1 //===-- APInt.cpp - Implement APInt class ---------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a class to represent arbitrary precision integer 11 // constant values and provide a variety of arithmetic operations on them. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "apint" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/FoldingSet.h" 18 #include "llvm/ADT/Hashing.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include "llvm/Support/MathExtras.h" 24 #include "llvm/Support/raw_ostream.h" 25 #include <cmath> 26 #include <cstdlib> 27 #include <cstring> 28 #include <limits> 29 using namespace llvm; 30 31 /// A utility function for allocating memory, checking for allocation failures, 32 /// and ensuring the contents are zeroed. 33 inline static uint64_t* getClearedMemory(unsigned numWords) { 34 uint64_t * result = new uint64_t[numWords]; 35 assert(result && "APInt memory allocation fails!"); 36 memset(result, 0, numWords * sizeof(uint64_t)); 37 return result; 38 } 39 40 /// A utility function for allocating memory and checking for allocation 41 /// failure. The content is not zeroed. 42 inline static uint64_t* getMemory(unsigned numWords) { 43 uint64_t * result = new uint64_t[numWords]; 44 assert(result && "APInt memory allocation fails!"); 45 return result; 46 } 47 48 /// A utility function that converts a character to a digit. 49 inline static unsigned getDigit(char cdigit, uint8_t radix) { 50 unsigned r; 51 52 if (radix == 16 || radix == 36) { 53 r = cdigit - '0'; 54 if (r <= 9) 55 return r; 56 57 r = cdigit - 'A'; 58 if (r <= radix - 11U) 59 return r + 10; 60 61 r = cdigit - 'a'; 62 if (r <= radix - 11U) 63 return r + 10; 64 65 radix = 10; 66 } 67 68 r = cdigit - '0'; 69 if (r < radix) 70 return r; 71 72 return -1U; 73 } 74 75 76 void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) { 77 pVal = getClearedMemory(getNumWords()); 78 pVal[0] = val; 79 if (isSigned && int64_t(val) < 0) 80 for (unsigned i = 1; i < getNumWords(); ++i) 81 pVal[i] = -1ULL; 82 } 83 84 void APInt::initSlowCase(const APInt& that) { 85 pVal = getMemory(getNumWords()); 86 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE); 87 } 88 89 void APInt::initFromArray(ArrayRef<uint64_t> bigVal) { 90 assert(BitWidth && "Bitwidth too small"); 91 assert(bigVal.data() && "Null pointer detected!"); 92 if (isSingleWord()) 93 VAL = bigVal[0]; 94 else { 95 // Get memory, cleared to 0 96 pVal = getClearedMemory(getNumWords()); 97 // Calculate the number of words to copy 98 unsigned words = std::min<unsigned>(bigVal.size(), getNumWords()); 99 // Copy the words from bigVal to pVal 100 memcpy(pVal, bigVal.data(), words * APINT_WORD_SIZE); 101 } 102 // Make sure unused high bits are cleared 103 clearUnusedBits(); 104 } 105 106 APInt::APInt(unsigned numBits, ArrayRef<uint64_t> bigVal) 107 : BitWidth(numBits), VAL(0) { 108 initFromArray(bigVal); 109 } 110 111 APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]) 112 : BitWidth(numBits), VAL(0) { 113 initFromArray(makeArrayRef(bigVal, numWords)); 114 } 115 116 APInt::APInt(unsigned numbits, StringRef Str, uint8_t radix) 117 : BitWidth(numbits), VAL(0) { 118 assert(BitWidth && "Bitwidth too small"); 119 fromString(numbits, Str, radix); 120 } 121 122 APInt& APInt::AssignSlowCase(const APInt& RHS) { 123 // Don't do anything for X = X 124 if (this == &RHS) 125 return *this; 126 127 if (BitWidth == RHS.getBitWidth()) { 128 // assume same bit-width single-word case is already handled 129 assert(!isSingleWord()); 130 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE); 131 return *this; 132 } 133 134 if (isSingleWord()) { 135 // assume case where both are single words is already handled 136 assert(!RHS.isSingleWord()); 137 VAL = 0; 138 pVal = getMemory(RHS.getNumWords()); 139 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 140 } else if (getNumWords() == RHS.getNumWords()) 141 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 142 else if (RHS.isSingleWord()) { 143 delete [] pVal; 144 VAL = RHS.VAL; 145 } else { 146 delete [] pVal; 147 pVal = getMemory(RHS.getNumWords()); 148 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE); 149 } 150 BitWidth = RHS.BitWidth; 151 return clearUnusedBits(); 152 } 153 154 APInt& APInt::operator=(uint64_t RHS) { 155 if (isSingleWord()) 156 VAL = RHS; 157 else { 158 pVal[0] = RHS; 159 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); 160 } 161 return clearUnusedBits(); 162 } 163 164 /// Profile - This method 'profiles' an APInt for use with FoldingSet. 165 void APInt::Profile(FoldingSetNodeID& ID) const { 166 ID.AddInteger(BitWidth); 167 168 if (isSingleWord()) { 169 ID.AddInteger(VAL); 170 return; 171 } 172 173 unsigned NumWords = getNumWords(); 174 for (unsigned i = 0; i < NumWords; ++i) 175 ID.AddInteger(pVal[i]); 176 } 177 178 /// add_1 - This function adds a single "digit" integer, y, to the multiple 179 /// "digit" integer array, x[]. x[] is modified to reflect the addition and 180 /// 1 is returned if there is a carry out, otherwise 0 is returned. 181 /// @returns the carry of the addition. 182 static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { 183 for (unsigned i = 0; i < len; ++i) { 184 dest[i] = y + x[i]; 185 if (dest[i] < y) 186 y = 1; // Carry one to next digit. 187 else { 188 y = 0; // No need to carry so exit early 189 break; 190 } 191 } 192 return y; 193 } 194 195 /// @brief Prefix increment operator. Increments the APInt by one. 196 APInt& APInt::operator++() { 197 if (isSingleWord()) 198 ++VAL; 199 else 200 add_1(pVal, pVal, getNumWords(), 1); 201 return clearUnusedBits(); 202 } 203 204 /// sub_1 - This function subtracts a single "digit" (64-bit word), y, from 205 /// the multi-digit integer array, x[], propagating the borrowed 1 value until 206 /// no further borrowing is neeeded or it runs out of "digits" in x. The result 207 /// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted. 208 /// In other words, if y > x then this function returns 1, otherwise 0. 209 /// @returns the borrow out of the subtraction 210 static bool sub_1(uint64_t x[], unsigned len, uint64_t y) { 211 for (unsigned i = 0; i < len; ++i) { 212 uint64_t X = x[i]; 213 x[i] -= y; 214 if (y > X) 215 y = 1; // We have to "borrow 1" from next "digit" 216 else { 217 y = 0; // No need to borrow 218 break; // Remaining digits are unchanged so exit early 219 } 220 } 221 return bool(y); 222 } 223 224 /// @brief Prefix decrement operator. Decrements the APInt by one. 225 APInt& APInt::operator--() { 226 if (isSingleWord()) 227 --VAL; 228 else 229 sub_1(pVal, getNumWords(), 1); 230 return clearUnusedBits(); 231 } 232 233 /// add - This function adds the integer array x to the integer array Y and 234 /// places the result in dest. 235 /// @returns the carry out from the addition 236 /// @brief General addition of 64-bit integer arrays 237 static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y, 238 unsigned len) { 239 bool carry = false; 240 for (unsigned i = 0; i< len; ++i) { 241 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x 242 dest[i] = x[i] + y[i] + carry; 243 carry = dest[i] < limit || (carry && dest[i] == limit); 244 } 245 return carry; 246 } 247 248 /// Adds the RHS APint to this APInt. 249 /// @returns this, after addition of RHS. 250 /// @brief Addition assignment operator. 251 APInt& APInt::operator+=(const APInt& RHS) { 252 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 253 if (isSingleWord()) 254 VAL += RHS.VAL; 255 else { 256 add(pVal, pVal, RHS.pVal, getNumWords()); 257 } 258 return clearUnusedBits(); 259 } 260 261 /// Subtracts the integer array y from the integer array x 262 /// @returns returns the borrow out. 263 /// @brief Generalized subtraction of 64-bit integer arrays. 264 static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y, 265 unsigned len) { 266 bool borrow = false; 267 for (unsigned i = 0; i < len; ++i) { 268 uint64_t x_tmp = borrow ? x[i] - 1 : x[i]; 269 borrow = y[i] > x_tmp || (borrow && x[i] == 0); 270 dest[i] = x_tmp - y[i]; 271 } 272 return borrow; 273 } 274 275 /// Subtracts the RHS APInt from this APInt 276 /// @returns this, after subtraction 277 /// @brief Subtraction assignment operator. 278 APInt& APInt::operator-=(const APInt& RHS) { 279 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 280 if (isSingleWord()) 281 VAL -= RHS.VAL; 282 else 283 sub(pVal, pVal, RHS.pVal, getNumWords()); 284 return clearUnusedBits(); 285 } 286 287 /// Multiplies an integer array, x, by a uint64_t integer and places the result 288 /// into dest. 289 /// @returns the carry out of the multiplication. 290 /// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer. 291 static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) { 292 // Split y into high 32-bit part (hy) and low 32-bit part (ly) 293 uint64_t ly = y & 0xffffffffULL, hy = y >> 32; 294 uint64_t carry = 0; 295 296 // For each digit of x. 297 for (unsigned i = 0; i < len; ++i) { 298 // Split x into high and low words 299 uint64_t lx = x[i] & 0xffffffffULL; 300 uint64_t hx = x[i] >> 32; 301 // hasCarry - A flag to indicate if there is a carry to the next digit. 