1 //===---- ADT/SCCIterator.h - Strongly Connected Comp. Iter. ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This builds on the llvm/ADT/GraphTraits.h file to find the strongly connected 11 // components (SCCs) of a graph in O(N+E) time using Tarjan's DFS algorithm. 12 // 13 // The SCC iterator has the important property that if a node in SCC S1 has an 14 // edge to a node in SCC S2, then it visits S1 *after* S2. 15 // 16 // To visit S1 *before* S2, use the scc_iterator on the Inverse graph. 17 // (NOTE: This requires some simple wrappers and is not supported yet.) 18 // 19 //===----------------------------------------------------------------------===// 20 21 #ifndef LLVM_ADT_SCCITERATOR_H 22 #define LLVM_ADT_SCCITERATOR_H 23 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/GraphTraits.h" 26 #include <vector> 27 28 namespace llvm { 29 30 //===----------------------------------------------------------------------===// 31 /// 32 /// scc_iterator - Enumerate the SCCs of a directed graph, in 33 /// reverse topological order of the SCC DAG. 34 /// 35 template<class GraphT, class GT = GraphTraits<GraphT> > 36 class scc_iterator 37 : public std::iterator<std::forward_iterator_tag, 38 std::vector<typename GT::NodeType>, ptrdiff_t> { 39 typedef typename GT::NodeType NodeType; 40 typedef typename GT::ChildIteratorType ChildItTy; 41 typedef std::vector<NodeType*> SccTy; 42 typedef std::iterator<std::forward_iterator_tag, 43 std::vector<typename GT::NodeType>, ptrdiff_t> super; 44 typedef typename super::reference reference; 45 typedef typename super::pointer pointer; 46 47 // The visit counters used to detect when a complete SCC is on the stack. 48 // visitNum is the global counter. 49 // nodeVisitNumbers are per-node visit numbers, also used as DFS flags. 50 unsigned visitNum; 51 DenseMap<NodeType *, unsigned> nodeVisitNumbers; 52 53 // SCCNodeStack - Stack holding nodes of the SCC. 54 std::vector<NodeType *> SCCNodeStack; 55 56 // CurrentSCC - The current SCC, retrieved using operator*(). 57 SccTy CurrentSCC; 58 59 // VisitStack - Used to maintain the ordering. Top = current block 60 // First element is basic block pointer, second is the 'next child' to visit 61 std::vector<std::pair<NodeType *, ChildItTy> > VisitStack; 62 63 // MinVisitNumStack - Stack holding the "min" values for each node in the DFS. 64 // This is used to track the minimum uplink values for all children of 65 // the corresponding node on the VisitStack. 66 std::vector<unsigned> MinVisitNumStack; 67 68 // A single "visit" within the non-recursive DFS traversal. 69 void DFSVisitOne(NodeType *N) { 70 ++visitNum; // Global counter for the visit order 71 nodeVisitNumbers[N] = visitNum; 72 SCCNodeStack.push_back(N); 73 MinVisitNumStack.push_back(visitNum); 74 VisitStack.push_back(std::make_pair(N, GT::child_begin(N))); 75 //dbgs() << "TarjanSCC: Node " << N << 76 // " : visitNum = " << visitNum << "\n"; 77 } 78 79 // The stack-based DFS traversal; defined below. 80 void DFSVisitChildren() { 81 assert(!VisitStack.empty()); 82 while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) { 83 // TOS has at least one more child so continue DFS 84 NodeType *childN = *VisitStack.back().second++; 85 if (!nodeVisitNumbers.count(childN)) { 86 // this node has never been seen. 87 DFSVisitOne(childN); 88 continue; 89 } 90 91 unsigned childNum = nodeVisitNumbers[childN]; 92 if (MinVisitNumStack.back() > childNum) 93 MinVisitNumStack.back() = childNum; 94 } 95 } 96 97 // Compute the next SCC using the DFS traversal. 