Home | History | Annotate | Download | only in src
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #include "accessors.h"
     31 #include "api.h"
     32 #include "arguments.h"
     33 #include "bootstrapper.h"
     34 #include "compiler.h"
     35 #include "debug.h"
     36 #include "execution.h"
     37 #include "global-handles.h"
     38 #include "natives.h"
     39 #include "runtime.h"
     40 #include "string-search.h"
     41 #include "stub-cache.h"
     42 #include "vm-state-inl.h"
     43 
     44 namespace v8 {
     45 namespace internal {
     46 
     47 
     48 int HandleScope::NumberOfHandles() {
     49   Isolate* isolate = Isolate::Current();
     50   HandleScopeImplementer* impl = isolate->handle_scope_implementer();
     51   int n = impl->blocks()->length();
     52   if (n == 0) return 0;
     53   return ((n - 1) * kHandleBlockSize) + static_cast<int>(
     54       (isolate->handle_scope_data()->next - impl->blocks()->last()));
     55 }
     56 
     57 
     58 Object** HandleScope::Extend() {
     59   Isolate* isolate = Isolate::Current();
     60   v8::ImplementationUtilities::HandleScopeData* current =
     61       isolate->handle_scope_data();
     62 
     63   Object** result = current->next;
     64 
     65   ASSERT(result == current->limit);
     66   // Make sure there's at least one scope on the stack and that the
     67   // top of the scope stack isn't a barrier.
     68   if (current->level == 0) {
     69     Utils::ReportApiFailure("v8::HandleScope::CreateHandle()",
     70                             "Cannot create a handle without a HandleScope");
     71     return NULL;
     72   }
     73   HandleScopeImplementer* impl = isolate->handle_scope_implementer();
     74   // If there's more room in the last block, we use that. This is used
     75   // for fast creation of scopes after scope barriers.
     76   if (!impl->blocks()->is_empty()) {
     77     Object** limit = &impl->blocks()->last()[kHandleBlockSize];
     78     if (current->limit != limit) {
     79       current->limit = limit;
     80       ASSERT(limit - current->next < kHandleBlockSize);
     81     }
     82   }
     83 
     84   // If we still haven't found a slot for the handle, we extend the
     85   // current handle scope by allocating a new handle block.
     86   if (result == current->limit) {
     87     // If there's a spare block, use it for growing the current scope.
     88     result = impl->GetSpareOrNewBlock();
     89     // Add the extension to the global list of blocks, but count the
     90     // extension as part of the current scope.
     91     impl->blocks()->Add(result);
     92     current->limit = &result[kHandleBlockSize];
     93   }
     94 
     95   return result;
     96 }
     97 
     98 
     99 void HandleScope::DeleteExtensions(Isolate* isolate) {
    100   ASSERT(isolate == Isolate::Current());
    101   v8::ImplementationUtilities::HandleScopeData* current =
    102       isolate->handle_scope_data();
    103   isolate->handle_scope_implementer()->DeleteExtensions(current->limit);
    104 }
    105 
    106 
    107 void HandleScope::ZapRange(Object** start, Object** end) {
    108   ASSERT(end - start <= kHandleBlockSize);
    109   for (Object** p = start; p != end; p++) {
    110     *reinterpret_cast<Address*>(p) = v8::internal::kHandleZapValue;
    111   }
    112 }
    113 
    114 
    115 Address HandleScope::current_level_address() {
    116   return reinterpret_cast<Address>(
    117       &Isolate::Current()->handle_scope_data()->level);
    118 }
    119 
    120 
    121 Address HandleScope::current_next_address() {
    122   return reinterpret_cast<Address>(
    123       &Isolate::Current()->handle_scope_data()->next);
    124 }
    125 
    126 
    127 Address HandleScope::current_limit_address() {
    128   return reinterpret_cast<Address>(
    129       &Isolate::Current()->handle_scope_data()->limit);
    130 }
    131 
    132 
    133 Handle<FixedArray> AddKeysFromJSArray(Handle<FixedArray> content,
    134                                       Handle<JSArray> array) {
    135   CALL_HEAP_FUNCTION(content->GetIsolate(),
    136                      content->AddKeysFromJSArray(*array), FixedArray);
    137 }
    138 
    139 
    140 Handle<FixedArray> UnionOfKeys(Handle<FixedArray> first,
    141                                Handle<FixedArray> second) {
    142   CALL_HEAP_FUNCTION(first->GetIsolate(),
    143                      first->UnionOfKeys(*second), FixedArray);
    144 }
    145 
    146 
    147 Handle<JSGlobalProxy> ReinitializeJSGlobalProxy(
    148     Handle<JSFunction> constructor,
    149     Handle<JSGlobalProxy> global) {
    150   CALL_HEAP_FUNCTION(
    151       constructor->GetIsolate(),
    152       constructor->GetHeap()->ReinitializeJSGlobalProxy(*constructor, *global),
    153       JSGlobalProxy);
    154 }
    155 
    156 
    157 void SetExpectedNofProperties(Handle<JSFunction> func, int nof) {
    158   // If objects constructed from this function exist then changing
    159   // 'estimated_nof_properties' is dangerous since the previous value might
    160   // have been compiled into the fast construct stub. More over, the inobject
    161   // slack tracking logic might have adjusted the previous value, so even
    162   // passing the same value is risky.
