1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Redistribution and use in source and binary forms, with or without 3 // modification, are permitted provided that the following conditions are 4 // met: 5 // 6 // * Redistributions of source code must retain the above copyright 7 // notice, this list of conditions and the following disclaimer. 8 // * Redistributions in binary form must reproduce the above 9 // copyright notice, this list of conditions and the following 10 // disclaimer in the documentation and/or other materials provided 11 // with the distribution. 12 // * Neither the name of Google Inc. nor the names of its 13 // contributors may be used to endorse or promote products derived 14 // from this software without specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 28 #include "v8.h" 29 30 #include "accessors.h" 31 #include "api.h" 32 #include "arguments.h" 33 #include "bootstrapper.h" 34 #include "compiler.h" 35 #include "debug.h" 36 #include "execution.h" 37 #include "global-handles.h" 38 #include "natives.h" 39 #include "runtime.h" 40 #include "string-search.h" 41 #include "stub-cache.h" 42 #include "vm-state-inl.h" 43 44 namespace v8 { 45 namespace internal { 46 47 48 int HandleScope::NumberOfHandles() { 49 Isolate* isolate = Isolate::Current(); 50 HandleScopeImplementer* impl = isolate->handle_scope_implementer(); 51 int n = impl->blocks()->length(); 52 if (n == 0) return 0; 53 return ((n - 1) * kHandleBlockSize) + static_cast<int>( 54 (isolate->handle_scope_data()->next - impl->blocks()->last())); 55 } 56 57 58 Object** HandleScope::Extend() { 59 Isolate* isolate = Isolate::Current(); 60 v8::ImplementationUtilities::HandleScopeData* current = 61 isolate->handle_scope_data(); 62 63 Object** result = current->next; 64 65 ASSERT(result == current->limit); 66 // Make sure there's at least one scope on the stack and that the 67 // top of the scope stack isn't a barrier. 68 if (current->level == 0) { 69 Utils::ReportApiFailure("v8::HandleScope::CreateHandle()", 70 "Cannot create a handle without a HandleScope"); 71 return NULL; 72 } 73 HandleScopeImplementer* impl = isolate->handle_scope_implementer(); 74 // If there's more room in the last block, we use that. This is used 75 // for fast creation of scopes after scope barriers. 76 if (!impl->blocks()->is_empty()) { 77 Object** limit = &impl->blocks()->last()[kHandleBlockSize]; 78 if (current->limit != limit) { 79 current->limit = limit; 80 ASSERT(limit - current->next < kHandleBlockSize); 81 } 82 } 83 84 // If we still haven't found a slot for the handle, we extend the 85 // current handle scope by allocating a new handle block. 86 if (result == current->limit) { 87 // If there's a spare block, use it for growing the current scope. 88 result = impl->GetSpareOrNewBlock(); 89 // Add the extension to the global list of blocks, but count the 90 // extension as part of the current scope. 91 impl->blocks()->Add(result); 92 current->limit = &result[kHandleBlockSize]; 93 } 94 95 return result; 96 } 97 98 99 void HandleScope::DeleteExtensions(Isolate* isolate) { 100 ASSERT(isolate == Isolate::Current()); 101 v8::ImplementationUtilities::HandleScopeData* current = 102 isolate->handle_scope_data(); 103 isolate->handle_scope_implementer()->DeleteExtensions(current->limit); 104 } 105 106 107 void HandleScope::ZapRange(Object** start, Object** end) { 108 ASSERT(end - start <= kHandleBlockSize); 109 for (Object** p = start; p != end; p++) { 110 *reinterpret_cast<Address*>(p) = v8::internal::kHandleZapValue; 111 } 112 } 113 114 115 Address HandleScope::current_level_address() { 116 return reinterpret_cast<Address>( 117 &Isolate::Current()->handle_scope_data()->level); 118 } 119 120 121 Address HandleScope::current_next_address() { 122 return reinterpret_cast<Address>( 123 &Isolate::Current()->handle_scope_data()->next); 124 } 125 126 127 Address HandleScope::current_limit_address() { 128 return