302 // hasCarry == 0, no carry 303 // hasCarry == 1, has carry 304 // hasCarry == 2, no carry and the calculation result == 0. 305 uint8_t hasCarry = 0; 306 dest[i] = carry + lx * ly; 307 // Determine if the add above introduces carry. 308 hasCarry = (dest[i] < carry) ? 1 : 0; 309 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0); 310 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) + 311 // (2^32 - 1) + 2^32 = 2^64. 312 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); 313 314 carry += (lx * hy) & 0xffffffffULL; 315 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL); 316 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) + 317 (carry >> 32) + ((lx * hy) >> 32) + hx * hy; 318 } 319 return carry; 320 } 321 322 /// Multiplies integer array x by integer array y and stores the result into 323 /// the integer array dest. Note that dest's size must be >= xlen + ylen. 324 /// @brief Generalized multiplicate of integer arrays. 325 static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[], 326 unsigned ylen) { 327 dest[xlen] = mul_1(dest, x, xlen, y[0]); 328 for (unsigned i = 1; i < ylen; ++i) { 329 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32; 330 uint64_t carry = 0, lx = 0, hx = 0; 331 for (unsigned j = 0; j < xlen; ++j) { 332 lx = x[j] & 0xffffffffULL; 333 hx = x[j] >> 32; 334 // hasCarry - A flag to indicate if has carry. 335 // hasCarry == 0, no carry 336 // hasCarry == 1, has carry 337 // hasCarry == 2, no carry and the calculation result == 0. 338 uint8_t hasCarry = 0; 339 uint64_t resul = carry + lx * ly; 340 hasCarry = (resul < carry) ? 1 : 0; 341 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32); 342 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0); 343 344 carry += (lx * hy) & 0xffffffffULL; 345 resul = (carry << 32) | (resul & 0xffffffffULL); 346 dest[i+j] += resul; 347 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+ 348 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) + 349 ((lx * hy) >> 32) + hx * hy; 350 } 351 dest[i+xlen] = carry; 352 } 353 } 354 355 APInt& APInt::operator*=(const APInt& RHS) { 356 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 357 if (isSingleWord()) { 358 VAL *= RHS.VAL; 359 clearUnusedBits(); 360 return *this; 361 } 362 363 // Get some bit facts about LHS and check for zero 364 unsigned lhsBits = getActiveBits(); 365 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1; 366 if (!lhsWords) 367 // 0 * X ===> 0 368 return *this; 369 370 // Get some bit facts about RHS and check for zero 371 unsigned rhsBits = RHS.getActiveBits(); 372 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1; 373 if (!rhsWords) { 374 // X * 0 ===> 0 375 clearAllBits(); 376 return *this; 377 } 378 379 // Allocate space for the result 380 unsigned destWords = rhsWords + lhsWords; 381 uint64_t *dest = getMemory(destWords); 382 383 // Perform the long multiply 384 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords); 385 386 // Copy result back into *this 387 clearAllBits(); 388 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords; 389 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE); 390 clearUnusedBits(); 391 392 // delete dest array and return 393 delete[] dest; 394 return *this; 395 } 396 397 APInt& APInt::operator&=(const APInt& RHS) { 398 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 399 if (isSingleWord()) { 400 VAL &= RHS.VAL; 401 return *this; 402 } 403 unsigned numWords = getNumWords(); 404 for (unsigned i = 0; i < numWords; ++i) 405 pVal[i] &= RHS.pVal[i]; 406 return *this; 407 } 408 409 APInt& APInt::operator|=(const APInt& RHS) { 410 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 411 if (isSingleWord()) { 412 VAL |= RHS.VAL; 413 return *this; 414 } 415 unsigned numWords = getNumWords(); 416 for (unsigned i = 0; i < numWords; ++i) 417 pVal[i] |= RHS.pVal[i]; 418 return *this; 419 } 420 421 APInt& APInt::operator^=(const APInt& RHS) { 422 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 423 if (isSingleWord()) { 424 VAL ^= RHS.VAL; 425 this->clearUnusedBits(); 426 return *this; 427 } 428 unsigned numWords = getNumWords(); 429 for (unsigned i = 0; i < numWords; ++i) 430 pVal[i] ^= RHS.pVal[i]; 431 return clearUnusedBits(); 432 } 433 434 APInt APInt::AndSlowCase(const APInt& RHS) const { 435 unsigned numWords = getNumWords(); 436 uint64_t* val = getMemory(numWords); 437 for (unsigned i = 0; i < numWords; ++i) 438 val[i] = pVal[i] & RHS.pVal[i]; 439 return APInt(val, getBitWidth()); 440 } 441 442 APInt APInt::OrSlowCase(const APInt& RHS) const { 443 unsigned numWords = getNumWords(); 444 uint64_t *val = getMemory(numWords); 445 for (unsigned i = 0; i < numWords; ++i) 446 val[i] = pVal[i] | RHS.pVal[i]; 447 return APInt(val, getBitWidth()); 448 } 449 450 APInt APInt::XorSlowCase(const APInt& RHS) const { 451 unsigned numWords = getNumWords(); 452 uint64_t *val = getMemory(numWords); 453 for (unsigned i = 0; i < numWords; ++i) 454 val[i] = pVal[i] ^ RHS.pVal[i]; 455 456 // 0^0==1 so clear the high bits in case they got set. 457 return APInt(val, getBitWidth()).clearUnusedBits(); 458 } 459 460 APInt APInt::operator*(const APInt& RHS) const { 461 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 462 if (isSingleWord()) 463 return APInt(BitWidth, VAL * RHS.VAL); 464 APInt Result(*this); 465 Result *= RHS; 466 return Result; 467 } 468 469 APInt APInt::operator+(const APInt& RHS) const { 470 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 471 if (isSingleWord()) 472 return APInt(BitWidth, VAL + RHS.VAL); 473 APInt Result(BitWidth, 0); 474 add(Result.pVal, this->pVal, RHS.pVal, getNumWords()); 475 return Result.clearUnusedBits(); 476 } 477 478 APInt APInt::operator-(const APInt& RHS) const { 479 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 480 if (isSingleWord()) 481 return APInt(BitWidth, VAL - RHS.VAL); 482 APInt Result(BitWidth, 0); 483 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords()); 484 return Result.clearUnusedBits(); 485 } 486 487 bool APInt::EqualSlowCase(const APInt& RHS) const { 488 // Get some facts about the number of bits used in the two operands. 489 unsigned n1 = getActiveBits(); 490 unsigned n2 = RHS.getActiveBits(); 491 492 // If the number of bits isn't the same, they aren't equal 493 if (n1 != n2) 494 return false; 495 496 // If the number of bits fits in a word, we only need to compare the low word. 497 if (n1 <= APINT_BITS_PER_WORD) 498 return pVal[0] == RHS.pVal[0]; 499 500 // Otherwise, compare everything 501 for (int i = whichWord(n1 - 1); i >= 0; --i) 502 if (pVal[i] != RHS.pVal[i]) 503 return false; 504 return true; 505 } 506 507 bool APInt::EqualSlowCase(uint64_t Val) const { 508 unsigned n = getActiveBits(); 509 if (n <= APINT_BITS_PER_WORD) 510 return pVal[0] == Val; 511 else 512 return false; 513 } 514 515 bool APInt::ult(const APInt& RHS) const { 516 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 517 if (isSingleWord()) 518 return VAL < RHS.VAL; 519 520 // Get active bit length of both operands 521 unsigned n1 = getActiveBits(); 522 unsigned n2 = RHS.getActiveBits(); 523 524 // If magnitude of LHS is less than RHS, return true. 525 if (n1 < n2) 526 return true; 527 528 // If magnitude of RHS is greather than LHS, return false. 529 if (n2 < n1) 530 return false; 531 532 // If they bot fit in a word, just compare the low order word 533 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD) 534 return pVal[0] < RHS.pVal[0]; 535 536 // Otherwise, compare all words 537 unsigned topWord = whichWord(std::max(n1,n2)-1); 538 for (int i = topWord; i >= 0; --i) { 539 if (pVal[i] > RHS.pVal[i]) 540 return false; 541 if (pVal[i] < RHS.pVal[i]) 542 return true; 543 } 544 return false; 545 } 546 547 bool APInt::slt(const APInt& RHS) const { 548 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison"); 549 if (isSingleWord()) { 550 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth); 551 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth); 552 return lhsSext < rhsSext; 553 } 554 555 APInt lhs(*this); 556 APInt rhs(RHS); 557 bool lhsNeg = isNegative(); 558 bool rhsNeg = rhs.isNegative(); 559 if (lhsNeg) { 560 // Sign bit is set so perform two's complement to make it positive 561 lhs.flipAllBits(); 562 ++lhs; 563 } 564 if (rhsNeg) { 565 // Sign bit is set so perform two's complement to make it positive 566 rhs.flipAllBits(); 567 ++rhs; 568 } 569 570 // Now we have unsigned values to compare so do the comparison if necessary 571 // based on the negativeness of the values. 