    163   if (func->shared()->live_objects_may_exist()) return;
    164 
    165   func->shared()->set_expected_nof_properties(nof);
    166   if (func->has_initial_map()) {
    167     Handle<Map> new_initial_map =
    168         func->GetIsolate()->factory()->CopyMapDropTransitions(
    169             Handle<Map>(func->initial_map()));
    170     new_initial_map->set_unused_property_fields(nof);
    171     func->set_initial_map(*new_initial_map);
    172   }
    173 }
    174 
    175 
    176 void SetPrototypeProperty(Handle<JSFunction> func, Handle<JSObject> value) {
    177   CALL_HEAP_FUNCTION_VOID(func->GetIsolate(),
    178                           func->SetPrototype(*value));
    179 }
    180 
    181 
    182 static int ExpectedNofPropertiesFromEstimate(int estimate) {
    183   // If no properties are added in the constructor, they are more likely
    184   // to be added later.
    185   if (estimate == 0) estimate = 2;
    186 
    187   // We do not shrink objects that go into a snapshot (yet), so we adjust
    188   // the estimate conservatively.
    189   if (Serializer::enabled()) return estimate + 2;
    190 
    191   // Inobject slack tracking will reclaim redundant inobject space later,
    192   // so we can afford to adjust the estimate generously.
    193   if (FLAG_clever_optimizations) {
    194     return estimate + 8;
    195   } else {
    196     return estimate + 3;
    197   }
    198 }
    199 
    200 
    201 void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared,
    202                                           int estimate) {
    203   // See the comment in SetExpectedNofProperties.
    204   if (shared->live_objects_may_exist()) return;
    205 
    206   shared->set_expected_nof_properties(
    207       ExpectedNofPropertiesFromEstimate(estimate));
    208 }
    209 
    210 
    211 void FlattenString(Handle<String> string) {
    212   CALL_HEAP_FUNCTION_VOID(string->GetIsolate(), string->TryFlatten());
    213 }
    214 
    215 
    216 Handle<String> FlattenGetString(Handle<String> string) {
    217   CALL_HEAP_FUNCTION(string->GetIsolate(), string->TryFlatten(), String);
    218 }
    219 
    220 
    221 Handle<Object> SetPrototype(Handle<JSFunction> function,
    222                             Handle<Object> prototype) {
    223   ASSERT(function->should_have_prototype());
    224   CALL_HEAP_FUNCTION(function->GetIsolate(),
    225                      Accessors::FunctionSetPrototype(*function,
    226                                                      *prototype,
    227                                                      NULL),
    228                      Object);
    229 }
    230 
    231 
    232 Handle<Object> SetProperty(Handle<Object> object,
    233                            Handle<Object> key,
    234                            Handle<Object> value,
    235                            PropertyAttributes attributes,
    236                            StrictModeFlag strict_mode) {
    237   Isolate* isolate = Isolate::Current();
    238   CALL_HEAP_FUNCTION(
    239       isolate,
    240       Runtime::SetObjectProperty(
    241           isolate, object, key, value, attributes, strict_mode),
    242       Object);
    243 }
    244 
    245 
    246 Handle<Object> ForceSetProperty(Handle<JSObject> object,
    247                                 Handle<Object> key,
    248                                 Handle<Object> value,
    249                                 PropertyAttributes attributes) {
    250   Isolate* isolate = object->GetIsolate();
    251   CALL_HEAP_FUNCTION(
    252       isolate,
    253       Runtime::ForceSetObjectProperty(
    254           isolate, object, key, value, attributes),
    255       Object);
    256 }
    257 
    258 
    259 Handle<Object> ForceDeleteProperty(Handle<JSObject> object,
    260                                    Handle<Object> key) {
    261   Isolate* isolate = object->GetIsolate();
    262   CALL_HEAP_FUNCTION(isolate,
    263                      Runtime::ForceDeleteObjectProperty(isolate, object, key),
    264                      Object);
    265 }
    266 
    267 
    268 Handle<Object> SetPropertyWithInterceptor(Handle<JSObject> object,
    269                                           Handle<String> key,
    270                                           Handle<Object> value,
    271                                           PropertyAttributes attributes,
    272                                           StrictModeFlag strict_mode) {