reinterpret_cast<Address>( 129 &Isolate::Current()->handle_scope_data()->limit); 130 } 131 132 133 Handle<FixedArray> AddKeysFromJSArray(Handle<FixedArray> content, 134 Handle<JSArray> array) { 135 CALL_HEAP_FUNCTION(content->GetIsolate(), 136 content->AddKeysFromJSArray(*array), FixedArray); 137 } 138 139 140 Handle<FixedArray> UnionOfKeys(Handle<FixedArray> first, 141 Handle<FixedArray> second) { 142 CALL_HEAP_FUNCTION(first->GetIsolate(), 143 first->UnionOfKeys(*second), FixedArray); 144 } 145 146 147 Handle<JSGlobalProxy> ReinitializeJSGlobalProxy( 148 Handle<JSFunction> constructor, 149 Handle<JSGlobalProxy> global) { 150 CALL_HEAP_FUNCTION( 151 constructor->GetIsolate(), 152 constructor->GetHeap()->ReinitializeJSGlobalProxy(*constructor, *global), 153 JSGlobalProxy); 154 } 155 156 157 void SetExpectedNofProperties(Handle<JSFunction> func, int nof) { 158 // If objects constructed from this function exist then changing 159 // 'estimated_nof_properties' is dangerous since the previous value might 160 // have been compiled into the fast construct stub. More over, the inobject 161 // slack tracking logic might have adjusted the previous value, so even 162 // passing the same value is risky. 163 if (func->shared()->live_objects_may_exist()) return; 164 165 func->shared()->set_expected_nof_properties(nof); 166 if (func->has_initial_map()) { 167 Handle<Map> new_initial_map = 168 func->GetIsolate()->factory()->CopyMapDropTransitions( 169 Handle<Map>(func->initial_map())); 170 new_initial_map->set_unused_property_fields(nof); 171 func->set_initial_map(*new_initial_map); 172 } 173 } 174 175 176 void SetPrototypeProperty(Handle<JSFunction> func, Handle<JSObject> value) { 177 CALL_HEAP_FUNCTION_VOID(func->GetIsolate(), 178 func->SetPrototype(*value)); 179 } 180 181 182 static int ExpectedNofPropertiesFromEstimate(int estimate) { 183 // If no properties are added in the constructor, they are more likely 184 // to be added later. 185 if (estimate == 0) estimate = 2; 186 187 // We do not shrink objects that go into a snapshot (yet), so we adjust 188 // the estimate conservatively. 189 if (Serializer::enabled()) return estimate + 2; 190 191 // Inobject slack tracking will reclaim redundant inobject space later, 192 // so we can afford to adjust the estimate generously. 193 if (FLAG_clever_optimizations) { 194 return estimate + 8; 195 } else { 196 return estimate + 3; 197 } 198 } 199 200 201 void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared, 202 int estimate) { 203 // See the comment in SetExpectedNofProperties. 204 if (shared->live_objects_may_exist()) return; 205 206 shared->set_expected_nof_properties( 207 ExpectedNofPropertiesFromEstimate(estimate)); 208 } 209 210 211 void FlattenString(Handle<String> string) { 212 CALL_HEAP_FUNCTION_VOID(string->GetIsolate(), string->TryFlatten()); 213 } 214 215 216 Handle<String> FlattenGetString(Handle<String> string) { 217 CALL_HEAP_FUNCTION(string->GetIsolate(), string->TryFlatten(), String); 218 } 219 220 221 Handle<Object> SetPrototype(Handle<JSFunction> function, 222 Handle<Object> prototype) { 223 ASSERT(function->should_have_prototype()); 224 CALL_HEAP_FUNCTION(function->GetIsolate(), 225 Accessors::FunctionSetPrototype(*function, 226 *prototype, 227 NULL), 228 Object); 229 } 230 231 232 Handle<Object> SetProperty(Handle<Object> object, 233 Handle<Object> key, 234 Handle<Object> value, 235 PropertyAttributes attributes, 236 StrictModeFlag strict_mode) { 237 Isolate* isolate = Isolate::Current(); 238 CALL_HEAP_FUNCTION( 239 isolate, 240 Runtime::SetObjectProperty( 241 isolate, object, key, value, attributes, strict_mode), 242 Object); 243 } 244 245 246 Handle<Object> ForceSetProperty(Handle<JSObject> object, 247 Handle<Object> key, 248 Handle<Object> value, 249 PropertyAttributes attributes) { 250 Isolate* isolate = object->GetIsolate(); 251 CALL_HEAP_FUNCTION( 252 isolate, 253 Runtime::ForceSetObjectProperty( 254 