /** \internal
    365   * \brief Template functor to extract the imaginary part of a complex
    366   *
    367   * \sa class CwiseUnaryOp, MatrixBase::imag()
    368   */
    369 template<typename Scalar>
    370 struct scalar_imag_op {
    371   EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op)
    372   typedef typename NumTraits<Scalar>::Real result_type;
    373   EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return internal::imag(a); }
    374 };
    375 template<typename Scalar>
    376 struct functor_traits<scalar_imag_op<Scalar> >
    377 { enum { Cost = 0, PacketAccess = false }; };
    378 
    379 /** \internal
    380   * \brief Template functor to extract the real part of a complex as a reference
    381   *
    382   * \sa class CwiseUnaryOp, MatrixBase::real()
    383   */
    384 template<typename Scalar>
    385 struct scalar_real_ref_op {
    386   EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op)
    387   typedef typename NumTraits<Scalar>::Real result_type;
    388   EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return internal::real_ref(*const_cast<Scalar*>(&a)); }
    389 };
    390 template<typename Scalar>
    391 struct functor_traits<scalar_real_ref_op<Scalar> >
    392 { enum { Cost = 0, PacketAccess = false }; };
    393 
    394 /** \internal
    395   * \brief Template functor to extract the imaginary part of a complex as a reference
    396   *
    397   * \sa class CwiseUnaryOp, MatrixBase::imag()
    398   */
    399 template<typename Scalar>
    400 struct scalar_imag_ref_op {
    401   EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op)
    402   typedef typename NumTraits<Scalar>::Real result_type;
    403   EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return internal::imag_ref(*const_cast<Scalar*>(&a)); }
    404 };
    405 template<typename Scalar>
    406 struct functor_traits<scalar_imag_ref_op<Scalar> >
    407 { enum { Cost = 0, PacketAccess = false }; };
    408 
    409 /** \internal
    410   *
    411   * \brief Template functor to compute the exponential of a scalar
    412   *
    413   * \sa class CwiseUnaryOp, Cwise::exp()
    414   */
    415 template<typename Scalar> struct scalar_exp_op {
    416   EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op)
    417   inline const Scalar operator() (const Scalar& a) const { return internal::exp(a); }
    418   typedef typename packet_traits<Scalar>::type Packet;
    419   inline Packet packetOp(const Packet& a) const { return internal::pexp(a); }
    420 };
    421 template<typename Scalar>
    422 struct functor_traits<scalar_exp_op<Scalar> >
    423 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasExp }; };
    424 
    425 /** \internal
    426   *
    427   * \brief Template functor to compute the logarithm of a scalar
    428   *
    429   * \sa class CwiseUnaryOp, Cwise::log()
    430   */
    431 template<typename Scalar> struct scalar_log_op {
    432   EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op)
    433   inline const Scalar operator() (const Scalar& a) const { return internal::log(a); }
    434   typedef typename packet_traits<Scalar>::type Packet;
    435   inline Packet packetOp(const Packet& a) const { return internal::plog(a); }
    436 };
    437 template<typename Scalar>
    438 struct functor_traits<scalar_log_op<Scalar> >
    439 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasLog }; };
    440 
    441 /** \internal
    442   * \brief Template functor to multiply a scalar by a fixed other one
    443   *
    444   * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/
    445   */
    446 /* NOTE why doing the pset1() in packetOp *is* an optimization ?