    273   CALL_HEAP_FUNCTION(object->GetIsolate(),
    274                      object->SetPropertyWithInterceptor(*key,
    275                                                         *value,
    276                                                         attributes,
    277                                                         strict_mode),
    278                      Object);
    279 }
    280 
    281 
    282 Handle<Object> GetProperty(Handle<JSReceiver> obj,
    283                            const char* name) {
    284   Isolate* isolate = obj->GetIsolate();
    285   Handle<String> str = isolate->factory()->LookupAsciiSymbol(name);
    286   CALL_HEAP_FUNCTION(isolate, obj->GetProperty(*str), Object);
    287 }
    288 
    289 
    290 Handle<Object> GetProperty(Handle<Object> obj,
    291                            Handle<Object> key) {
    292   Isolate* isolate = Isolate::Current();
    293   CALL_HEAP_FUNCTION(isolate,
    294                      Runtime::GetObjectProperty(isolate, obj, key), Object);
    295 }
    296 
    297 
    298 Handle<Object> GetPropertyWithInterceptor(Handle<JSObject> receiver,
    299                                           Handle<JSObject> holder,
    300                                           Handle<String> name,
    301                                           PropertyAttributes* attributes) {
    302   Isolate* isolate = receiver->GetIsolate();
    303   CALL_HEAP_FUNCTION(isolate,
    304                      holder->GetPropertyWithInterceptor(*receiver,
    305                                                         *name,
    306                                                         attributes),
    307                      Object);
    308 }
    309 
    310 
    311 Handle<Object> SetPrototype(Handle<JSObject> obj, Handle<Object> value) {
    312   const bool skip_hidden_prototypes = false;
    313   CALL_HEAP_FUNCTION(obj->GetIsolate(),
    314                      obj->SetPrototype(*value, skip_hidden_prototypes), Object);
    315 }
    316 
    317 
    318 Handle<Object> LookupSingleCharacterStringFromCode(uint32_t index) {
    319   Isolate* isolate = Isolate::Current();
    320   CALL_HEAP_FUNCTION(
    321       isolate,
    322       isolate->heap()->LookupSingleCharacterStringFromCode(index), Object);
    323 }
    324 
    325 
    326 Handle<String> SubString(Handle<String> str,
    327                          int start,
    328                          int end,
    329                          PretenureFlag pretenure) {
    330   CALL_HEAP_FUNCTION(str->GetIsolate(),
    331                      str->SubString(start, end, pretenure), String);
    332 }
    333 
    334 
    335 Handle<JSObject> Copy(Handle<JSObject> obj) {
    336   Isolate* isolate = obj->GetIsolate();
    337   CALL_HEAP_FUNCTION(isolate,
    338                      isolate->heap()->CopyJSObject(*obj), JSObject);
    339 }
    340 
    341 
    342 Handle<Object> SetAccessor(Handle<JSObject> obj, Handle<AccessorInfo> info) {
    343   CALL_HEAP_FUNCTION(obj->GetIsolate(), obj->DefineAccessor(*info), Object);
    344 }
    345 
    346 
    347 // Wrappers for scripts are kept alive and cached in weak global
    348 // handles referred from foreign objects held by the scripts as long as
    349 // they are used. When they are not used anymore, the garbage
    350 // collector will call the weak callback on the global handle
    351 // associated with the wrapper and get rid of both the wrapper and the
    352 // handle.
    353 static void ClearWrapperCache(Persistent<v8::Value> handle, void*) {
    354   Handle<Object> cache = Utils::OpenHandle(*handle);
    355   JSValue* wrapper = JSValue::cast(*cache);
    356   Foreign* foreign = Script::cast(wrapper->value())->wrapper();
    357   ASSERT(foreign->foreign_address() ==
    358          reinterpret_cast<Address>(cache.location()));
    359   foreign->set_foreign_address(0);
    360   Isolate* isolate = Isolate::Current();
    361   isolate->global_handles()->Destroy(cache.location());
    362   isolate->counters()->script_wrappers()->Decrement();
    363 }
    364 
    365 
    366 Handle<JSValue> GetScriptWrapper(Handle<Script> script) {
    367   if (script->wrapper()->foreign_address() != NULL) {
    368     // Return the script wrapper directly from the cache.
    369     return Handle<JSValue>(
    370         reinterpret_cast<JSValue**>(script->wrapper()->foreign_address()));
    371   }
    372   Isolate* isolate = Isolate::Current();
    373   // Construct a new script wrapper.