572 if (lhsNeg) 573 if (rhsNeg) 574 return lhs.ugt(rhs); 575 else 576 return true; 577 else if (rhsNeg) 578 return false; 579 else 580 return lhs.ult(rhs); 581 } 582 583 void APInt::setBit(unsigned bitPosition) { 584 if (isSingleWord()) 585 VAL |= maskBit(bitPosition); 586 else 587 pVal[whichWord(bitPosition)] |= maskBit(bitPosition); 588 } 589 590 /// Set the given bit to 0 whose position is given as "bitPosition". 591 /// @brief Set a given bit to 0. 592 void APInt::clearBit(unsigned bitPosition) { 593 if (isSingleWord()) 594 VAL &= ~maskBit(bitPosition); 595 else 596 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition); 597 } 598 599 /// @brief Toggle every bit to its opposite value. 600 601 /// Toggle a given bit to its opposite value whose position is given 602 /// as "bitPosition". 603 /// @brief Toggles a given bit to its opposite value. 604 void APInt::flipBit(unsigned bitPosition) { 605 assert(bitPosition < BitWidth && "Out of the bit-width range!"); 606 if ((*this)[bitPosition]) clearBit(bitPosition); 607 else setBit(bitPosition); 608 } 609 610 unsigned APInt::getBitsNeeded(StringRef str, uint8_t radix) { 611 assert(!str.empty() && "Invalid string length"); 612 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 613 radix == 36) && 614 "Radix should be 2, 8, 10, 16, or 36!"); 615 616 size_t slen = str.size(); 617 618 // Each computation below needs to know if it's negative. 619 StringRef::iterator p = str.begin(); 620 unsigned isNegative = *p == '-'; 621 if (*p == '-' || *p == '+') { 622 p++; 623 slen--; 624 assert(slen && "String is only a sign, needs a value."); 625 } 626 627 // For radixes of power-of-two values, the bits required is accurately and 628 // easily computed 629 if (radix == 2) 630 return slen + isNegative; 631 if (radix == 8) 632 return slen * 3 + isNegative; 633 if (radix == 16) 634 return slen * 4 + isNegative; 635 636 // FIXME: base 36 637 638 // This is grossly inefficient but accurate. We could probably do something 639 // with a computation of roughly slen*64/20 and then adjust by the value of 640 // the first few digits. But, I'm not sure how accurate that could be. 641 642 // Compute a sufficient number of bits that is always large enough but might 643 // be too large. This avoids the assertion in the constructor. This 644 // calculation doesn't work appropriately for the numbers 0-9, so just use 4 645 // bits in that case. 646 unsigned sufficient 647 = radix == 10? (slen == 1 ? 4 : slen * 64/18) 648 : (slen == 1 ? 7 : slen * 16/3); 649 650 // Convert to the actual binary value. 651 APInt tmp(sufficient, StringRef(p, slen), radix); 652 653 // Compute how many bits are required. If the log is infinite, assume we need 654 // just bit. 655 unsigned log = tmp.logBase2(); 656 if (log == (unsigned)-1) { 657 return isNegative + 1; 658 } else { 659 return isNegative + log + 1; 660 } 661 } 662 663 hash_code llvm::hash_value(const APInt &Arg) { 664 if (Arg.isSingleWord()) 665 return hash_combine(Arg.VAL); 666 667 return hash_combine_range(Arg.pVal, Arg.pVal + Arg.getNumWords()); 668 } 669 670 /// HiBits - This function returns the high "numBits" bits of this APInt. 671 APInt APInt::getHiBits(unsigned numBits) const { 672 return APIntOps::lshr(*this, BitWidth - numBits); 673 } 674 675 /// LoBits - This function returns the low "numBits" bits of this APInt. 676 APInt APInt::getLoBits(unsigned numBits) const { 677 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits), 678 BitWidth - numBits); 679 } 680 681 unsigned APInt::countLeadingZerosSlowCase() const { 682 // Treat the most significand word differently because it might have 683 // meaningless bits set beyond the precision. 684 unsigned BitsInMSW = BitWidth % APINT_BITS_PER_WORD; 685 integerPart MSWMask; 686 if (BitsInMSW) MSWMask = (integerPart(1) << BitsInMSW) - 1; 687 else { 688 MSWMask = ~integerPart(0); 689 BitsInMSW = APINT_BITS_PER_WORD; 690 } 691 692 unsigned i = getNumWords(); 693 integerPart MSW = pVal[i-1] & MSWMask; 694 if (MSW) 695 return llvm::countLeadingZeros(MSW) - (APINT_BITS_PER_WORD - BitsInMSW); 696 697 unsigned Count = BitsInMSW; 698 for (--i; i > 0u; --i) { 699 if (pVal[i-1] == 0) 700 Count += APINT_BITS_PER_WORD; 701 else { 702 Count += llvm::countLeadingZeros(pVal[i-1]); 703 break; 704 } 705 } 706 return Count; 707 } 708 709 unsigned APInt::countLeadingOnes() const { 710 if (isSingleWord()) 711 return CountLeadingOnes_64(VAL << (APINT_BITS_PER_WORD - BitWidth)); 712 713 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD; 714 unsigned shift; 715 if (!highWordBits) { 716 highWordBits = APINT_BITS_PER_WORD; 717 shift = 0; 718 } else { 719 shift = APINT_BITS_PER_WORD - highWordBits; 720 } 721 int i = getNumWords() - 1; 722 unsigned Count = CountLeadingOnes_64(pVal[i] << shift); 723 if (Count == highWordBits) { 724 for (i--; i >= 0; --i) { 725 if (pVal[i] == -1ULL) 726 Count += APINT_BITS_PER_WORD; 727 else { 728 Count += CountLeadingOnes_64(pVal[i]); 729 break; 730 } 731 } 732 } 733 return Count; 734 } 735 736 unsigned APInt::countTrailingZeros() const { 737 if (isSingleWord()) 738 return std::min(unsigned(llvm::countTrailingZeros(VAL)), BitWidth); 739 unsigned Count = 0; 740 unsigned i = 0; 741 for (; i < getNumWords() && pVal[i] == 0; ++i) 742 Count += APINT_BITS_PER_WORD; 743 if (i < getNumWords()) 744 Count += llvm::countTrailingZeros(pVal[i]); 745 return std::min(Count, BitWidth); 746 } 747 748 unsigned APInt::countTrailingOnesSlowCase() const { 749 unsigned Count = 0; 750 unsigned i = 0; 751 for (; i < getNumWords() && pVal[i] == -1ULL; ++i) 752 Count += APINT_BITS_PER_WORD; 753 if (i < getNumWords()) 754 Count += CountTrailingOnes_64(pVal[i]); 755 return std::min(Count, BitWidth); 756 } 757 758 unsigned APInt::countPopulationSlowCase() const { 759 unsigned Count = 0; 760 for (unsigned i = 0; i < getNumWords(); ++i) 761 Count += CountPopulation_64(pVal[i]); 762 return Count; 763 } 764 765 /// Perform a logical right-shift from Src to Dst, which must be equal or 766 /// non-overlapping, of Words words, by Shift, which must be less than 64. 767 static void lshrNear(uint64_t *Dst, uint64_t *Src, unsigned Words, 768 unsigned Shift) { 769 uint64_t Carry = 0; 770 for (int I = Words - 1; I >= 0; --I) { 771 uint64_t Tmp = Src[I]; 772 Dst[I] = (Tmp >> Shift) | Carry; 773 Carry = Tmp << (64 - Shift); 774 } 775 } 776 777 APInt APInt::byteSwap() const { 778 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!"); 779 if (BitWidth == 16) 780 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL))); 781 if (BitWidth == 32) 782 return APInt(BitWidth, ByteSwap_32(unsigned(VAL))); 783 if (BitWidth == 48) { 784 unsigned Tmp1 = unsigned(VAL >> 16); 785 Tmp1 = ByteSwap_32(Tmp1); 786 uint16_t Tmp2 = uint16_t(VAL); 787 Tmp2 = ByteSwap_16(Tmp2); 788 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1); 789 } 790 if (BitWidth == 64) 791 return APInt(BitWidth, ByteSwap_64(VAL)); 792 793 APInt Result(getNumWords() * APINT_BITS_PER_WORD, 0); 794 for (unsigned I = 0, N = getNumWords(); I != N; ++I) 795 Result.pVal[I] = ByteSwap_64(pVal[N - I - 1]); 796 if (Result.BitWidth != BitWidth) { 797 lshrNear(Result.pVal, Result.pVal, getNumWords(), 798 Result.BitWidth - BitWidth); 799 Result.BitWidth = BitWidth; 800 } 801 return Result; 802 } 803 804 APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1, 805 const APInt& API2) { 806 APInt A = API1, B = API2; 807 while (!!B) { 808 APInt T = B; 809 B = APIntOps::urem(A, B); 810 A = T; 811 } 812 return A; 813 } 814 815 APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) { 816 union { 817 double D; 818 uint64_t I; 819 } T; 820 T.D = Double; 821 822 // Get the sign bit from the highest order bit 823 bool isNeg = T.I >> 63; 824 825 // Get the 11-bit exponent and adjust for the 1023 bit bias 826 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023; 827 828 // If the exponent is negative, the value is < 0 so just return 0. 829 if (exp < 0) 830 return APInt(width, 0u); 831 832 // Extract the mantissa by clearing the top 12 bits (sign + exponent). 833 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52; 834 835 // If the exponent doesn't shift all bits out of the mantissa 836 if (exp < 52) 837 return isNeg ? -APInt(width, mantissa >> (52 - exp)) : 838 APInt(width, mantissa >> (52 - exp)); 839 840 // If the client didn't provide enough bits for us to shift the mantissa into 841 // then the result is undefined, just return 0 842 if (width <= exp - 52) 843 return APInt(width, 0); 844 845 // Otherwise, we have to shift the mantissa bits up to the right location 846 APInt Tmp(width, mantissa); 847 Tmp = Tmp.shl((unsigned)exp - 52); 848 return isNeg ? -Tmp : Tmp; 849 } 850 851 /// RoundToDouble - This function converts this APInt to a double. 