isolate, object, key, value, attributes), 255 Object); 256 } 257 258 259 Handle<Object> ForceDeleteProperty(Handle<JSObject> object, 260 Handle<Object> key) { 261 Isolate* isolate = object->GetIsolate(); 262 CALL_HEAP_FUNCTION(isolate, 263 Runtime::ForceDeleteObjectProperty(isolate, object, key), 264 Object); 265 } 266 267 268 Handle<Object> SetPropertyWithInterceptor(Handle<JSObject> object, 269 Handle<String> key, 270 Handle<Object> value, 271 PropertyAttributes attributes, 272 StrictModeFlag strict_mode) { 273 CALL_HEAP_FUNCTION(object->GetIsolate(), 274 object->SetPropertyWithInterceptor(*key, 275 *value, 276 attributes, 277 strict_mode), 278 Object); 279 } 280 281 282 Handle<Object> GetProperty(Handle<JSReceiver> obj, 283 const char* name) { 284 Isolate* isolate = obj->GetIsolate(); 285 Handle<String> str = isolate->factory()->LookupAsciiSymbol(name); 286 CALL_HEAP_FUNCTION(isolate, obj->GetProperty(*str), Object); 287 } 288 289 290 Handle<Object> GetProperty(Handle<Object> obj, 291 Handle<Object> key) { 292 Isolate* isolate = Isolate::Current(); 293 CALL_HEAP_FUNCTION(isolate, 294 Runtime::GetObjectProperty(isolate, obj, key), Object); 295 } 296 297 298 Handle<Object> GetPropertyWithInterceptor(Handle<JSObject> receiver, 299 Handle<JSObject> holder, 300 Handle<String> name, 301 PropertyAttributes* attributes) { 302 Isolate* isolate = receiver->GetIsolate(); 303 CALL_HEAP_FUNCTION(isolate, 304 holder->GetPropertyWithInterceptor(*receiver, 305 *name, 306 attributes), 307 Object); 308 } 309 310 311 Handle<Object> SetPrototype(Handle<JSObject> obj, Handle<Object> value) { 312 const bool skip_hidden_prototypes = false; 313 CALL_HEAP_FUNCTION(obj->GetIsolate(), 314 obj->SetPrototype(*value, skip_hidden_prototypes), Object); 315 } 316 317 318 Handle<Object> LookupSingleCharacterStringFromCode(uint32_t index) { 319 Isolate* isolate = Isolate::Current(); 320 CALL_HEAP_FUNCTION( 321 isolate, 322 isolate->heap()->LookupSingleCharacterStringFromCode(index), Object); 323 } 324 325 326 Handle<String> SubString(Handle<String> str, 327 int start, 328 int end, 329 PretenureFlag pretenure) { 330 CALL_HEAP_FUNCTION(str->GetIsolate(), 331 str->SubString(start, end, pretenure), String); 332 } 333 334 335 Handle<JSObject> Copy(Handle<JSObject> obj) { 336 Isolate* isolate = obj->GetIsolate(); 337 CALL_HEAP_FUNCTION(isolate, 338 isolate->heap()->CopyJSObject(*obj), JSObject); 339 } 340 341 342 Handle<Object> SetAccessor(Handle<JSObject> obj, Handle<AccessorInfo> info) { 343 CALL_HEAP_FUNCTION(obj->GetIsolate(), obj->DefineAccessor(*info), Object); 344 } 345 346 347 // Wrappers for scripts are kept alive and cached in weak global 348 // handles referred from foreign objects held by the scripts as long as 349 // they are used. When they are not used anymore, the garbage 350 // collector will call the weak callback on the global handle 351 // associated with the wrapper and get rid of both the wrapper and the 352 // handle. 353 static void ClearWrapperCache(Persistent<v8::Value> handle, void*) { 354 Handle<Object> cache = Utils::OpenHandle(*handle); 355 JSValue* wrapper = JSValue::cast(*cache); 356 Foreign* foreign = Script::cast(wrapper->value())->wrapper(); 357 ASSERT(foreign->foreign_address() == 358 reinterpret_cast<Address>(cache.location())); 359 foreign->set_foreign_address(0); 360 Isolate* isolate = Isolate::Current(); 361 isolate->global_handles()->Destroy(cache.location()); 362 isolate->counters()->script_wrappers()->Decrement(); 363 } 364 365 366 Handle<JSValue> GetScriptWrapper(Handle<Script> script) { 367 if (script->wrapper()->foreign_address() != NULL) { 368 // Return the script wrapper directly from the cache. 369 return Handle<JSValue>( 370 reinterpret_cast<JSValue**>(script->wrapper()->foreign_address())); 371 } 372 Isolate* isolate = Isolate::Current(); 373 // Construct a new script wrapper. 