    374   isolate->counters()->script_wrappers()->Increment();
    375   Handle<JSFunction> constructor = isolate->script_function();
    376   Handle<JSValue> result =
    377       Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor));
    378   result->set_value(*script);
    379 
    380   // Create a new weak global handle and use it to cache the wrapper
    381   // for future use. The cache will automatically be cleared by the
    382   // garbage collector when it is not used anymore.
    383   Handle<Object> handle = isolate->global_handles()->Create(*result);
    384   isolate->global_handles()->MakeWeak(handle.location(), NULL,
    385                                       &ClearWrapperCache);
    386   script->wrapper()->set_foreign_address(
    387       reinterpret_cast<Address>(handle.location()));
    388   return result;
    389 }
    390 
    391 
    392 // Init line_ends array with code positions of line ends inside script
    393 // source.
    394 void InitScriptLineEnds(Handle<Script> script) {
    395   if (!script->line_ends()->IsUndefined()) return;
    396 
    397   Isolate* isolate = script->GetIsolate();
    398 
    399   if (!script->source()->IsString()) {
    400     ASSERT(script->source()->IsUndefined());
    401     Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0);
    402     script->set_line_ends(*empty);
    403     ASSERT(script->line_ends()->IsFixedArray());
    404     return;
    405   }
    406 
    407   Handle<String> src(String::cast(script->source()), isolate);
    408 
    409   Handle<FixedArray> array = CalculateLineEnds(src, true);
    410 
    411   if (*array != isolate->heap()->empty_fixed_array()) {
    412     array->set_map(isolate->heap()->fixed_cow_array_map());
    413   }
    414 
    415   script->set_line_ends(*array);
    416   ASSERT(script->line_ends()->IsFixedArray());
    417 }
    418 
    419 
    420 template <typename SourceChar>
    421 static void CalculateLineEnds(Isolate* isolate,
    422                               List<int>* line_ends,
    423                               Vector<const SourceChar> src,
    424                               bool with_last_line) {
    425   const int src_len = src.length();
    426   StringSearch<char, SourceChar> search(isolate, CStrVector("\n"));
    427 
    428   // Find and record line ends.
    429   int position = 0;
    430   while (position != -1 && position < src_len) {
    431     position = search.Search(src, position);
    432     if (position != -1) {
    433       line_ends->Add(position);
    434       position++;
    435     } else if (with_last_line) {
    436       // Even if the last line misses a line end, it is counted.
    437       line_ends->Add(src_len);
    438       return;
    439     }
    440   }
    441 }
    442 
    443 
    444 Handle<FixedArray> CalculateLineEnds(Handle<String> src,
    445                                      bool with_last_line) {
    446   src = FlattenGetString(src);
    447   // Rough estimate of line count based on a roughly estimated average
    448   // length of (unpacked) code.
    449   int line_count_estimate = src->length() >> 4;
    450   List<int> line_ends(line_count_estimate);
    451   Isolate* isolate = src->GetIsolate();
    452   {
    453     AssertNoAllocation no_heap_allocation;  // ensure vectors stay valid.
    454     // Dispatch on type of strings.
    455     String::FlatContent content = src->GetFlatContent();
    456     ASSERT(content.IsFlat());
    457     if (content.IsAscii()) {
    458       CalculateLineEnds(isolate,
    459                         &line_ends,
    460                         content.ToAsciiVector(),
    461                         with_last_line);
    462     } else {
    463       CalculateLineEnds(isolate,
    464                         &line_ends,
    465                         content.ToUC16Vector(),
    466                         with_last_line);
    467     }
    468   }
    469   int line_count = line_ends.length();
    470   Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count);
    471   for (int i = 0; i < line_count; i++) {
    472     array->set(i, Smi::FromInt(line_ends[i]));
    473   }
    474   return array;
    475 }
    476 
    477 
    478 // Convert code position into line number.
    479 int GetScriptLineNumber(Handle<Script> script, int code_pos) {
    480   InitScriptLineEnds(script);
    481   AssertNoAllocation no_allocation;
    482   FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
    483   const int line_ends_len = line_ends_array->length();
    484 
    485   if (!line_ends_len) return -1;
    486 
    487   if ((Smi::cast(line_ends_array->get(0)))->value() >= code_pos) {
    488     return script->line_offset()->value();
    489   }
    490 
    491   int left = 0;
    492   int right = line_ends_len;
    493   while (int half = (right - left) / 2) {
    494     if ((Smi::cast(line_ends_array->get(left + half)))->value() > code_pos) {
    495       right -= half;
    496     } else {
    497       left += half;
    498     }
    499   }
    500   return right + script->line_offset()->value();
    501 }
    502 
    503 // Convert code position into column number.