852 /// The layout for double is as following (IEEE Standard 754): 853 /// -------------------------------------- 854 /// | Sign Exponent Fraction Bias | 855 /// |-------------------------------------- | 856 /// | 1[63] 11[62-52] 52[51-00] 1023 | 857 /// -------------------------------------- 858 double APInt::roundToDouble(bool isSigned) const { 859 860 // Handle the simple case where the value is contained in one uint64_t. 861 // It is wrong to optimize getWord(0) to VAL; there might be more than one word. 862 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) { 863 if (isSigned) { 864 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth); 865 return double(sext); 866 } else 867 return double(getWord(0)); 868 } 869 870 // Determine if the value is negative. 871 bool isNeg = isSigned ? (*this)[BitWidth-1] : false; 872 873 // Construct the absolute value if we're negative. 874 APInt Tmp(isNeg ? -(*this) : (*this)); 875 876 // Figure out how many bits we're using. 877 unsigned n = Tmp.getActiveBits(); 878 879 // The exponent (without bias normalization) is just the number of bits 880 // we are using. Note that the sign bit is gone since we constructed the 881 // absolute value. 882 uint64_t exp = n; 883 884 // Return infinity for exponent overflow 885 if (exp > 1023) { 886 if (!isSigned || !isNeg) 887 return std::numeric_limits<double>::infinity(); 888 else 889 return -std::numeric_limits<double>::infinity(); 890 } 891 exp += 1023; // Increment for 1023 bias 892 893 // Number of bits in mantissa is 52. To obtain the mantissa value, we must 894 // extract the high 52 bits from the correct words in pVal. 895 uint64_t mantissa; 896 unsigned hiWord = whichWord(n-1); 897 if (hiWord == 0) { 898 mantissa = Tmp.pVal[0]; 899 if (n > 52) 900 mantissa >>= n - 52; // shift down, we want the top 52 bits. 901 } else { 902 assert(hiWord > 0 && "huh?"); 903 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD); 904 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD); 905 mantissa = hibits | lobits; 906 } 907 908 // The leading bit of mantissa is implicit, so get rid of it. 909 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0; 910 union { 911 double D; 912 uint64_t I; 913 } T; 914 T.I = sign | (exp << 52) | mantissa; 915 return T.D; 916 } 917 918 // Truncate to new width. 919 APInt APInt::trunc(unsigned width) const { 920 assert(width < BitWidth && "Invalid APInt Truncate request"); 921 assert(width && "Can't truncate to 0 bits"); 922 923 if (width <= APINT_BITS_PER_WORD) 924 return APInt(width, getRawData()[0]); 925 926 APInt Result(getMemory(getNumWords(width)), width); 927 928 // Copy full words. 929 unsigned i; 930 for (i = 0; i != width / APINT_BITS_PER_WORD; i++) 931 Result.pVal[i] = pVal[i]; 932 933 // Truncate and copy any partial word. 934 unsigned bits = (0 - width) % APINT_BITS_PER_WORD; 935 if (bits != 0) 936 Result.pVal[i] = pVal[i] << bits >> bits; 937 938 return Result; 939 } 940 941 // Sign extend to a new width. 942 APInt APInt::sext(unsigned width) const { 943 assert(width > BitWidth && "Invalid APInt SignExtend request"); 944 945 if (width <= APINT_BITS_PER_WORD) { 946 uint64_t val = VAL << (APINT_BITS_PER_WORD - BitWidth); 947 val = (int64_t)val >> (width - BitWidth); 948 return APInt(width, val >> (APINT_BITS_PER_WORD - width)); 949 } 950 951 APInt Result(getMemory(getNumWords(width)), width); 952 953 // Copy full words. 954 unsigned i; 955 uint64_t word = 0; 956 for (i = 0; i != BitWidth / APINT_BITS_PER_WORD; i++) { 957 word = getRawData()[i]; 958 Result.pVal[i] = word; 959 } 960 961 // Read and sign-extend any partial word. 962 unsigned bits = (0 - BitWidth) % APINT_BITS_PER_WORD; 963 if (bits != 0) 964 word = (int64_t)getRawData()[i] << bits >> bits; 965 else 966 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); 967 968 // Write remaining full words. 969 for (; i != width / APINT_BITS_PER_WORD; i++) { 970 Result.pVal[i] = word; 971 word = (int64_t)word >> (APINT_BITS_PER_WORD - 1); 972 } 973 974 // Write any partial word. 975 bits = (0 - width) % APINT_BITS_PER_WORD; 976 if (bits != 0) 977 Result.pVal[i] = word << bits >> bits; 978 979 return Result; 980 } 981 982 // Zero extend to a new width. 983 APInt APInt::zext(unsigned width) const { 984 assert(width > BitWidth && "Invalid APInt ZeroExtend request"); 985 986 if (width <= APINT_BITS_PER_WORD) 987 return APInt(width, VAL); 988 989 APInt Result(getMemory(getNumWords(width)), width); 990 991 // Copy words. 992 unsigned i; 993 for (i = 0; i != getNumWords(); i++) 994 Result.pVal[i] = getRawData()[i]; 995 996 // Zero remaining words. 997 memset(&Result.pVal[i], 0, (Result.getNumWords() - i) * APINT_WORD_SIZE); 998 999 return Result; 1000 } 1001 1002 APInt APInt::zextOrTrunc(unsigned width) const { 1003 if (BitWidth < width) 1004 return zext(width); 1005 if (BitWidth > width) 1006 return trunc(width); 1007 return *this; 1008 } 1009 1010 APInt APInt::sextOrTrunc(unsigned width) const { 1011 if (BitWidth < width) 1012 return sext(width); 1013 if (BitWidth > width) 1014 return trunc(width); 1015 return *this; 1016 } 1017 1018 APInt APInt::zextOrSelf(unsigned width) const { 1019 if (BitWidth < width) 1020 return zext(width); 1021 return *this; 1022 } 1023 1024 APInt APInt::sextOrSelf(unsigned width) const { 1025 if (BitWidth < width) 1026 return sext(width); 1027 return *this; 1028 } 1029 1030 /// Arithmetic right-shift this APInt by shiftAmt. 1031 /// @brief Arithmetic right-shift function. 1032 APInt APInt::ashr(const APInt &shiftAmt) const { 1033 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1034 } 1035 1036 /// Arithmetic right-shift this APInt by shiftAmt. 1037 /// @brief Arithmetic right-shift function. 1038 APInt APInt::ashr(unsigned shiftAmt) const { 1039 assert(shiftAmt <= BitWidth && "Invalid shift amount"); 1040 // Handle a degenerate case 1041 if (shiftAmt == 0) 1042 return *this; 1043 1044 // Handle single word shifts with built-in ashr 1045 if (isSingleWord()) { 1046 if (shiftAmt == BitWidth) 1047 return APInt(BitWidth, 0); // undefined 1048 else { 1049 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth; 1050 return APInt(BitWidth, 1051 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt)); 1052 } 1053 } 1054 1055 // If all the bits were shifted out, the result is, technically, undefined. 1056 // We return -1 if it was negative, 0 otherwise. We check this early to avoid 1057 // issues in the algorithm below. 1058 if (shiftAmt == BitWidth) { 1059 if (isNegative()) 1060 return APInt(BitWidth, -1ULL, true); 1061 else 1062 return APInt(BitWidth, 0); 1063 } 1064 1065 // Create some space for the result. 1066 uint64_t * val = new uint64_t[getNumWords()]; 1067 1068 // Compute some values needed by the following shift algorithms 1069 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word 1070 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift 1071 unsigned breakWord = getNumWords() - 1 - offset; // last word affected 1072 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word? 1073 if (bitsInWord == 0) 1074 bitsInWord = APINT_BITS_PER_WORD; 1075 1076 // If we are shifting whole words, just move whole words 1077 if (wordShift == 0) { 1078 // Move the words containing significant bits 1079 for (unsigned i = 0; i <= breakWord; ++i) 1080 val[i] = pVal[i+offset]; // move whole word 1081 1082 // Adjust the top significant word for sign bit fill, if negative 1083 if (isNegative()) 1084 if (bitsInWord < APINT_BITS_PER_WORD) 1085 val[breakWord] |= ~0ULL << bitsInWord; // set high bits 1086 } else { 1087 // Shift the low order words 1088 for (unsigned i = 0; i < breakWord; ++i) { 1089 // This combines the shifted corresponding word with the low bits from 1090 // the next word (shifted into this word's high bits). 1091 val[i] = (pVal[i+offset] >> wordShift) | 1092 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); 1093 } 1094 1095 // Shift the break word. In this case there are no bits from the next word 1096 // to include in this word. 1097 val[breakWord] = pVal[breakWord+offset] >> wordShift; 1098 1099 // Deal with sign extenstion in the break word, and possibly the word before 1100 // it. 1101 if (isNegative()) { 1102 if (wordShift > bitsInWord) { 1103 if (breakWord > 0) 1104 val[breakWord-1] |= 1105 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord)); 1106 val[breakWord] |= ~0ULL; 1107 } else 1108 val[breakWord] |= (~0ULL << (bitsInWord - wordShift)); 1109 } 1110 } 1111 1112 // Remaining words are 0 or -1, just assign them. 1113 uint64_t fillValue = (isNegative() ? -1ULL : 0); 1114 for (unsigned i = breakWord+1; i < getNumWords(); ++i) 1115 val[i] = fillValue; 1116 return APInt(val, BitWidth).clearUnusedBits(); 1117 } 1118 1119 /// Logical right-shift this APInt by shiftAmt. 1120 /// @brief Logical right-shift function. 1121 APInt APInt::lshr(const APInt &shiftAmt) const { 1122 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1123 } 1124 1125 /// Logical right-shift this APInt by shiftAmt. 1126 /// @brief Logical right-shift function. 