    447  * indeed it seems better to declare m_other as a Packet and do the pset1() once
    448  * in the constructor. However, in practice:
    449  *  - GCC does not like m_other as a Packet and generate a load every time it needs it
    450  *  - on the other hand GCC is able to moves the pset1() away the loop :)
    451  *  - simpler code ;)
    452  * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y)
    453  */
    454 template<typename Scalar>
    455 struct scalar_multiple_op {
    456   typedef typename packet_traits<Scalar>::type Packet;
    457   // FIXME default copy constructors seems bugged with std::complex<>
    458   EIGEN_STRONG_INLINE scalar_multiple_op(const scalar_multiple_op& other) : m_other(other.m_other) { }
    459   EIGEN_STRONG_INLINE scalar_multiple_op(const Scalar& other) : m_other(other) { }
    460   EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
    461   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
    462   { return internal::pmul(a, pset1<Packet>(m_other)); }
    463   typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
    464 };
    465 template<typename Scalar>
    466 struct functor_traits<scalar_multiple_op<Scalar> >
    467 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
    468 
    469 template<typename Scalar1, typename Scalar2>
    470 struct scalar_multiple2_op {
    471   typedef typename scalar_product_traits<Scalar1,Scalar2>::ReturnType result_type;
    472   EIGEN_STRONG_INLINE scalar_multiple2_op(const scalar_multiple2_op& other) : m_other(other.m_other) { }
    473   EIGEN_STRONG_INLINE scalar_multiple2_op(const Scalar2& other) : m_other(other) { }
    474   EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; }
    475   typename add_const_on_value_type<typename NumTraits<Scalar2>::Nested>::type m_other;
    476 };
    477 template<typename Scalar1,typename Scalar2>
    478 struct functor_traits<scalar_multiple2_op<Scalar1,Scalar2> >
    479 { enum { Cost = NumTraits<Scalar1>::MulCost, PacketAccess = false }; };
    480 
    481 template<typename Scalar, bool IsInteger>
    482 struct scalar_quotient1_impl {
    483   typedef typename packet_traits<Scalar>::type Packet;
    484   // FIXME default copy constructors seems bugged with std::complex<>
    485   EIGEN_STRONG_INLINE scalar_quotient1_impl(const scalar_quotient1_impl& other) : m_other(other.m_other) { }
    486   EIGEN_STRONG_INLINE scalar_quotient1_impl(const Scalar& other) : m_other(static_cast<Scalar>(1) / other) {}
    487   EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; }
    488   EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const
    489   { return internal::pmul(a, pset1<Packet>(m_other)); }
    490   const Scalar m_other;
    491 };
    492 template<typename Scalar>
    493 struct functor_traits<scalar_quotient1_impl<Scalar,false> >
    494 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
    495 
    496 template<typename Scalar>
    497 struct scalar_quotient1_impl<Scalar,true> {
    498   // FIXME default copy constructors seems bugged with std::complex<>
    499   EIGEN_STRONG_INLINE scalar_quotient1_impl(const scalar_quotient1_impl& other) : m_other(other.m_other) { }
    500   EIGEN_STRONG_INLINE scalar_quotient1_impl(const Scalar& other) : m_other(other) {}
    501   EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; }
    502   typename add_const_on_value_type<typename NumTraits<Scalar>::Nested>::type m_other;
    503 };
    504 template<typename Scalar>
    505 struct functor_traits<scalar_quotient1_impl<Scalar,true> >
    506 { enum { Cost = 2 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
    507 
    508 /** \internal
    509   * \brief Template functor to divide a scalar by a fixed other one
    510   *
    511   * This functor is used to implement the quotient of a matrix by
    512   * a scalar where the scalar type is not necessarily a floating point type.