    504 int GetScriptColumnNumber(Handle<Script> script, int code_pos) {
    505   int line_number = GetScriptLineNumber(script, code_pos);
    506   if (line_number == -1) return -1;
    507 
    508   AssertNoAllocation no_allocation;
    509   FixedArray* line_ends_array = FixedArray::cast(script->line_ends());
    510   line_number = line_number - script->line_offset()->value();
    511   if (line_number == 0) return code_pos + script->column_offset()->value();
    512   int prev_line_end_pos =
    513       Smi::cast(line_ends_array->get(line_number - 1))->value();
    514   return code_pos - (prev_line_end_pos + 1);
    515 }
    516 
    517 int GetScriptLineNumberSafe(Handle<Script> script, int code_pos) {
    518   AssertNoAllocation no_allocation;
    519   if (!script->line_ends()->IsUndefined()) {
    520     return GetScriptLineNumber(script, code_pos);
    521   }
    522   // Slow mode: we do not have line_ends. We have to iterate through source.
    523   if (!script->source()->IsString()) {
    524     return -1;
    525   }
    526   String* source = String::cast(script->source());
    527   int line = 0;
    528   int len = source->length();
    529   for (int pos = 0; pos < len; pos++) {
    530     if (pos == code_pos) {
    531       break;
    532     }
    533     if (source->Get(pos) == '\n') {
    534       line++;
    535     }
    536   }
    537   return line;
    538 }
    539 
    540 
    541 void CustomArguments::IterateInstance(ObjectVisitor* v) {
    542   v->VisitPointers(values_, values_ + ARRAY_SIZE(values_));
    543 }
    544 
    545 
    546 // Compute the property keys from the interceptor.
    547 v8::Handle<v8::Array> GetKeysForNamedInterceptor(Handle<JSReceiver> receiver,
    548                                                  Handle<JSObject> object) {
    549   Isolate* isolate = receiver->GetIsolate();
    550   Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor());
    551   CustomArguments args(isolate, interceptor->data(), *receiver, *object);
    552   v8::AccessorInfo info(args.end());
    553   v8::Handle<v8::Array> result;
    554   if (!interceptor->enumerator()->IsUndefined()) {
    555     v8::NamedPropertyEnumerator enum_fun =
    556         v8::ToCData<v8::NamedPropertyEnumerator>(interceptor->enumerator());
    557     LOG(isolate, ApiObjectAccess("interceptor-named-enum", *object));
    558     {
    559       // Leaving JavaScript.
    560       VMState state(isolate, EXTERNAL);
    561       result = enum_fun(info);
    562     }
    563   }
    564   return result;
    565 }
    566 
    567 
    568 // Compute the element keys from the interceptor.
    569 v8::Handle<v8::Array> GetKeysForIndexedInterceptor(Handle<JSReceiver> receiver,
    570                                                    Handle<JSObject> object) {
    571   Isolate* isolate = receiver->GetIsolate();
    572   Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor());
    573   CustomArguments args(isolate, interceptor->data(), *receiver, *object);
    574   v8::AccessorInfo info(args.end());
    575   v8::Handle<v8::Array> result;
    576   if (!interceptor->enumerator()->IsUndefined()) {
    577     v8::IndexedPropertyEnumerator enum_fun =
    578         v8::ToCData<v8::IndexedPropertyEnumerator>(interceptor->enumerator());
    579     LOG(isolate, ApiObjectAccess("interceptor-indexed-enum", *object));
    580     {
    581       // Leaving JavaScript.
    582       VMState state(isolate, EXTERNAL);
    583       result = enum_fun(info);
    584     }
    585   }
    586   return result;
    587 }
    588 
    589 
    590 static bool ContainsOnlyValidKeys(Handle<FixedArray> array) {
    591   int len = array->length();
    592   for (int i = 0; i < len; i++) {
    593     Object* e = array->get(i);
    594     if (!(e->IsString() || e->IsNumber())) return false;
    595   }
    596   return true;
    597 }
    598 
    599 
    600 Handle<FixedArray> GetKeysInFixedArrayFor(Handle<JSReceiver> object,
    601                                           KeyCollectionType type,
    602                                           bool* threw) {
    603   USE(ContainsOnlyValidKeys);
    604   Isolate* isolate = object->GetIsolate();
    605   Handle<FixedArray> content = isolate->factory()->empty_fixed_array();
    606   Handle<JSObject> arguments_boilerplate = Handle<JSObject>(
    607       isolate->context()->global_context()->arguments_boilerplate(),
    608       isolate);
    609   Handle<JSFunction> arguments_function = Handle<JSFunction>(
    610       JSFunction::cast(arguments_boilerplate->map()->constructor()),
    611       isolate);
    612 
    613   // Only collect keys if access is permitted.