374 isolate->counters()->script_wrappers()->Increment(); 375 Handle<JSFunction> constructor = isolate->script_function(); 376 Handle<JSValue> result = 377 Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor)); 378 result->set_value(*script); 379 380 // Create a new weak global handle and use it to cache the wrapper 381 // for future use. The cache will automatically be cleared by the 382 // garbage collector when it is not used anymore. 383 Handle<Object> handle = isolate->global_handles()->Create(*result); 384 isolate->global_handles()->MakeWeak(handle.location(), NULL, 385 &ClearWrapperCache); 386 script->wrapper()->set_foreign_address( 387 reinterpret_cast<Address>(handle.location())); 388 return result; 389 } 390 391 392 // Init line_ends array with code positions of line ends inside script 393 // source. 394 void InitScriptLineEnds(Handle<Script> script) { 395 if (!script->line_ends()->IsUndefined()) return; 396 397 Isolate* isolate = script->GetIsolate(); 398 399 if (!script->source()->IsString()) { 400 ASSERT(script->source()->IsUndefined()); 401 Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0); 402 script->set_line_ends(*empty); 403 ASSERT(script->line_ends()->IsFixedArray()); 404 return; 405 } 406 407 Handle<String> src(String::cast(script->source()), isolate); 408 409 Handle<FixedArray> array = CalculateLineEnds(src, true); 410 411 if (*array != isolate->heap()->empty_fixed_array()) { 412 array->set_map(isolate->heap()->fixed_cow_array_map()); 413 } 414 415 script->set_line_ends(*array); 416 ASSERT(script->line_ends()->IsFixedArray()); 417 } 418 419 420 template <typename SourceChar> 421 static void CalculateLineEnds(Isolate* isolate, 422 List<int>* line_ends, 423 Vector<const SourceChar> src, 424 bool with_last_line) { 425 const int src_len = src.length(); 426 StringSearch<char, SourceChar> search(isolate, CStrVector("\n")); 427 428 // Find and record line ends. 429 int position = 0; 430 while (position != -1 && position < src_len) { 431 position = search.Search(src, position); 432 if (position != -1) { 433 line_ends->Add(position); 434 position++; 435 } else if (with_last_line) { 436 // Even if the last line misses a line end, it is counted. 437 line_ends->Add(src_len); 438 return; 439 } 440 } 441 } 442 443 444 Handle<FixedArray> CalculateLineEnds(Handle<String> src, 445 bool with_last_line) { 446 src = FlattenGetString(src); 447 // Rough estimate of line count based on a roughly estimated average 448 // length of (unpacked) code. 449 int line_count_estimate = src->length() >> 4; 450 List<int> line_ends(line_count_estimate); 451 Isolate* isolate = src->GetIsolate(); 452 { 453 AssertNoAllocation no_heap_allocation; // ensure vectors stay valid. 454 // Dispatch on type of strings. 455 String::FlatContent content = src->GetFlatContent(); 456 ASSERT(content.IsFlat()); 457 if (content.IsAscii()) { 458 CalculateLineEnds(isolate, 459 &line_ends, 460 content.ToAsciiVector(), 461 with_last_line); 462 } else { 463 CalculateLineEnds(isolate, 464 &line_ends, 465 content.ToUC16Vector(), 466 with_last_line); 467 } 468 } 469 int line_count = line_ends.length(); 470 Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count); 471 for (int i = 0; i < line_count; i++) { 472 array->set(i, Smi::FromInt(line_ends[i])); 473 } 474 return array; 475 } 476 477 478 // Convert code position into line number. 479 int GetScriptLineNumber(Handle<Script> script, int code_pos) { 480 InitScriptLineEnds(script); 481 AssertNoAllocation no_allocation; 482 FixedArray* line_ends_array = FixedArray::cast(script->line_ends()); 483 const int line_ends_len = line_ends_array->length(); 484 485 if (!line_ends_len) return -1; 486 487 if ((Smi::cast(line_ends_array->get(0)))->value() >= code_pos) { 488 return script->line_offset()->value(); 489 } 490 491 int left = 0; 492 int right = line_ends_len; 493 while (int half = (right - left) / 2) { 494 if ((Smi::cast(line_ends_array->get(left + half)))->value() > code_pos) { 495 right -= half; 496 } else { 497 left += half; 498 } 499 } 500 return right + script->line_offset()->value(); 501 } 502 503 // Convert code position into column number. 