    513   *
    514   * \sa class CwiseUnaryOp, MatrixBase::operator/
    515   */
    516 template<typename Scalar>
    517 struct scalar_quotient1_op : scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger > {
    518   EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other)
    519     : scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger >(other) {}
    520 };
    521 template<typename Scalar>
    522 struct functor_traits<scalar_quotient1_op<Scalar> >
    523 : functor_traits<scalar_quotient1_impl<Scalar, NumTraits<Scalar>::IsInteger> >
    524 {};
    525 
    526 // nullary functors
    527 
    528 template<typename Scalar>
    529 struct scalar_constant_op {
    530   typedef typename packet_traits<Scalar>::type Packet;
    531   EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { }
    532   EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { }
    533   template<typename Index>
    534   EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; }
    535   template<typename Index>
    536   EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return internal::pset1<Packet>(m_other); }
    537   const Scalar m_other;
    538 };
    539 template<typename Scalar>
    540 struct functor_traits<scalar_constant_op<Scalar> >
    541 // FIXME replace this packet test by a safe one
    542 { enum { Cost = 1, PacketAccess = packet_traits<Scalar>::Vectorizable, IsRepeatable = true }; };
    543 
    544 template<typename Scalar> struct scalar_identity_op {
    545   EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op)
    546   template<typename Index>
    547   EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); }
    548 };
    549 template<typename Scalar>
    550 struct functor_traits<scalar_identity_op<Scalar> >
    551 { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = false, IsRepeatable = true }; };
    552 
    553 template <typename Scalar, bool RandomAccess> struct linspaced_op_impl;
    554 
    555 // linear access for packet ops:
    556 // 1) initialization
    557 //   base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0])
    558 // 2) each step
    559 //   base += [size*step, ..., size*step]
    560 template <typename Scalar>
    561 struct linspaced_op_impl<Scalar,false>
    562 {
    563   typedef typename packet_traits<Scalar>::type Packet;
    564 
    565   linspaced_op_impl(Scalar low, Scalar step) :
    566   m_low(low), m_step(step),
    567   m_packetStep(pset1<Packet>(packet_traits<Scalar>::size*step)),
    568   m_base(padd(pset1<Packet>(low),pmul(pset1<Packet>(step),plset<Scalar>(-packet_traits<Scalar>::size)))) {}
    569 
    570   template<typename Index>
    571   EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }
    572   template<typename Index>
    573   EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = padd(m_base,m_packetStep); }
    574 
    575   const Scalar m_low;
    576   const Scalar m_step;
    577   const Packet m_packetStep;
    578   mutable Packet m_base;
    579 };
    580 
    581 // random access for packet ops:
    582 // 1) each step
    583 //   [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) )
    584 template <typename Scalar>
    585 struct linspaced_op_impl<Scalar,true>
    586 {
    587   typedef typename packet_traits<Scalar>::type Packet;
    588 
    589   linspaced_op_impl(Scalar low, Scalar step) :
    590   m_low(low), m_step(step),
    591   m_lowPacket(pset1<Packet>(m_low)), m_stepPacket(pset1<Packet>(m_step)), m_interPacket(plset<Scalar>(0)) {}
    592 
    593   template<typename Index>
    594   EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; }
    595 
    596   template<typename Index>
    597   EIGEN_STRONG_INLINE const Packet packetOp(Index i) const
    598   { return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1<Packet>(i),m_interPacket))); }
    599 
    600   const Scalar m_low;
    601   const Scalar m_step;
    602   const Packet m_lowPacket;
    603   const Packet m_stepPacket;
    604   const Packet m_interPacket;
    605 };
    606 
    607 // ----- Linspace functor ----------------------------------------------------------------
    608 
    609 // Forward declaration (we default to random access which does not really give
    610 // us a speed gain when using packet access but it allows to use the functor in
    611 // nested expressions).
    612 template <typename Scalar, bool RandomAccess = true> struct linspaced_op;
    613 template <typename Scalar, bool RandomAccess> struct functor_traits< linspaced_op<Scalar,RandomAccess> >
    614 { enum { Cost = 1, PacketAccess = packet_traits<Scalar>::HasSetLinear, IsRepeatable = true }; };
    615 template <typename Scalar, bool RandomAccess> struct linspaced_op
    616 {
    617   typedef typename packet_traits<Scalar>::type Packet;
    618   linspaced_op(Scalar low, Scalar high, int num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/(num_steps-1))) {}
    619 
    620   template<typename Index>
    621   EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); }
    622 
    623   // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
    624   // there row==0 and col is used for the actual iteration.
    625   template<typename Index>
    626   EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const
    627   {
    628     eigen_assert(col==0 || row==0);
    629     return impl(col + row);
    630   }
    631 
    632   template<typename Index>
    633   EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); }
    634 
    635   // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since
    636   // there row==0 and col is used for the actual iteration.