1127 APInt APInt::lshr(unsigned shiftAmt) const { 1128 if (isSingleWord()) { 1129 if (shiftAmt >= BitWidth) 1130 return APInt(BitWidth, 0); 1131 else 1132 return APInt(BitWidth, this->VAL >> shiftAmt); 1133 } 1134 1135 // If all the bits were shifted out, the result is 0. This avoids issues 1136 // with shifting by the size of the integer type, which produces undefined 1137 // results. We define these "undefined results" to always be 0. 1138 if (shiftAmt >= BitWidth) 1139 return APInt(BitWidth, 0); 1140 1141 // If none of the bits are shifted out, the result is *this. This avoids 1142 // issues with shifting by the size of the integer type, which produces 1143 // undefined results in the code below. This is also an optimization. 1144 if (shiftAmt == 0) 1145 return *this; 1146 1147 // Create some space for the result. 1148 uint64_t * val = new uint64_t[getNumWords()]; 1149 1150 // If we are shifting less than a word, compute the shift with a simple carry 1151 if (shiftAmt < APINT_BITS_PER_WORD) { 1152 lshrNear(val, pVal, getNumWords(), shiftAmt); 1153 return APInt(val, BitWidth).clearUnusedBits(); 1154 } 1155 1156 // Compute some values needed by the remaining shift algorithms 1157 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; 1158 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; 1159 1160 // If we are shifting whole words, just move whole words 1161 if (wordShift == 0) { 1162 for (unsigned i = 0; i < getNumWords() - offset; ++i) 1163 val[i] = pVal[i+offset]; 1164 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++) 1165 val[i] = 0; 1166 return APInt(val,BitWidth).clearUnusedBits(); 1167 } 1168 1169 // Shift the low order words 1170 unsigned breakWord = getNumWords() - offset -1; 1171 for (unsigned i = 0; i < breakWord; ++i) 1172 val[i] = (pVal[i+offset] >> wordShift) | 1173 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift)); 1174 // Shift the break word. 1175 val[breakWord] = pVal[breakWord+offset] >> wordShift; 1176 1177 // Remaining words are 0 1178 for (unsigned i = breakWord+1; i < getNumWords(); ++i) 1179 val[i] = 0; 1180 return APInt(val, BitWidth).clearUnusedBits(); 1181 } 1182 1183 /// Left-shift this APInt by shiftAmt. 1184 /// @brief Left-shift function. 1185 APInt APInt::shl(const APInt &shiftAmt) const { 1186 // It's undefined behavior in C to shift by BitWidth or greater. 1187 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth)); 1188 } 1189 1190 APInt APInt::shlSlowCase(unsigned shiftAmt) const { 1191 // If all the bits were shifted out, the result is 0. This avoids issues 1192 // with shifting by the size of the integer type, which produces undefined 1193 // results. We define these "undefined results" to always be 0. 1194 if (shiftAmt == BitWidth) 1195 return APInt(BitWidth, 0); 1196 1197 // If none of the bits are shifted out, the result is *this. This avoids a 1198 // lshr by the words size in the loop below which can produce incorrect 1199 // results. It also avoids the expensive computation below for a common case. 1200 if (shiftAmt == 0) 1201 return *this; 1202 1203 // Create some space for the result. 1204 uint64_t * val = new uint64_t[getNumWords()]; 1205 1206 // If we are shifting less than a word, do it the easy way 1207 if (shiftAmt < APINT_BITS_PER_WORD) { 1208 uint64_t carry = 0; 1209 for (unsigned i = 0; i < getNumWords(); i++) { 1210 val[i] = pVal[i] << shiftAmt | carry; 1211 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt); 1212 } 1213 return APInt(val, BitWidth).clearUnusedBits(); 1214 } 1215 1216 // Compute some values needed by the remaining shift algorithms 1217 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; 1218 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; 1219 1220 // If we are shifting whole words, just move whole words 1221 if (wordShift == 0) { 1222 for (unsigned i = 0; i < offset; i++) 1223 val[i] = 0; 1224 for (unsigned i = offset; i < getNumWords(); i++) 1225 val[i] = pVal[i-offset]; 1226 return APInt(val,BitWidth).clearUnusedBits(); 1227 } 1228 1229 // Copy whole words from this to Result. 1230 unsigned i = getNumWords() - 1; 1231 for (; i > offset; --i) 1232 val[i] = pVal[i-offset] << wordShift | 1233 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift); 1234 val[offset] = pVal[0] << wordShift; 1235 for (i = 0; i < offset; ++i) 1236 val[i] = 0; 1237 return APInt(val, BitWidth).clearUnusedBits(); 1238 } 1239 1240 APInt APInt::rotl(const APInt &rotateAmt) const { 1241 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth)); 1242 } 1243 1244 APInt APInt::rotl(unsigned rotateAmt) const { 1245 rotateAmt %= BitWidth; 1246 if (rotateAmt == 0) 1247 return *this; 1248 return shl(rotateAmt) | lshr(BitWidth - rotateAmt); 1249 } 1250 1251 APInt APInt::rotr(const APInt &rotateAmt) const { 1252 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth)); 1253 } 1254 1255 APInt APInt::rotr(unsigned rotateAmt) const { 1256 rotateAmt %= BitWidth; 1257 if (rotateAmt == 0) 1258 return *this; 1259 return lshr(rotateAmt) | shl(BitWidth - rotateAmt); 1260 } 1261 1262 // Square Root - this method computes and returns the square root of "this". 1263 // Three mechanisms are used for computation. For small values (<= 5 bits), 1264 // a table lookup is done. This gets some performance for common cases. For 1265 // values using less than 52 bits, the value is converted to double and then 1266 // the libc sqrt function is called. The result is rounded and then converted 1267 // back to a uint64_t which is then used to construct the result. Finally, 1268 // the Babylonian method for computing square roots is used. 1269 APInt APInt::sqrt() const { 1270 1271 // Determine the magnitude of the value. 1272 unsigned magnitude = getActiveBits(); 1273 1274 // Use a fast table for some small values. This also gets rid of some 1275 // rounding errors in libc sqrt for small values. 1276 if (magnitude <= 5) { 1277 static const uint8_t results[32] = { 1278 /* 0 */ 0, 1279 /* 1- 2 */ 1, 1, 1280 /* 3- 6 */ 2, 2, 2, 2, 1281 /* 7-12 */ 3, 3, 3, 3, 3, 3, 1282 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4, 1283 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1284 /* 31 */ 6 1285 }; 1286 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]); 1287 } 1288 1289 // If the magnitude of the value fits in less than 52 bits (the precision of 1290 // an IEEE double precision floating point value), then we can use the 1291 // libc sqrt function which will probably use a hardware sqrt computation. 1292 // This should be faster than the algorithm below. 1293 if (magnitude < 52) { 1294 #if HAVE_ROUND 1295 return APInt(BitWidth, 1296 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0]))))); 1297 #else 1298 return APInt(BitWidth, 1299 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0])) + 0.5)); 1300 #endif 1301 } 1302 1303 // Okay, all the short cuts are exhausted. We must compute it. The following 1304 // is a classical Babylonian method for computing the square root. This code 1305 // was adapted to APINt from a wikipedia article on such computations. 1306 // See http://www.wikipedia.org/ and go to the page named 1307 // Calculate_an_integer_square_root. 1308 unsigned nbits = BitWidth, i = 4; 1309 APInt testy(BitWidth, 16); 1310 APInt x_old(BitWidth, 1); 1311 APInt x_new(BitWidth, 0); 1312 APInt two(BitWidth, 2); 1313 1314 // Select a good starting value using binary logarithms. 1315 for (;; i += 2, testy = testy.shl(2)) 1316 if (i >= nbits || this->ule(testy)) { 1317 x_old = x_old.shl(i / 2); 1318 break; 1319 } 1320 1321 // Use the Babylonian method to arrive at the integer square root: 1322 for (;;) { 1323 x_new = (this->udiv(x_old) + x_old).udiv(two); 1324 if (x_old.ule(x_new)) 1325 break; 1326 x_old = x_new; 1327 } 1328 1329 // Make sure we return the closest approximation 1330 // NOTE: The rounding calculation below is correct. It will produce an 1331 // off-by-one discrepancy with results from pari/gp. That discrepancy has been 1332 // determined to be a rounding issue with pari/gp as it begins to use a 1333 // floating point representation after 192 bits. There are no discrepancies 1334 // between this algorithm and pari/gp for bit widths < 192 bits. 1335 APInt square(x_old * x_old); 1336 APInt nextSquare((x_old + 1) * (x_old +1)); 1337 if (this->ult(square)) 1338 return x_old; 1339 assert(this->ule(nextSquare) && "Error in APInt::sqrt computation"); 1340 APInt midpoint((nextSquare - square).udiv(two)); 1341 APInt offset(*this - square); 1342 if (offset.ult(midpoint)) 1343 return x_old; 1344 return x_old + 1; 1345 } 1346 1347 /// Computes the multiplicative inverse of this APInt for a given modulo. The 1348 /// iterative extended Euclidean algorithm is used to solve for this value, 1349 /// however we simplify it to speed up calculating only the inverse, and take 1350 /// advantage of div+rem calculations. We also use some tricks to avoid copying 1351 /// (potentially large) APInts around. 