504 int GetScriptColumnNumber(Handle<Script> script, int code_pos) { 505 int line_number = GetScriptLineNumber(script, code_pos); 506 if (line_number == -1) return -1; 507 508 AssertNoAllocation no_allocation; 509 FixedArray* line_ends_array = FixedArray::cast(script->line_ends()); 510 line_number = line_number - script->line_offset()->value(); 511 if (line_number == 0) return code_pos + script->column_offset()->value(); 512 int prev_line_end_pos = 513 Smi::cast(line_ends_array->get(line_number - 1))->value(); 514 return code_pos - (prev_line_end_pos + 1); 515 } 516 517 int GetScriptLineNumberSafe(Handle<Script> script, int code_pos) { 518 AssertNoAllocation no_allocation; 519 if (!script->line_ends()->IsUndefined()) { 520 return GetScriptLineNumber(script, code_pos); 521 } 522 // Slow mode: we do not have line_ends. We have to iterate through source. 523 if (!script->source()->IsString()) { 524 return -1; 525 } 526 String* source = String::cast(script->source()); 527 int line = 0; 528 int len = source->length(); 529 for (int pos = 0; pos < len; pos++) { 530 if (pos == code_pos) { 531 break; 532 } 533 if (source->Get(pos) == '\n') { 534 line++; 535 } 536 } 537 return line; 538 } 539 540 541 void CustomArguments::IterateInstance(ObjectVisitor* v) { 542 v->VisitPointers(values_, values_ + ARRAY_SIZE(values_)); 543 } 544 545 546 // Compute the property keys from the interceptor. 547 v8::Handle<v8::Array> GetKeysForNamedInterceptor(Handle<JSReceiver> receiver, 548 Handle<JSObject> object) { 549 Isolate* isolate = receiver->GetIsolate(); 550 Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor()); 551 CustomArguments args(isolate, interceptor->data(), *receiver, *object); 552 v8::AccessorInfo info(args.end()); 553 v8::Handle<v8::Array> result; 554 if (!interceptor->enumerator()->IsUndefined()) { 555 v8::NamedPropertyEnumerator enum_fun = 556 v8::ToCData<v8::NamedPropertyEnumerator>(interceptor->enumerator()); 557 LOG(isolate, ApiObjectAccess("interceptor-named-enum", *object)); 558 { 559 // Leaving JavaScript. 560 VMState state(isolate, EXTERNAL); 561 result = enum_fun(info); 562 } 563 } 564 return result; 565 } 566 567 568 // Compute the element keys from the interceptor. 569 v8::Handle<v8::Array> GetKeysForIndexedInterceptor(Handle<JSReceiver> receiver, 570 Handle<JSObject> object) { 571 Isolate* isolate = receiver->GetIsolate(); 572 Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor()); 573 CustomArguments args(isolate, interceptor->data(), *receiver, *object); 574 v8::AccessorInfo info(args.end()); 575 v8::Handle<v8::Array> result; 576 if (!interceptor->enumerator()->IsUndefined()) { 577 v8::IndexedPropertyEnumerator enum_fun = 578 v8::ToCData<v8::IndexedPropertyEnumerator>(interceptor->enumerator()); 579 LOG(isolate, ApiObjectAccess("interceptor-indexed-enum", *object)); 580 { 581 // Leaving JavaScript. 582 VMState state(isolate, EXTERNAL); 583 result = enum_fun(info); 584 } 585 } 586 return result; 587 } 588 589 590 static bool ContainsOnlyValidKeys(Handle<FixedArray> array) { 591 int len = array->length(); 592 for (int i = 0; i < len; i++) { 593 Object* e = array->get(i); 594 if (!(e->IsString() || e->IsNumber())) return false; 595 } 596 return true; 597 } 598 599 600 Handle<FixedArray> GetKeysInFixedArrayFor(Handle<JSReceiver> object, 601 KeyCollectionType type, 602 bool* threw) { 603 USE(ContainsOnlyValidKeys); 604 Isolate* isolate = object->GetIsolate(); 605 Handle<FixedArray> content = isolate->factory()->empty_fixed_array(); 606 Handle<JSObject> arguments_boilerplate = Handle<JSObject>( 607 isolate->context()->global_context()->arguments_boilerplate(), 608 isolate); 609 Handle<JSFunction> arguments_function = Handle<JSFunction>( 610 JSFunction::cast(arguments_boilerplate->map()->constructor()), 611 isolate); 612 613 // Only collect keys if access is permitted. 