    614   for (Handle<Object> p = object;
    615        *p != isolate->heap()->null_value();
    616        p = Handle<Object>(p->GetPrototype(), isolate)) {
    617     if (p->IsJSProxy()) {
    618       Handle<JSProxy> proxy(JSProxy::cast(*p), isolate);
    619       Handle<Object> args[] = { proxy };
    620       Handle<Object> names = Execution::Call(
    621           isolate->proxy_enumerate(), object, ARRAY_SIZE(args), args, threw);
    622       if (*threw) return content;
    623       content = AddKeysFromJSArray(content, Handle<JSArray>::cast(names));
    624       break;
    625     }
    626 
    627     Handle<JSObject> current(JSObject::cast(*p), isolate);
    628 
    629     // Check access rights if required.
    630     if (current->IsAccessCheckNeeded() &&
    631         !isolate->MayNamedAccess(*current,
    632                                  isolate->heap()->undefined_value(),
    633                                  v8::ACCESS_KEYS)) {
    634       isolate->ReportFailedAccessCheck(*current, v8::ACCESS_KEYS);
    635       break;
    636     }
    637 
    638     // Compute the element keys.
    639     Handle<FixedArray> element_keys =
    640         isolate->factory()->NewFixedArray(current->NumberOfEnumElements());
    641     current->GetEnumElementKeys(*element_keys);
    642     content = UnionOfKeys(content, element_keys);
    643     ASSERT(ContainsOnlyValidKeys(content));
    644 
    645     // Add the element keys from the interceptor.
    646     if (current->HasIndexedInterceptor()) {
    647       v8::Handle<v8::Array> result =
    648           GetKeysForIndexedInterceptor(object, current);
    649       if (!result.IsEmpty())
    650         content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
    651       ASSERT(ContainsOnlyValidKeys(content));
    652     }
    653 
    654     // We can cache the computed property keys if access checks are
    655     // not needed and no interceptors are involved.
    656     //
    657     // We do not use the cache if the object has elements and
    658     // therefore it does not make sense to cache the property names
    659     // for arguments objects.  Arguments objects will always have
    660     // elements.
    661     // Wrapped strings have elements, but don't have an elements
    662     // array or dictionary.  So the fast inline test for whether to
    663     // use the cache says yes, so we should not create a cache.
    664     bool cache_enum_keys =
    665         ((current->map()->constructor() != *arguments_function) &&
    666          !current->IsJSValue() &&
    667          !current->IsAccessCheckNeeded() &&
    668          !current->HasNamedInterceptor() &&
    669          !current->HasIndexedInterceptor());
    670     // Compute the property keys and cache them if possible.
    671     content =
    672         UnionOfKeys(content, GetEnumPropertyKeys(current, cache_enum_keys));
    673     ASSERT(ContainsOnlyValidKeys(content));
    674 
    675     // Add the property keys from the interceptor.
    676     if (current->HasNamedInterceptor()) {
    677       v8::Handle<v8::Array> result =
    678           GetKeysForNamedInterceptor(object, current);
    679       if (!result.IsEmpty())
    680         content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result));
    681       ASSERT(ContainsOnlyValidKeys(content));
    682     }
    683 
    684     // If we only want local properties we bail out after the first
    685     // iteration.
    686     if (type == LOCAL_ONLY)
    687       break;
    688   }
    689   return content;
    690 }
    691 
    692 
    693 Handle<JSArray> GetKeysFor(Handle<JSReceiver> object, bool* threw) {
    694   Isolate* isolate = object->GetIsolate();
    695   isolate->counters()->for_in()->Increment();
    696   Handle<FixedArray> elements =
    697       GetKeysInFixedArrayFor(object, INCLUDE_PROTOS, threw);
    698   return isolate->factory()->NewJSArrayWithElements(elements);
    699 }
    700 
    701 
    702 Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object,
    703                                        bool cache_result) {
    704   int index = 0;
    705   Isolate* isolate = object->GetIsolate();
    706   if (object->HasFastProperties()) {
    707     if (object->map()->instance_descriptors()->HasEnumCache()) {
    708       isolate->counters()->enum_cache_hits()->Increment();
    709       DescriptorArray* desc = object->map()->instance_descriptors();
    710       return Handle<FixedArray>(FixedArray::cast(desc->GetEnumCache()),
    711                                 isolate);
    712     }
    713     isolate->counters()->enum_cache_misses()->Increment();
    714     Handle<Map> map(object->map());
    715     int num_enum = object->NumberOfLocalProperties(DONT_ENUM);
    716 
    717     Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum);