1352 APInt APInt::multiplicativeInverse(const APInt& modulo) const { 1353 assert(ult(modulo) && "This APInt must be smaller than the modulo"); 1354 1355 // Using the properties listed at the following web page (accessed 06/21/08): 1356 // http://www.numbertheory.org/php/euclid.html 1357 // (especially the properties numbered 3, 4 and 9) it can be proved that 1358 // BitWidth bits suffice for all the computations in the algorithm implemented 1359 // below. More precisely, this number of bits suffice if the multiplicative 1360 // inverse exists, but may not suffice for the general extended Euclidean 1361 // algorithm. 1362 1363 APInt r[2] = { modulo, *this }; 1364 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) }; 1365 APInt q(BitWidth, 0); 1366 1367 unsigned i; 1368 for (i = 0; r[i^1] != 0; i ^= 1) { 1369 // An overview of the math without the confusing bit-flipping: 1370 // q = r[i-2] / r[i-1] 1371 // r[i] = r[i-2] % r[i-1] 1372 // t[i] = t[i-2] - t[i-1] * q 1373 udivrem(r[i], r[i^1], q, r[i]); 1374 t[i] -= t[i^1] * q; 1375 } 1376 1377 // If this APInt and the modulo are not coprime, there is no multiplicative 1378 // inverse, so return 0. We check this by looking at the next-to-last 1379 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean 1380 // algorithm. 1381 if (r[i] != 1) 1382 return APInt(BitWidth, 0); 1383 1384 // The next-to-last t is the multiplicative inverse. However, we are 1385 // interested in a positive inverse. Calcuate a positive one from a negative 1386 // one if necessary. A simple addition of the modulo suffices because 1387 // abs(t[i]) is known to be less than *this/2 (see the link above). 1388 return t[i].isNegative() ? t[i] + modulo : t[i]; 1389 } 1390 1391 /// Calculate the magic numbers required to implement a signed integer division 1392 /// by a constant as a sequence of multiplies, adds and shifts. Requires that 1393 /// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S. 1394 /// Warren, Jr., chapter 10. 1395 APInt::ms APInt::magic() const { 1396 const APInt& d = *this; 1397 unsigned p; 1398 APInt ad, anc, delta, q1, r1, q2, r2, t; 1399 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1400 struct ms mag; 1401 1402 ad = d.abs(); 1403 t = signedMin + (d.lshr(d.getBitWidth() - 1)); 1404 anc = t - 1 - t.urem(ad); // absolute value of nc 1405 p = d.getBitWidth() - 1; // initialize p 1406 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc) 1407 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc)) 1408 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d) 1409 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d)) 1410 do { 1411 p = p + 1; 1412 q1 = q1<<1; // update q1 = 2p/abs(nc) 1413 r1 = r1<<1; // update r1 = rem(2p/abs(nc)) 1414 if (r1.uge(anc)) { // must be unsigned comparison 1415 q1 = q1 + 1; 1416 r1 = r1 - anc; 1417 } 1418 q2 = q2<<1; // update q2 = 2p/abs(d) 1419 r2 = r2<<1; // update r2 = rem(2p/abs(d)) 1420 if (r2.uge(ad)) { // must be unsigned comparison 1421 q2 = q2 + 1; 1422 r2 = r2 - ad; 1423 } 1424 delta = ad - r2; 1425 } while (q1.ult(delta) || (q1 == delta && r1 == 0)); 1426 1427 mag.m = q2 + 1; 1428 if (d.isNegative()) mag.m = -mag.m; // resulting magic number 1429 mag.s = p - d.getBitWidth(); // resulting shift 1430 return mag; 1431 } 1432 1433 /// Calculate the magic numbers required to implement an unsigned integer 1434 /// division by a constant as a sequence of multiplies, adds and shifts. 1435 /// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry 1436 /// S. Warren, Jr., chapter 10. 1437 /// LeadingZeros can be used to simplify the calculation if the upper bits 1438 /// of the divided value are known zero. 1439 APInt::mu APInt::magicu(unsigned LeadingZeros) const { 1440 const APInt& d = *this; 1441 unsigned p; 1442 APInt nc, delta, q1, r1, q2, r2; 1443 struct mu magu; 1444 magu.a = 0; // initialize "add" indicator 1445 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth()).lshr(LeadingZeros); 1446 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth()); 1447 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth()); 1448 1449 nc = allOnes - (allOnes - d).urem(d); 1450 p = d.getBitWidth() - 1; // initialize p 1451 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc 1452 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc) 1453 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d 1454 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d) 1455 do { 1456 p = p + 1; 1457 if (r1.uge(nc - r1)) { 1458 q1 = q1 + q1 + 1; // update q1 1459 r1 = r1 + r1 - nc; // update r1 1460 } 1461 else { 1462 q1 = q1+q1; // update q1 1463 r1 = r1+r1; // update r1 1464 } 1465 if ((r2 + 1).uge(d - r2)) { 1466 if (q2.uge(signedMax)) magu.a = 1; 1467 q2 = q2+q2 + 1; // update q2 1468 r2 = r2+r2 + 1 - d; // update r2 1469 } 1470 else { 1471 if (q2.uge(signedMin)) magu.a = 1; 1472 q2 = q2+q2; // update q2 1473 r2 = r2+r2 + 1; // update r2 1474 } 1475 delta = d - 1 - r2; 1476 } while (p < d.getBitWidth()*2 && 1477 (q1.ult(delta) || (q1 == delta && r1 == 0))); 1478 magu.m = q2 + 1; // resulting magic number 1479 magu.s = p - d.getBitWidth(); // resulting shift 1480 return magu; 1481 } 1482 1483 /// Implementation of Knuth's Algorithm D (Division of nonnegative integers) 1484 /// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The 1485 /// variables here have the same names as in the algorithm. Comments explain 1486 /// the algorithm and any deviation from it. 1487 static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r, 1488 unsigned m, unsigned n) { 1489 assert(u && "Must provide dividend"); 1490 assert(v && "Must provide divisor"); 1491 assert(q && "Must provide quotient"); 1492 assert(u != v && u != q && v != q && "Must us different memory"); 1493 assert(n>1 && "n must be > 1"); 1494 1495 // Knuth uses the value b as the base of the number system. In our case b 1496 // is 2^31 so we just set it to -1u. 1497 uint64_t b = uint64_t(1) << 32; 1498 1499 #if 0 1500 DEBUG(dbgs() << "KnuthDiv: m=" << m << " n=" << n << '\n'); 1501 DEBUG(dbgs() << "KnuthDiv: original:"); 1502 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1503 DEBUG(dbgs() << " by"); 1504 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); 1505 DEBUG(dbgs() << '\n'); 1506 #endif 1507 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of 1508 // u and v by d. Note that we have taken Knuth's advice here to use a power 1509 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of 1510 // 2 allows us to shift instead of multiply and it is easy to determine the 1511 // shift amount from the leading zeros. We are basically normalizing the u 1512 // and v so that its high bits are shifted to the top of v's range without 1513 // overflow. Note that this can require an extra word in u so that u must 1514 // be of length m+n+1. 1515 unsigned shift = countLeadingZeros(v[n-1]); 1516 unsigned v_carry = 0; 1517 unsigned u_carry = 0; 1518 if (shift) { 1519 for (unsigned i = 0; i < m+n; ++i) { 1520 unsigned u_tmp = u[i] >> (32 - shift); 1521 u[i] = (u[i] << shift) | u_carry; 1522 u_carry = u_tmp; 1523 } 1524 for (unsigned i = 0; i < n; ++i) { 1525 unsigned v_tmp = v[i] >> (32 - shift); 1526 v[i] = (v[i] << shift) | v_carry; 1527 v_carry = v_tmp; 1528 } 1529 } 1530 u[m+n] = u_carry; 1531 #if 0 1532 DEBUG(dbgs() << "KnuthDiv: normal:"); 1533 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1534 DEBUG(dbgs() << " by"); 1535 DEBUG(for (int i = n; i >0; i--) dbgs() << " " << v[i-1]); 1536 DEBUG(dbgs() << '\n'); 1537 #endif 1538 1539 // D2. [Initialize j.] Set j to m. This is the loop counter over the places. 1540 int j = m; 1541 do { 1542 DEBUG(dbgs() << "KnuthDiv: quotient digit #" << j << '\n'); 1543 // D3. [Calculate q'.]. 1544 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q') 1545 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r') 1546 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease 1547 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test 1548 // on v[n-2] determines at high speed most of the cases in which the trial 1549 // value qp is one too large, and it eliminates all cases where qp is two 1550 // too large. 1551 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]); 1552 DEBUG(dbgs() << "KnuthDiv: dividend == " << dividend << '\n'); 1553 uint64_t qp = dividend / v[n-1]; 1554 uint64_t rp = dividend % v[n-1]; 1555 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) { 1556 qp--; 1557 rp += v[n-1]; 1558 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2])) 1559 qp--; 1560 } 1561 DEBUG(dbgs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n'); 1562 1563 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with 1564 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation 1565 // consists of a simple multiplication by a one-place number, combined with 1566 // a subtraction. 