98 void GetNextSCC() { 99 assert(VisitStack.size() == MinVisitNumStack.size()); 100 CurrentSCC.clear(); // Prepare to compute the next SCC 101 while (!VisitStack.empty()) { 102 DFSVisitChildren(); 103 assert(VisitStack.back().second ==GT::child_end(VisitStack.back().first)); 104 NodeType *visitingN = VisitStack.back().first; 105 unsigned minVisitNum = MinVisitNumStack.back(); 106 VisitStack.pop_back(); 107 MinVisitNumStack.pop_back(); 108 if (!MinVisitNumStack.empty() && MinVisitNumStack.back() > minVisitNum) 109 MinVisitNumStack.back() = minVisitNum; 110 111 //dbgs() << "TarjanSCC: Popped node " << visitingN << 112 // " : minVisitNum = " << minVisitNum << "; Node visit num = " << 113 // nodeVisitNumbers[visitingN] << "\n"; 114 115 if (minVisitNum != nodeVisitNumbers[visitingN]) 116 continue; 117 118 // A full SCC is on the SCCNodeStack! It includes all nodes below 119 // visitingN on the stack. Copy those nodes to CurrentSCC, 120 // reset their minVisit values, and return (this suspends 121 // the DFS traversal till the next ++). 122 do { 123 CurrentSCC.push_back(SCCNodeStack.back()); 124 SCCNodeStack.pop_back(); 125 nodeVisitNumbers[CurrentSCC.back()] = ~0U; 126 } while (CurrentSCC.back() != visitingN); 127 return; 128 } 129 } 130 131 inline scc_iterator(NodeType *entryN) : visitNum(0) { 132 DFSVisitOne(entryN); 133 GetNextSCC(); 134 } 135 inline scc_iterator() { /* End is when DFS stack is empty */ } 136 137 public: 138 typedef scc_iterator<GraphT, GT> _Self; 139 140 // Provide static "constructors"... 141 static inline _Self begin(const GraphT &G){return _Self(GT::getEntryNode(G));} 142 static inline _Self end (const GraphT &) { return _Self(); } 143 144 // Direct loop termination test: I.isAtEnd() is more efficient than I == end() 145 inline bool isAtEnd() const { 146 assert(!CurrentSCC.empty() || VisitStack.empty()); 147 return CurrentSCC.empty(); 148 } 149 150 inline bool operator==(const _Self& x) const { 151 return VisitStack == x.VisitStack && CurrentSCC == x.CurrentSCC; 152 } 153 inline bool operator!=(const _Self& x) const { return !operator==(x); } 154 155 // Iterator traversal: forward iteration only 156 inline _Self& operator++() { // Preincrement 157 GetNextSCC(); 158 return *this; 159 } 160 inline _Self operator++(int) { // Postincrement 161 _Self tmp = *this; ++*this; return tmp; 162 } 163 164 // Retrieve a reference to the current SCC 165 inline const SccTy &operator*() const { 166 assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); 167 return CurrentSCC; 168 } 169 inline SccTy &operator*() { 170 assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); 171 return CurrentSCC; 172 } 173 174 // hasLoop() -- Test if the current SCC has a loop. If it has more than one 175 // node, this is trivially true. If not, it may still contain a loop if the 176 // node has an edge back to itself. 177 bool hasLoop() const { 178 assert(!CurrentSCC.empty() && "Dereferencing END SCC iterator!"); 179 if (CurrentSCC.size() > 1) return true; 180 NodeType *N = CurrentSCC.front(); 181 for (ChildItTy CI = GT::child_begin(N), CE=GT::child_end(N); CI != CE; ++CI) 182 if (*CI == N) 183 return true; 184 return false; 185 } 186 187 /// ReplaceNode - This informs the scc_iterator that the specified Old node 188 /// has been deleted, and New is to be used in its place. 189 void ReplaceNode(NodeType *Old, NodeType *New) { 190 assert(nodeVisitNumbers.count(Old) && "Old not in scc_iterator?"); 191 nodeVisitNumbers[New] = nodeVisitNumbers[Old]; 192 nodeVisitNumbers.erase(Old); 193 } 194 }; 195 196 197 // Global constructor for the SCC iterator. 198 template <class T> 199 scc_iterator<T> scc_begin(const T &G) { 200 return scc_iterator<T>::begin(G); 201 } 202 203 template <class T> 204 scc_iterator<T> scc_end(const T &G) { 205 return scc_iterator<T>::end(G); 206 } 207 208 template <class T> 209 scc_iterator<Inverse<T> > scc_begin(const Inverse<T> &G) { 210 return scc_iterator<Inverse<T> >::begin(G); 211 } 212 213 template <class T> 214 scc_iterator<Inverse<T> > scc_end(const Inverse<T> &G) { 215 return scc_iterator<Inverse<T> >::end(G); 216 } 217 218 } // End llvm namespace 219 220 #endif 221