    718     Handle<FixedArray> sort_array = isolate->factory()->NewFixedArray(num_enum);
    719 
    720     Handle<FixedArray> indices;
    721     Handle<FixedArray> sort_array2;
    722 
    723     if (cache_result) {
    724       indices = isolate->factory()->NewFixedArray(num_enum);
    725       sort_array2 = isolate->factory()->NewFixedArray(num_enum);
    726     }
    727 
    728     Handle<DescriptorArray> descs =
    729         Handle<DescriptorArray>(object->map()->instance_descriptors(), isolate);
    730 
    731     for (int i = 0; i < descs->number_of_descriptors(); i++) {
    732       if (descs->IsProperty(i) && !descs->IsDontEnum(i)) {
    733         storage->set(index, descs->GetKey(i));
    734         PropertyDetails details(descs->GetDetails(i));
    735         sort_array->set(index, Smi::FromInt(details.index()));
    736         if (!indices.is_null()) {
    737           if (details.type() != FIELD) {
    738             indices = Handle<FixedArray>();
    739             sort_array2 = Handle<FixedArray>();
    740           } else {
    741             int field_index = Descriptor::IndexFromValue(descs->GetValue(i));
    742             if (field_index >= map->inobject_properties()) {
    743               field_index = -(field_index - map->inobject_properties() + 1);
    744             }
    745             indices->set(index, Smi::FromInt(field_index));
    746             sort_array2->set(index, Smi::FromInt(details.index()));
    747           }
    748         }
    749         index++;
    750       }
    751     }
    752     storage->SortPairs(*sort_array, sort_array->length());
    753     if (!indices.is_null()) {
    754       indices->SortPairs(*sort_array2, sort_array2->length());
    755     }
    756     if (cache_result) {
    757       Handle<FixedArray> bridge_storage =
    758           isolate->factory()->NewFixedArray(
    759               DescriptorArray::kEnumCacheBridgeLength);
    760       DescriptorArray* desc = object->map()->instance_descriptors();
    761       desc->SetEnumCache(*bridge_storage,
    762                          *storage,
    763                          indices.is_null() ? Object::cast(Smi::FromInt(0))
    764                                            : Object::cast(*indices));
    765     }
    766     ASSERT(storage->length() == index);
    767     return storage;
    768   } else {
    769     int num_enum = object->NumberOfLocalProperties(DONT_ENUM);
    770     Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum);
    771     Handle<FixedArray> sort_array = isolate->factory()->NewFixedArray(num_enum);
    772     object->property_dictionary()->CopyEnumKeysTo(*storage, *sort_array);
    773     return storage;
    774   }
    775 }
    776 
    777 
    778 Handle<ObjectHashSet> ObjectHashSetAdd(Handle<ObjectHashSet> table,
    779                                        Handle<Object> key) {
    780   CALL_HEAP_FUNCTION(table->GetIsolate(),
    781                      table->Add(*key),
    782                      ObjectHashSet);
    783 }
    784 
    785 
    786 Handle<ObjectHashSet> ObjectHashSetRemove(Handle<ObjectHashSet> table,
    787                                           Handle<Object> key) {
    788   CALL_HEAP_FUNCTION(table->GetIsolate(),
    789                      table->Remove(*key),
    790                      ObjectHashSet);
    791 }
    792 
    793 
    794 Handle<ObjectHashTable> PutIntoObjectHashTable(Handle<ObjectHashTable> table,
    795                                                Handle<Object> key,
    796                                                Handle<Object> value) {
    797   CALL_HEAP_FUNCTION(table->GetIsolate(),
    798                      table->Put(*key, *value),
    799                      ObjectHashTable);
    800 }
    801 
    802 
    803 // This method determines the type of string involved and then gets the UTF8
    804 // length of the string.  It doesn't flatten the string and has log(n) recursion
    805 // for a string of length n.  If the failure flag gets set, then we have to
    806 // flatten the string and retry.  Failures are caused by surrogate pairs in deep
    807 // cons strings.
    808 
    809 // Single surrogate characters that are encountered in the UTF-16 character
    810 // sequence of the input string get counted as 3 UTF-8 bytes, because that
    811 // is the way that WriteUtf8 will encode them.  Surrogate pairs are counted and
    812 // encoded as one 4-byte UTF-8 sequence.
    813 
    814 // This function conceptually uses recursion on the two halves of cons strings.
    815 // However, in order to avoid the recursion going too deep it recurses on the
    816 // second string of the cons, but iterates on the first substring (by manually
    817 // eliminating it as a tail recursion).  This means it counts the UTF-8 length
    818 // from the end to the start, which makes no difference to the total.