1567 bool isNeg = false; 1568 for (unsigned i = 0; i < n; ++i) { 1569 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32); 1570 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]); 1571 bool borrow = subtrahend > u_tmp; 1572 DEBUG(dbgs() << "KnuthDiv: u_tmp == " << u_tmp 1573 << ", subtrahend == " << subtrahend 1574 << ", borrow = " << borrow << '\n'); 1575 1576 uint64_t result = u_tmp - subtrahend; 1577 unsigned k = j + i; 1578 u[k++] = (unsigned)(result & (b-1)); // subtract low word 1579 u[k++] = (unsigned)(result >> 32); // subtract high word 1580 while (borrow && k <= m+n) { // deal with borrow to the left 1581 borrow = u[k] == 0; 1582 u[k]--; 1583 k++; 1584 } 1585 isNeg |= borrow; 1586 DEBUG(dbgs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " << 1587 u[j+i+1] << '\n'); 1588 } 1589 DEBUG(dbgs() << "KnuthDiv: after subtraction:"); 1590 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1591 DEBUG(dbgs() << '\n'); 1592 // The digits (u[j+n]...u[j]) should be kept positive; if the result of 1593 // this step is actually negative, (u[j+n]...u[j]) should be left as the 1594 // true value plus b**(n+1), namely as the b's complement of 1595 // the true value, and a "borrow" to the left should be remembered. 1596 // 1597 if (isNeg) { 1598 bool carry = true; // true because b's complement is "complement + 1" 1599 for (unsigned i = 0; i <= m+n; ++i) { 1600 u[i] = ~u[i] + carry; // b's complement 1601 carry = carry && u[i] == 0; 1602 } 1603 } 1604 DEBUG(dbgs() << "KnuthDiv: after complement:"); 1605 DEBUG(for (int i = m+n; i >=0; i--) dbgs() << " " << u[i]); 1606 DEBUG(dbgs() << '\n'); 1607 1608 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was 1609 // negative, go to step D6; otherwise go on to step D7. 1610 q[j] = (unsigned)qp; 1611 if (isNeg) { 1612 // D6. [Add back]. The probability that this step is necessary is very 1613 // small, on the order of only 2/b. Make sure that test data accounts for 1614 // this possibility. Decrease q[j] by 1 1615 q[j]--; 1616 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]). 1617 // A carry will occur to the left of u[j+n], and it should be ignored 1618 // since it cancels with the borrow that occurred in D4. 1619 bool carry = false; 1620 for (unsigned i = 0; i < n; i++) { 1621 unsigned limit = std::min(u[j+i],v[i]); 1622 u[j+i] += v[i] + carry; 1623 carry = u[j+i] < limit || (carry && u[j+i] == limit); 1624 } 1625 u[j+n] += carry; 1626 } 1627 DEBUG(dbgs() << "KnuthDiv: after correction:"); 1628 DEBUG(for (int i = m+n; i >=0; i--) dbgs() <<" " << u[i]); 1629 DEBUG(dbgs() << "\nKnuthDiv: digit result = " << q[j] << '\n'); 1630 1631 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3. 1632 } while (--j >= 0); 1633 1634 DEBUG(dbgs() << "KnuthDiv: quotient:"); 1635 DEBUG(for (int i = m; i >=0; i--) dbgs() <<" " << q[i]); 1636 DEBUG(dbgs() << '\n'); 1637 1638 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired 1639 // remainder may be obtained by dividing u[...] by d. If r is non-null we 1640 // compute the remainder (urem uses this). 1641 if (r) { 1642 // The value d is expressed by the "shift" value above since we avoided 1643 // multiplication by d by using a shift left. So, all we have to do is 1644 // shift right here. In order to mak 1645 if (shift) { 1646 unsigned carry = 0; 1647 DEBUG(dbgs() << "KnuthDiv: remainder:"); 1648 for (int i = n-1; i >= 0; i--) { 1649 r[i] = (u[i] >> shift) | carry; 1650 carry = u[i] << (32 - shift); 1651 DEBUG(dbgs() << " " << r[i]); 1652 } 1653 } else { 1654 for (int i = n-1; i >= 0; i--) { 1655 r[i] = u[i]; 1656 DEBUG(dbgs() << " " << r[i]); 1657 } 1658 } 1659 DEBUG(dbgs() << '\n'); 1660 } 1661 #if 0 1662 DEBUG(dbgs() << '\n'); 1663 #endif 1664 } 1665 1666 void APInt::divide(const APInt LHS, unsigned lhsWords, 1667 const APInt &RHS, unsigned rhsWords, 1668 APInt *Quotient, APInt *Remainder) 1669 { 1670 assert(lhsWords >= rhsWords && "Fractional result"); 1671 1672 // First, compose the values into an array of 32-bit words instead of 1673 // 64-bit words. This is a necessity of both the "short division" algorithm 1674 // and the Knuth "classical algorithm" which requires there to be native 1675 // operations for +, -, and * on an m bit value with an m*2 bit result. We 1676 // can't use 64-bit operands here because we don't have native results of 1677 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't 1678 // work on large-endian machines. 1679 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT); 1680 unsigned n = rhsWords * 2; 1681 unsigned m = (lhsWords * 2) - n; 1682 1683 // Allocate space for the temporary values we need either on the stack, if 1684 // it will fit, or on the heap if it won't. 1685 unsigned SPACE[128]; 1686 unsigned *U = 0; 1687 unsigned *V = 0; 1688 unsigned *Q = 0; 1689 unsigned *R = 0; 1690 if ((Remainder?4:3)*n+2*m+1 <= 128) { 1691 U = &SPACE[0]; 1692 V = &SPACE[m+n+1]; 1693 Q = &SPACE[(m+n+1) + n]; 1694 if (Remainder) 1695 R = &SPACE[(m+n+1) + n + (m+n)]; 1696 } else { 1697 U = new unsigned[m + n + 1]; 1698 V = new unsigned[n]; 1699 Q = new unsigned[m+n]; 1700 if (Remainder) 1701 R = new unsigned[n]; 1702 } 1703 1704 // Initialize the dividend 1705 memset(U, 0, (m+n+1)*sizeof(unsigned)); 1706 for (unsigned i = 0; i < lhsWords; ++i) { 1707 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]); 1708 U[i * 2] = (unsigned)(tmp & mask); 1709 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); 1710 } 1711 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm. 1712 1713 // Initialize the divisor 1714 memset(V, 0, (n)*sizeof(unsigned)); 1715 for (unsigned i = 0; i < rhsWords; ++i) { 1716 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]); 1717 V[i * 2] = (unsigned)(tmp & mask); 1718 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT)); 1719 } 1720 1721 // initialize the quotient and remainder 1722 memset(Q, 0, (m+n) * sizeof(unsigned)); 1723 if (Remainder) 1724 memset(R, 0, n * sizeof(unsigned)); 1725 1726 // Now, adjust m and n for the Knuth division. n is the number of words in 1727 // the divisor. m is the number of words by which the dividend exceeds the 1728 // divisor (i.e. m+n is the length of the dividend). These sizes must not 1729 // contain any zero words or the Knuth algorithm fails. 1730 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) { 1731 n--; 1732 m++; 1733 } 1734 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--) 1735 m--; 1736 1737 // If we're left with only a single word for the divisor, Knuth doesn't work 1738 // so we implement the short division algorithm here. This is much simpler 1739 // and faster because we are certain that we can divide a 64-bit quantity 1740 // by a 32-bit quantity at hardware speed and short division is simply a 1741 // series of such operations. This is just like doing short division but we 1742 // are using base 2^32 instead of base 10. 1743 assert(n != 0 && "Divide by zero?"); 1744 if (n == 1) { 1745 unsigned divisor = V[0]; 1746 unsigned remainder = 0; 1747 for (int i = m+n-1; i >= 0; i--) { 1748 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i]; 1749 if (partial_dividend == 0) { 1750 Q[i] = 0; 1751 remainder = 0; 1752 } else if (partial_dividend < divisor) { 1753 Q[i] = 0; 1754 remainder = (unsigned)partial_dividend; 1755 } else if (partial_dividend == divisor) { 1756 Q[i] = 1; 1757 remainder = 0; 1758 } else { 1759 Q[i] = (unsigned)(partial_dividend / divisor); 1760 remainder = (unsigned)(partial_dividend - (Q[i] * divisor)); 1761 } 1762 } 1763 if (R) 1764 R[0] = remainder; 1765 } else { 1766 // Now we're ready to invoke the Knuth classical divide algorithm. In this 1767 // case n > 1. 1768 KnuthDiv(U, V, Q, R, m, n); 1769 } 1770 1771 // If the caller wants the quotient 1772 if (Quotient) { 1773 // Set up the Quotient value's memory. 1774 if (Quotient->BitWidth != LHS.BitWidth) { 1775 if (Quotient->isSingleWord()) 1776 Quotient->VAL = 0; 1777 else 1778 delete [] Quotient->pVal; 1779 Quotient->BitWidth = LHS.BitWidth; 1780 if (!Quotient->isSingleWord()) 1781 Quotient->pVal = getClearedMemory(Quotient->getNumWords()); 1782 } else 1783 Quotient->clearAllBits(); 1784 1785 // The quotient is in Q. Reconstitute the quotient into Quotient's low 1786 // order words. 1787 if (lhsWords == 1) { 1788 uint64_t tmp = 1789 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2)); 1790 if (Quotient->isSingleWord()) 1791 Quotient->VAL = tmp; 1792 else 1793 Quotient->pVal[0] = tmp; 1794 } else { 1795 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough"); 1796 for (unsigned i = 0; i < lhsWords; ++i) 1797 Quotient->pVal[i] = 1798 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2)); 1799 } 1800 } 1801 1802 // If the caller wants the remainder 1803 if (Remainder) { 1804 // Set up the Remainder value's memory. 