614 for (Handle<Object> p = object; 615 *p != isolate->heap()->null_value(); 616 p = Handle<Object>(p->GetPrototype(), isolate)) { 617 if (p->IsJSProxy()) { 618 Handle<JSProxy> proxy(JSProxy::cast(*p), isolate); 619 Handle<Object> args[] = { proxy }; 620 Handle<Object> names = Execution::Call( 621 isolate->proxy_enumerate(), object, ARRAY_SIZE(args), args, threw); 622 if (*threw) return content; 623 content = AddKeysFromJSArray(content, Handle<JSArray>::cast(names)); 624 break; 625 } 626 627 Handle<JSObject> current(JSObject::cast(*p), isolate); 628 629 // Check access rights if required. 630 if (current->IsAccessCheckNeeded() && 631 !isolate->MayNamedAccess(*current, 632 isolate->heap()->undefined_value(), 633 v8::ACCESS_KEYS)) { 634 isolate->ReportFailedAccessCheck(*current, v8::ACCESS_KEYS); 635 break; 636 } 637 638 // Compute the element keys. 639 Handle<FixedArray> element_keys = 640 isolate->factory()->NewFixedArray(current->NumberOfEnumElements()); 641 current->GetEnumElementKeys(*element_keys); 642 content = UnionOfKeys(content, element_keys); 643 ASSERT(ContainsOnlyValidKeys(content)); 644 645 // Add the element keys from the interceptor. 646 if (current->HasIndexedInterceptor()) { 647 v8::Handle<v8::Array> result = 648 GetKeysForIndexedInterceptor(object, current); 649 if (!result.IsEmpty()) 650 content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result)); 651 ASSERT(ContainsOnlyValidKeys(content)); 652 } 653 654 // We can cache the computed property keys if access checks are 655 // not needed and no interceptors are involved. 656 // 657 // We do not use the cache if the object has elements and 658 // therefore it does not make sense to cache the property names 659 // for arguments objects. Arguments objects will always have 660 // elements. 661 // Wrapped strings have elements, but don't have an elements 662 // array or dictionary. So the fast inline test for whether to 663 // use the cache says yes, so we should not create a cache. 664 bool cache_enum_keys = 665 ((current->map()->constructor() != *arguments_function) && 666 !current->IsJSValue() && 667 !current->IsAccessCheckNeeded() && 668 !current->HasNamedInterceptor() && 669 !current->HasIndexedInterceptor()); 670 // Compute the property keys and cache them if possible. 671 content = 672 UnionOfKeys(content, GetEnumPropertyKeys(current, cache_enum_keys)); 673 ASSERT(ContainsOnlyValidKeys(content)); 674 675 // Add the property keys from the interceptor. 676 if (current->HasNamedInterceptor()) { 677 v8::Handle<v8::Array> result = 678 GetKeysForNamedInterceptor(object, current); 679 if (!result.IsEmpty()) 680 content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result)); 681 ASSERT(ContainsOnlyValidKeys(content)); 682 } 683 684 // If we only want local properties we bail out after the first 685 // iteration. 686 if (type == LOCAL_ONLY) 687 break; 688 } 689 return content; 690 } 691 692 693 Handle<JSArray> GetKeysFor(Handle<JSReceiver> object, bool* threw) { 694 Isolate* isolate = object->GetIsolate(); 695 isolate->counters()->for_in()->Increment(); 696 Handle<FixedArray> elements = 697 GetKeysInFixedArrayFor(object, INCLUDE_PROTOS, threw); 698 return isolate->factory()->NewJSArrayWithElements(elements); 699 } 700 701 702 Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object, 703 bool cache_result) { 704 int index = 0; 705 Isolate* isolate = object->GetIsolate(); 706 if (object->HasFastProperties()) { 707 if (object->map()->instance_descriptors()->HasEnumCache()) { 708 isolate->counters()->enum_cache_hits()->Increment(); 709 DescriptorArray* desc = object->map()->instance_descriptors(); 710 return Handle<FixedArray>(FixedArray::cast(desc->GetEnumCache()), 711 isolate); 712 } 713 isolate->counters()->enum_cache_misses()->Increment(); 714 Handle<Map> map(object->map()); 715 int num_enum = object->NumberOfLocalProperties(DONT_ENUM); 