    637   template<typename Index>
    638   EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const
    639   {
    640     eigen_assert(col==0 || row==0);
    641     return impl.packetOp(col + row);
    642   }
    643 
    644   // This proxy object handles the actual required temporaries, the different
    645   // implementations (random vs. sequential access) as well as the
    646   // correct piping to size 2/4 packet operations.
    647   const linspaced_op_impl<Scalar,RandomAccess> impl;
    648 };
    649 
    650 // all functors allow linear access, except scalar_identity_op. So we fix here a quick meta
    651 // to indicate whether a functor allows linear access, just always answering 'yes' except for
    652 // scalar_identity_op.
    653 // FIXME move this to functor_traits adding a functor_default
    654 template<typename Functor> struct functor_has_linear_access { enum { ret = 1 }; };
    655 template<typename Scalar> struct functor_has_linear_access<scalar_identity_op<Scalar> > { enum { ret = 0 }; };
    656 
    657 // in CwiseBinaryOp, we require the Lhs and Rhs to have the same scalar type, except for multiplication
    658 // where we only require them to have the same _real_ scalar type so one may multiply, say, float by complex<float>.
    659 // FIXME move this to functor_traits adding a functor_default
    660 template<typename Functor> struct functor_allows_mixing_real_and_complex { enum { ret = 0 }; };
    661 template<typename LhsScalar,typename RhsScalar> struct functor_allows_mixing_real_and_complex<scalar_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
    662 template<typename LhsScalar,typename RhsScalar> struct functor_allows_mixing_real_and_complex<scalar_conj_product_op<LhsScalar,RhsScalar> > { enum { ret = 1 }; };
    663 
    664 
    665 /** \internal
    666   * \brief Template functor to add a scalar to a fixed other one
    667   * \sa class CwiseUnaryOp, Array::operator+
    668   */
    669 /* If you wonder why doing the pset1() in packetOp() is an optimization check scalar_multiple_op */
    670 template<typename Scalar>
    671 struct scalar_add_op {
    672   typedef typename packet_traits<Scalar>::type Packet;
    673   // FIXME default copy constructors seems bugged with std::complex<>
    674   inline scalar_add_op(const scalar_add_op& other) : m_other(other.m_other) { }
    675   inline scalar_add_op(const Scalar& other) : m_other(other) { }
    676   inline Scalar operator() (const Scalar& a) const { return a + m_other; }
    677   inline const Packet packetOp(const Packet& a) const
    678   { return internal::padd(a, pset1<Packet>(m_other)); }
    679   const Scalar m_other;
    680 };
    681 template<typename Scalar>
    682 struct functor_traits<scalar_add_op<Scalar> >
    683 { enum { Cost = NumTraits<Scalar>::AddCost, PacketAccess = packet_traits<Scalar>::HasAdd }; };
    684 
    685 /** \internal
    686   * \brief Template functor to compute the square root of a scalar
    687   * \sa class CwiseUnaryOp, Cwise::sqrt()
    688   */
    689 template<typename Scalar> struct scalar_sqrt_op {
    690   EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op)
    691   inline const Scalar operator() (const Scalar& a) const { return internal::sqrt(a); }
    692   typedef typename packet_traits<Scalar>::type Packet;
    693   inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); }
    694 };
    695 template<typename Scalar>
    696 struct functor_traits<scalar_sqrt_op<Scalar> >
    697 { enum {
    698     Cost = 5 * NumTraits<Scalar>::MulCost,
    699     PacketAccess = packet_traits<Scalar>::HasSqrt
    700   };
    701 };
    702 
    703 /** \internal
    704   * \brief Template functor to compute the cosine of a scalar
    705   * \sa class CwiseUnaryOp, ArrayBase::cos()
    706   */
    707 template<typename Scalar> struct scalar_cos_op {
    708   EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op)
    709   inline Scalar operator() (const Scalar& a) const { return internal::cos(a); }
    710   typedef typename packet_traits<Scalar>::type Packet;
    711   inline Packet packetOp(const Packet& a) const { return internal::pcos(a); }
    712 };
    713 template<typename Scalar>
    714 struct functor_traits<scalar_cos_op<Scalar> >