    819 
    820 // Surrogate pairs are recognized even if they are split across two sides of a
    821 // cons, which complicates the implementation somewhat.  Therefore, too deep
    822 // recursion cannot always be avoided.  This case is detected, and the failure
    823 // flag is set, a signal to the caller that the string should be flattened and
    824 // the operation retried.
    825 int Utf8LengthHelper(String* input,
    826                      int from,
    827                      int to,
    828                      bool followed_by_surrogate,
    829                      int max_recursion,
    830                      bool* failure,
    831                      bool* starts_with_surrogate) {
    832   if (from == to) return 0;
    833   int total = 0;
    834   bool dummy;
    835   while (true) {
    836     if (input->IsAsciiRepresentation()) {
    837       *starts_with_surrogate = false;
    838       return total + to - from;
    839     }
    840     switch (StringShape(input).representation_tag()) {
    841       case kConsStringTag: {
    842         ConsString* str = ConsString::cast(input);
    843         String* first = str->first();
    844         String* second = str->second();
    845         int first_length = first->length();
    846         if (first_length - from > to - first_length) {
    847           if (first_length < to) {
    848             // Right hand side is shorter.  No need to check the recursion depth
    849             // since this can only happen log(n) times.
    850             bool right_starts_with_surrogate = false;
    851             total += Utf8LengthHelper(second,
    852                                       0,
    853                                       to - first_length,
    854                                       followed_by_surrogate,
    855                                       max_recursion - 1,
    856                                       failure,
    857                                       &right_starts_with_surrogate);
    858             if (*failure) return 0;
    859             followed_by_surrogate = right_starts_with_surrogate;
    860             input = first;
    861             to = first_length;
    862           } else {
    863             // We only need the left hand side.
    864             input = first;
    865           }
    866         } else {
    867           if (first_length > from) {
    868             // Left hand side is shorter.
    869             if (first->IsAsciiRepresentation()) {
    870               total += first_length - from;
    871               *starts_with_surrogate = false;
    872               starts_with_surrogate = &dummy;
    873               input = second;
    874               from = 0;
    875               to -= first_length;
    876             } else if (second->IsAsciiRepresentation()) {
    877               followed_by_surrogate = false;
    878               total += to - first_length;
    879               input = first;
    880               to = first_length;
    881             } else if (max_recursion > 0) {
    882               bool right_starts_with_surrogate = false;
    883               // Recursing on the long one.  This may fail.
    884               total += Utf8LengthHelper(second,
    885                                         0,
    886                                         to - first_length,
    887                                         followed_by_surrogate,
    888                                         max_recursion - 1,
    889                                         failure,
    890                                         &right_starts_with_surrogate);
    891               if (*failure) return 0;
    892               input = first;
    893               to = first_length;
    894               followed_by_surrogate = right_starts_with_surrogate;
    895             } else {
    896               *failure = true;
    897               return 0;
    898             }
    899           } else {
    900             // We only need the right hand side.
    901             input = second;
    902             from = 0;
    903             to -= first_length;
    904           }
    905         }
    906         continue;
    907       }
    908       case kExternalStringTag:
    909       case kSeqStringTag: {
    910         Vector<const uc16> vector = input->GetFlatContent().ToUC16Vector();
    911         const uc16* p = vector.start();
    912         int previous = unibrow::Utf16::kNoPreviousCharacter;
    913         for (int i = from; i < to; i++) {
    914           uc16 c = p[i];
    915           total += unibrow::Utf8::Length(c, previous);
    916           previous = c;
    917         }
    918         if (to - from > 0) {
    919           if (unibrow::Utf16::IsLeadSurrogate(previous) &&
    920               followed_by_surrogate) {
    921             total -= unibrow::Utf8::kBytesSavedByCombiningSurrogates;
    922           }
    923           if (unibrow::Utf16::IsTrailSurrogate(p[from])) {
    924             *starts_with_surrogate = true;
    925           }
    926         }
    927         return total;
    928       }
    929       case kSlicedStringTag: {
    930         SlicedString* str = SlicedString::cast(input);
    931         int offset = str->offset();
    932         input = str->parent();
    933         from += offset;
    934         to += offset;
    935         continue;
    936       }
    937       default:
    938         break;
    939     }
    940     UNREACHABLE();
    941     return 0;
    942   }
    943   return 0;
    944 }
    945 
    946 
    947 int Utf8Length(Handle<String> str) {
    948   bool dummy;
    949   bool failure;
    950   int len;
    951   const int kRecursionBudget = 100;
    952   do {
    953     failure = false;
    954     len = Utf8LengthHelper(
    955         *str, 0, str->length(), false, kRecursionBudget, &failure, &dummy);
    956     if (failure) FlattenString(str);
    957   } while (failure);
    958   return len;
    959 }
    960 
    961 } }  // namespace v8::internal
    962