716 717 Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum); 718 Handle<FixedArray> sort_array = isolate->factory()->NewFixedArray(num_enum); 719 720 Handle<FixedArray> indices; 721 Handle<FixedArray> sort_array2; 722 723 if (cache_result) { 724 indices = isolate->factory()->NewFixedArray(num_enum); 725 sort_array2 = isolate->factory()->NewFixedArray(num_enum); 726 } 727 728 Handle<DescriptorArray> descs = 729 Handle<DescriptorArray>(object->map()->instance_descriptors(), isolate); 730 731 for (int i = 0; i < descs->number_of_descriptors(); i++) { 732 if (descs->IsProperty(i) && !descs->IsDontEnum(i)) { 733 storage->set(index, descs->GetKey(i)); 734 PropertyDetails details(descs->GetDetails(i)); 735 sort_array->set(index, Smi::FromInt(details.index())); 736 if (!indices.is_null()) { 737 if (details.type() != FIELD) { 738 indices = Handle<FixedArray>(); 739 sort_array2 = Handle<FixedArray>(); 740 } else { 741 int field_index = Descriptor::IndexFromValue(descs->GetValue(i)); 742 if (field_index >= map->inobject_properties()) { 743 field_index = -(field_index - map->inobject_properties() + 1); 744 } 745 indices->set(index, Smi::FromInt(field_index)); 746 sort_array2->set(index, Smi::FromInt(details.index())); 747 } 748 } 749 index++; 750 } 751 } 752 storage->SortPairs(*sort_array, sort_array->length()); 753 if (!indices.is_null()) { 754 indices->SortPairs(*sort_array2, sort_array2->length()); 755 } 756 if (cache_result) { 757 Handle<FixedArray> bridge_storage = 758 isolate->factory()->NewFixedArray( 759 DescriptorArray::kEnumCacheBridgeLength); 760 DescriptorArray* desc = object->map()->instance_descriptors(); 761 desc->SetEnumCache(*bridge_storage, 762 *storage, 763 indices.is_null() ? Object::cast(Smi::FromInt(0)) 764 : Object::cast(*indices)); 765 } 766 ASSERT(storage->length() == index); 767 return storage; 768 } else { 769 int num_enum = object->NumberOfLocalProperties(DONT_ENUM); 770 Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum); 771 Handle<FixedArray> sort_array = isolate->factory()->NewFixedArray(num_enum); 772 object->property_dictionary()->CopyEnumKeysTo(*storage, *sort_array); 773 return storage; 774 } 775 } 776 777 778 Handle<ObjectHashSet> ObjectHashSetAdd(Handle<ObjectHashSet> table, 779 Handle<Object> key) { 780 CALL_HEAP_FUNCTION(table->GetIsolate(), 781 table->Add(*key), 782 ObjectHashSet); 783 } 784 785 786 Handle<ObjectHashSet> ObjectHashSetRemove(Handle<ObjectHashSet> table, 787 Handle<Object> key) { 788 CALL_HEAP_FUNCTION(table->GetIsolate(), 789 table->Remove(*key), 790 ObjectHashSet); 791 } 792 793 794 Handle<ObjectHashTable> PutIntoObjectHashTable(Handle<ObjectHashTable> table, 795 Handle<Object> key, 796 Handle<Object> value) { 797 CALL_HEAP_FUNCTION(table->GetIsolate(), 798 table->Put(*key, *value), 799 ObjectHashTable); 800 } 801 802 803 // This method determines the type of string involved and then gets the UTF8 804 // length of the string. It doesn't flatten the string and has log(n) recursion 805 // for a string of length n. If the failure flag gets set, then we have to 806 // flatten the string and retry. Failures are caused by surrogate pairs in deep 807 // cons strings. 808 809 // Single surrogate characters that are encountered in the UTF-16 character 810 // sequence of the input string get counted as 3 UTF-8 bytes, because that 811 // is the way that WriteUtf8 will encode them. Surrogate pairs are counted and 812 // encoded as one 4-byte UTF-8 sequence. 813 814 // This function conceptually uses recursion on the two halves of cons strings. 815 // However, in order to avoid the recursion going too deep it recurses on the 816 // second string of the cons, but iterates on the first substring (by manually 817 // eliminating it as a tail recursion). This means it counts the UTF-8 length 818 // from the end to the start, which makes no difference to the total. 