    715 {
    716   enum {
    717     Cost = 5 * NumTraits<Scalar>::MulCost,
    718     PacketAccess = packet_traits<Scalar>::HasCos
    719   };
    720 };
    721 
    722 /** \internal
    723   * \brief Template functor to compute the sine of a scalar
    724   * \sa class CwiseUnaryOp, ArrayBase::sin()
    725   */
    726 template<typename Scalar> struct scalar_sin_op {
    727   EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op)
    728   inline const Scalar operator() (const Scalar& a) const { return internal::sin(a); }
    729   typedef typename packet_traits<Scalar>::type Packet;
    730   inline Packet packetOp(const Packet& a) const { return internal::psin(a); }
    731 };
    732 template<typename Scalar>
    733 struct functor_traits<scalar_sin_op<Scalar> >
    734 {
    735   enum {
    736     Cost = 5 * NumTraits<Scalar>::MulCost,
    737     PacketAccess = packet_traits<Scalar>::HasSin
    738   };
    739 };
    740 
    741 
    742 /** \internal
    743   * \brief Template functor to compute the tan of a scalar
    744   * \sa class CwiseUnaryOp, ArrayBase::tan()
    745   */
    746 template<typename Scalar> struct scalar_tan_op {
    747   EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op)
    748   inline const Scalar operator() (const Scalar& a) const { return internal::tan(a); }
    749   typedef typename packet_traits<Scalar>::type Packet;
    750   inline Packet packetOp(const Packet& a) const { return internal::ptan(a); }
    751 };
    752 template<typename Scalar>
    753 struct functor_traits<scalar_tan_op<Scalar> >
    754 {
    755   enum {
    756     Cost = 5 * NumTraits<Scalar>::MulCost,
    757     PacketAccess = packet_traits<Scalar>::HasTan
    758   };
    759 };
    760 
    761 /** \internal
    762   * \brief Template functor to compute the arc cosine of a scalar
    763   * \sa class CwiseUnaryOp, ArrayBase::acos()
    764   */
    765 template<typename Scalar> struct scalar_acos_op {
    766   EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op)
    767   inline const Scalar operator() (const Scalar& a) const { return internal::acos(a); }
    768   typedef typename packet_traits<Scalar>::type Packet;
    769   inline Packet packetOp(const Packet& a) const { return internal::pacos(a); }
    770 };
    771 template<typename Scalar>
    772 struct functor_traits<scalar_acos_op<Scalar> >
    773 {
    774   enum {
    775     Cost = 5 * NumTraits<Scalar>::MulCost,
    776     PacketAccess = packet_traits<Scalar>::HasACos
    777   };
    778 };
    779 
    780 /** \internal
    781   * \brief Template functor to compute the arc sine of a scalar
    782   * \sa class CwiseUnaryOp, ArrayBase::asin()
    783   */
    784 template<typename Scalar> struct scalar_asin_op {
    785   EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op)
    786   inline const Scalar operator() (const Scalar& a) const { return internal::asin(a); }
    787   typedef typename packet_traits<Scalar>::type Packet;
    788   inline Packet packetOp(const Packet& a) const { return internal::pasin(a); }
    789 };
    790 template<typename Scalar>
    791 struct functor_traits<scalar_asin_op<Scalar> >
    792 {
    793   enum {
    794     Cost = 5 * NumTraits<Scalar>::MulCost,
    795     PacketAccess = packet_traits<Scalar>::HasASin
    796   };
    797 };
    798 
    799 /** \internal
    800   * \brief Template functor to raise a scalar to a power
    801   * \sa class CwiseUnaryOp, Cwise::pow
    802   */
    803 template<typename Scalar>
    804 struct scalar_pow_op {
    805   // FIXME default copy constructors seems bugged with std::complex<>
    806   inline scalar_pow_op(const scalar_pow_op& other) : m_exponent(other.m_exponent) { }
    807   inline scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {}
    808   inline Scalar operator() (const Scalar& a) const { return internal::pow(a, m_exponent); }
    809   const Scalar m_exponent;
    810 };
    811 template<typename Scalar>
    812 struct functor_traits<scalar_pow_op<Scalar> >
    813 { enum { Cost = 5 * NumTraits<Scalar>::MulCost, PacketAccess = false }; };
    814 
    815 /** \internal
    816   * \brief Template functor to compute the quotient between a scalar and array entries.
    817   * \sa class CwiseUnaryOp, Cwise::inverse()
    818   */
    819 template<typename Scalar>
    820 struct scalar_inverse_mult_op {
    821   scalar_inverse_mult_op(const Scalar& other) : m_other(other) {}
    822   inline Scalar operator() (const Scalar& a) const { return m_other / a; }
    823   template<typename Packet>
    824   inline const Packet packetOp(const Packet& a) const
    825   { return internal::pdiv(pset1<Packet>(m_other),a); }
    826   Scalar m_other;
    827 };
    828 
    829 /** \internal
    830   * \brief Template functor to compute the inverse of a scalar
    831   * \sa class CwiseUnaryOp, Cwise::inverse()
    832   */
    833 template<typename Scalar>
    834 struct scalar_inverse_op {
    835   EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op)
    836   inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; }
    837   template<typename Packet>
    838   inline const Packet packetOp(const Packet& a) const
    839   { return internal::pdiv(pset1<Packet>(Scalar(1)),a); }
    840 };
    841 template<typename Scalar>
    842 struct functor_traits<scalar_inverse_op<Scalar> >
    843 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasDiv }; };
    844 
    845 /** \internal
    846   * \brief Template functor to compute the square of a scalar
    847   * \sa class CwiseUnaryOp, Cwise::square()
    848   */
    849 template<typename Scalar>
    850 struct scalar_square_op {
    851   EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op)
    852   inline Scalar operator() (const Scalar& a) const { return a*a; }
    853   template<typename Packet>
    854   inline const Packet packetOp(const Packet& a) const
    855   { return internal::pmul(a,a); }
    856 };
    857 template<typename Scalar>
    858 struct functor_traits<scalar_square_op<Scalar> >
    859 { enum { Cost = NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
    860 
    861 /** \internal
    862   * \brief Template functor to compute the cube of a scalar
    863   * \sa class CwiseUnaryOp, Cwise::cube()
    864   */
    865 template<typename Scalar>
    866 struct scalar_cube_op {
    867   EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op)
    868   inline Scalar operator() (const Scalar& a) const { return a*a*a; }
    869   template<typename Packet>
    870   inline const Packet packetOp(const Packet& a) const
    871   { return internal::pmul(a,pmul(a,a)); }
    872 };
    873 template<typename Scalar>
    874 struct functor_traits<scalar_cube_op<Scalar> >
    875 { enum { Cost = 2*NumTraits<Scalar>::MulCost, PacketAccess = packet_traits<Scalar>::HasMul }; };
    876 
    877 // default functor traits for STL functors:
    878 
    879 template<typename T>
    880 struct functor_traits<std::multiplies<T> >
    881 { enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
    882 
    883 template<typename T>
    884 struct functor_traits<std::divides<T> >
    885 { enum { Cost = NumTraits<T>::MulCost, PacketAccess = false }; };
    886 
    887 template<typename T>
    888 struct functor_traits<std::plus<T> >
    889 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
    890 
    891 template<typename T>
    892 struct functor_traits<std::minus<T> >
    893 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
    894 
    895 template<typename T>
    896 struct functor_traits<std::negate<T> >
    897 { enum { Cost = NumTraits<T>::AddCost, PacketAccess = false }; };
    898 
    899 template<typename T>
    900 struct functor_traits<std::logical_or<T> >