819 820 // Surrogate pairs are recognized even if they are split across two sides of a 821 // cons, which complicates the implementation somewhat. Therefore, too deep 822 // recursion cannot always be avoided. This case is detected, and the failure 823 // flag is set, a signal to the caller that the string should be flattened and 824 // the operation retried. 825 int Utf8LengthHelper(String* input, 826 int from, 827 int to, 828 bool followed_by_surrogate, 829 int max_recursion, 830 bool* failure, 831 bool* starts_with_surrogate) { 832 if (from == to) return 0; 833 int total = 0; 834 bool dummy; 835 while (true) { 836 if (input->IsAsciiRepresentation()) { 837 *starts_with_surrogate = false; 838 return total + to - from; 839 } 840 switch (StringShape(input).representation_tag()) { 841 case kConsStringTag: { 842 ConsString* str = ConsString::cast(input); 843 String* first = str->first(); 844 String* second = str->second(); 845 int first_length = first->length(); 846 if (first_length - from > to - first_length) { 847 if (first_length < to) { 848 // Right hand side is shorter. No need to check the recursion depth 849 // since this can only happen log(n) times. 850 bool right_starts_with_surrogate = false; 851 total += Utf8LengthHelper(second, 852 0, 853 to - first_length, 854 followed_by_surrogate, 855 max_recursion - 1, 856 failure, 857 &right_starts_with_surrogate); 858 if (*failure) return 0; 859 followed_by_surrogate = right_starts_with_surrogate; 860 input = first; 861 to = first_length; 862 } else { 863 // We only need the left hand side. 864 input = first; 865 } 866 } else { 867 if (first_length > from) { 868 // Left hand side is shorter. 869 if (first->IsAsciiRepresentation()) { 870 total += first_length - from; 871 *starts_with_surrogate = false; 872 starts_with_surrogate = &dummy; 873 input = second; 874 from = 0; 875 to -= first_length; 876 } else if (second->IsAsciiRepresentation()) { 877 followed_by_surrogate = false; 878 total += to - first_length; 879 input = first; 880 to = first_length; 881 } else if (max_recursion > 0) { 882 bool right_starts_with_surrogate = false; 883 // Recursing on the long one. This may fail. 884 total += Utf8LengthHelper(second, 885 0, 886 to - first_length, 887 followed_by_surrogate, 888 max_recursion - 1, 889 failure, 890 &right_starts_with_surrogate); 891 if (*failure) return 0; 892 input = first; 893 to = first_length; 894 followed_by_surrogate = right_starts_with_surrogate; 895 } else { 896 *failure = true; 897 return 0; 898 } 899 } else { 900 // We only need the right hand side. 901 input = second; 902 from = 0; 903 to -= first_length; 904 } 905 } 906 continue; 907 } 908 case kExternalStringTag: 909 case kSeqStringTag: { 910 Vector<const uc16> vector = input->GetFlatContent().ToUC16Vector(); 911 const uc16* p = vector.start(); 912 int previous = unibrow::Utf16::kNoPreviousCharacter; 913 for (int i = from; i < to; i++) { 914 uc16 c = p[i]; 915 total += unibrow::Utf8::Length(c, previous); 916 previous = c; 917 } 918 if (to - from > 0) { 919 if (unibrow::Utf16::IsLeadSurrogate(previous) && 920 followed_by_surrogate) { 921 total -= unibrow::Utf8::kBytesSavedByCombiningSurrogates; 922 } 923 if (unibrow::Utf16::IsTrailSurrogate(p[from])) { 924 *starts_with_surrogate = true; 925 } 926 } 927 return total; 928 } 929 case kSlicedStringTag: { 930 SlicedString* str = SlicedString::cast(input); 931 int offset = str->offset(); 932 input = str->parent(); 933 from += offset; 934 to += offset; 935 continue; 936 } 937 default: 938 break; 939 } 940 UNREACHABLE(); 941 return 0; 942 } 943 return 0; 944 } 945 946 947 int Utf8Length(Handle<String> str) { 948 bool dummy; 949 bool failure; 950 int len; 951 const int kRecursionBudget = 100; 952 do { 953 failure = false; 954 len = Utf8LengthHelper( 955 *str, 0, str->length(), false, kRecursionBudget, &failure, &dummy); 956 if (failure) FlattenString(str); 957 } while (failure); 958 return len; 959 } 960 961 } } // namespace v8::internal 962