    901 { enum { Cost = 1, PacketAccess = false }; };
    902 
    903 template<typename T>
    904 struct functor_traits<std::logical_and<T> >
    905 { enum { Cost = 1, PacketAccess = false }; };
    906 
    907 template<typename T>
    908 struct functor_traits<std::logical_not<T> >
    909 { enum { Cost = 1, PacketAccess = false }; };
    910 
    911 template<typename T>
    912 struct functor_traits<std::greater<T> >
    913 { enum { Cost = 1, PacketAccess = false }; };
    914 
    915 template<typename T>
    916 struct functor_traits<std::less<T> >
    917 { enum { Cost = 1, PacketAccess = false }; };
    918 
    919 template<typename T>
    920 struct functor_traits<std::greater_equal<T> >
    921 { enum { Cost = 1, PacketAccess = false }; };
    922 
    923 template<typename T>
    924 struct functor_traits<std::less_equal<T> >
    925 { enum { Cost = 1, PacketAccess = false }; };
    926 
    927 template<typename T>
    928 struct functor_traits<std::equal_to<T> >
    929 { enum { Cost = 1, PacketAccess = false }; };
    930 
    931 template<typename T>
    932 struct functor_traits<std::not_equal_to<T> >
    933 { enum { Cost = 1, PacketAccess = false }; };
    934 
    935 template<typename T>
    936 struct functor_traits<std::binder2nd<T> >
    937 { enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
    938 
    939 template<typename T>
    940 struct functor_traits<std::binder1st<T> >
    941 { enum { Cost = functor_traits<T>::Cost, PacketAccess = false }; };
    942 
    943 template<typename T>
    944 struct functor_traits<std::unary_negate<T> >
    945 { enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
    946 
    947 template<typename T>
    948 struct functor_traits<std::binary_negate<T> >
    949 { enum { Cost = 1 + functor_traits<T>::Cost, PacketAccess = false }; };
    950 
    951 #ifdef EIGEN_STDEXT_SUPPORT
    952 
    953 template<typename T0,typename T1>
    954 struct functor_traits<std::project1st<T0,T1> >
    955 { enum { Cost = 0, PacketAccess = false }; };
    956 
    957 template<typename T0,typename T1>
    958 struct functor_traits<std::project2nd<T0,T1> >
    959 { enum { Cost = 0, PacketAccess = false }; };
    960 
    961 template<typename T0,typename T1>
    962 struct functor_traits<std::select2nd<std::pair<T0,T1> > >
    963 { enum { Cost = 0, PacketAccess = false }; };
    964 
    965 template<typename T0,typename T1>
    966 struct functor_traits<std::select1st<std::pair<T0,T1> > >
    967 { enum { Cost = 0, PacketAccess = false }; };
    968 
    969 template<typename T0,typename T1>
    970 struct functor_traits<std::unary_compose<T0,T1> >
    971 { enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost, PacketAccess = false }; };
    972 
    973 template<typename T0,typename T1,typename T2>
    974 struct functor_traits<std::binary_compose<T0,T1,T2> >
    975 { enum { Cost = functor_traits<T0>::Cost + functor_traits<T1>::Cost + functor_traits<T2>::Cost, PacketAccess = false }; };
    976 
    977 #endif // EIGEN_STDEXT_SUPPORT
    978 
    979 // allow to add new functors and specializations of functor_traits from outside Eigen.
    980 // this macro is really needed because functor_traits must be specialized after it is declared but before it is used...
    981 #ifdef EIGEN_FUNCTORS_PLUGIN
    982 #include EIGEN_FUNCTORS_PLUGIN
    983 #endif
    984 
    985 } // end namespace internal
    986 
    987 } // end namespace Eigen
    988 
    989 #endif // EIGEN_FUNCTORS_H
    990