1805 if (Remainder->BitWidth != RHS.BitWidth) { 1806 if (Remainder->isSingleWord()) 1807 Remainder->VAL = 0; 1808 else 1809 delete [] Remainder->pVal; 1810 Remainder->BitWidth = RHS.BitWidth; 1811 if (!Remainder->isSingleWord()) 1812 Remainder->pVal = getClearedMemory(Remainder->getNumWords()); 1813 } else 1814 Remainder->clearAllBits(); 1815 1816 // The remainder is in R. Reconstitute the remainder into Remainder's low 1817 // order words. 1818 if (rhsWords == 1) { 1819 uint64_t tmp = 1820 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2)); 1821 if (Remainder->isSingleWord()) 1822 Remainder->VAL = tmp; 1823 else 1824 Remainder->pVal[0] = tmp; 1825 } else { 1826 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough"); 1827 for (unsigned i = 0; i < rhsWords; ++i) 1828 Remainder->pVal[i] = 1829 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2)); 1830 } 1831 } 1832 1833 // Clean up the memory we allocated. 1834 if (U != &SPACE[0]) { 1835 delete [] U; 1836 delete [] V; 1837 delete [] Q; 1838 delete [] R; 1839 } 1840 } 1841 1842 APInt APInt::udiv(const APInt& RHS) const { 1843 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1844 1845 // First, deal with the easy case 1846 if (isSingleWord()) { 1847 assert(RHS.VAL != 0 && "Divide by zero?"); 1848 return APInt(BitWidth, VAL / RHS.VAL); 1849 } 1850 1851 // Get some facts about the LHS and RHS number of bits and words 1852 unsigned rhsBits = RHS.getActiveBits(); 1853 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1854 assert(rhsWords && "Divided by zero???"); 1855 unsigned lhsBits = this->getActiveBits(); 1856 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); 1857 1858 // Deal with some degenerate cases 1859 if (!lhsWords) 1860 // 0 / X ===> 0 1861 return APInt(BitWidth, 0); 1862 else if (lhsWords < rhsWords || this->ult(RHS)) { 1863 // X / Y ===> 0, iff X < Y 1864 return APInt(BitWidth, 0); 1865 } else if (*this == RHS) { 1866 // X / X ===> 1 1867 return APInt(BitWidth, 1); 1868 } else if (lhsWords == 1 && rhsWords == 1) { 1869 // All high words are zero, just use native divide 1870 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]); 1871 } 1872 1873 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1874 APInt Quotient(1,0); // to hold result. 1875 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0); 1876 return Quotient; 1877 } 1878 1879 APInt APInt::sdiv(const APInt &RHS) const { 1880 if (isNegative()) { 1881 if (RHS.isNegative()) 1882 return (-(*this)).udiv(-RHS); 1883 return -((-(*this)).udiv(RHS)); 1884 } 1885 if (RHS.isNegative()) 1886 return -(this->udiv(-RHS)); 1887 return this->udiv(RHS); 1888 } 1889 1890 APInt APInt::urem(const APInt& RHS) const { 1891 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1892 if (isSingleWord()) { 1893 assert(RHS.VAL != 0 && "Remainder by zero?"); 1894 return APInt(BitWidth, VAL % RHS.VAL); 1895 } 1896 1897 // Get some facts about the LHS 1898 unsigned lhsBits = getActiveBits(); 1899 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1); 1900 1901 // Get some facts about the RHS 1902 unsigned rhsBits = RHS.getActiveBits(); 1903 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1904 assert(rhsWords && "Performing remainder operation by zero ???"); 1905 1906 // Check the degenerate cases 1907 if (lhsWords == 0) { 1908 // 0 % Y ===> 0 1909 return APInt(BitWidth, 0); 1910 } else if (lhsWords < rhsWords || this->ult(RHS)) { 1911 // X % Y ===> X, iff X < Y 1912 return *this; 1913 } else if (*this == RHS) { 1914 // X % X == 0; 1915 return APInt(BitWidth, 0); 1916 } else if (lhsWords == 1) { 1917 // All high words are zero, just use native remainder 1918 return APInt(BitWidth, pVal[0] % RHS.pVal[0]); 1919 } 1920 1921 // We have to compute it the hard way. Invoke the Knuth divide algorithm. 1922 APInt Remainder(1,0); 1923 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder); 1924 return Remainder; 1925 } 1926 1927 APInt APInt::srem(const APInt &RHS) const { 1928 if (isNegative()) { 1929 if (RHS.isNegative()) 1930 return -((-(*this)).urem(-RHS)); 1931 return -((-(*this)).urem(RHS)); 1932 } 1933 if (RHS.isNegative()) 1934 return this->urem(-RHS); 1935 return this->urem(RHS); 1936 } 1937 1938 void APInt::udivrem(const APInt &LHS, const APInt &RHS, 1939 APInt &Quotient, APInt &Remainder) { 1940 // Get some size facts about the dividend and divisor 1941 unsigned lhsBits = LHS.getActiveBits(); 1942 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1); 1943 unsigned rhsBits = RHS.getActiveBits(); 1944 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1); 1945 1946 // Check the degenerate cases 1947 if (lhsWords == 0) { 1948 Quotient = 0; // 0 / Y ===> 0 1949 Remainder = 0; // 0 % Y ===> 0 1950 return; 1951 } 1952 1953 if (lhsWords < rhsWords || LHS.ult(RHS)) { 1954 Remainder = LHS; // X % Y ===> X, iff X < Y 1955 Quotient = 0; // X / Y ===> 0, iff X < Y 1956 return; 1957 } 1958 1959 if (LHS == RHS) { 1960 Quotient = 1; // X / X ===> 1 1961 Remainder = 0; // X % X ===> 0; 1962 return; 1963 } 1964 1965 if (lhsWords == 1 && rhsWords == 1) { 1966 // There is only one word to consider so use the native versions. 1967 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0]; 1968 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0]; 1969 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue); 1970 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue); 1971 return; 1972 } 1973 1974 // Okay, lets do it the long way 1975 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder); 1976 } 1977 1978 void APInt::sdivrem(const APInt &LHS, const APInt &RHS, 1979 APInt &Quotient, APInt &Remainder) { 1980 if (LHS.isNegative()) { 1981 if (RHS.isNegative()) 1982 APInt::udivrem(-LHS, -RHS, Quotient, Remainder); 1983 else { 1984 APInt::udivrem(-LHS, RHS, Quotient, Remainder); 1985 Quotient = -Quotient; 1986 } 1987 Remainder = -Remainder; 1988 } else if (RHS.isNegative()) { 1989 APInt::udivrem(LHS, -RHS, Quotient, Remainder); 1990 Quotient = -Quotient; 1991 } else { 1992 APInt::udivrem(LHS, RHS, Quotient, Remainder); 1993 } 1994 } 1995 1996 APInt APInt::sadd_ov(const APInt &RHS, bool &Overflow) const { 1997 APInt Res = *this+RHS; 1998 Overflow = isNonNegative() == RHS.isNonNegative() && 1999 Res.isNonNegative() != isNonNegative(); 2000 return Res; 2001 } 2002 2003 APInt APInt::uadd_ov(const APInt &RHS, bool &Overflow) const { 2004 APInt Res = *this+RHS; 2005 Overflow = Res.ult(RHS); 2006 return Res; 2007 } 2008 2009 APInt APInt::ssub_ov(const APInt &RHS, bool &Overflow) const { 2010 APInt Res = *this - RHS; 2011 Overflow = isNonNegative() != RHS.isNonNegative() && 2012 Res.isNonNegative() != isNonNegative(); 2013 return Res; 2014 } 2015 2016 APInt APInt::usub_ov(const APInt &RHS, bool &Overflow) const { 2017 APInt Res = *this-RHS; 2018 Overflow = Res.ugt(*this); 2019 return Res; 2020 } 2021 2022 APInt APInt::sdiv_ov(const APInt &RHS, bool &Overflow) const { 2023 // MININT/-1 --> overflow. 2024 Overflow = isMinSignedValue() && RHS.isAllOnesValue(); 2025 return sdiv(RHS); 2026 } 2027 2028 APInt APInt::smul_ov(const APInt &RHS, bool &Overflow) const { 2029 APInt Res = *this * RHS; 2030 2031 if (*this != 0 && RHS != 0) 2032 Overflow = Res.sdiv(RHS) != *this || Res.sdiv(*this) != RHS; 2033 else 2034 Overflow = false; 2035 return Res; 2036 } 2037 2038 APInt APInt::umul_ov(const APInt &RHS, bool &Overflow) const { 2039 APInt Res = *this * RHS; 2040 2041 if (*this != 0 && RHS != 0) 2042 Overflow = Res.udiv(RHS) != *this || Res.udiv(*this) != RHS; 2043 else 2044 Overflow = false; 2045 return Res; 2046 } 2047 2048 APInt APInt::sshl_ov(unsigned ShAmt, bool &Overflow) const { 2049 Overflow = ShAmt >= getBitWidth(); 2050 if (Overflow) 2051 ShAmt = getBitWidth()-1; 2052 2053 if (isNonNegative()) // Don't allow sign change. 2054 Overflow = ShAmt >= countLeadingZeros(); 2055 else 2056 Overflow = ShAmt >= countLeadingOnes(); 2057 2058 return *this << ShAmt; 2059 } 2060 2061 2062 2063 2064 void APInt::fromString(unsigned numbits, StringRef str, uint8_t radix) { 2065 // Check our assumptions here 2066 assert(!str.empty() && "Invalid string length"); 2067 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2 || 2068 radix == 36) && 2069 "Radix should be 2, 8, 10, 16, or 36!"); 2070 2071 StringRef::iterator p = str.begin(); 2072 size_t slen = str.size(); 2073 bool isNeg = *p == '-'; 2074 if (*p == '-' || *p == '+') { 2075 p++; 2076 slen--; 2077 assert(slen && "String is only a sign, needs a value."); 2078 } 2079 assert((slen <= numbits || radix != 2) && "Insufficient bit width"); 2080 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width"); 2081 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width"); 2082 assert((((slen-1)*64)/22 <= numbits || radix != 10) && 2083 "Insufficient bit width"); 2084 2085 // Allocate memory 2086 if (!isSingleWord()) 2087 pVal = getClearedMemory(getNumWords()); 2088 2089 // Figure out if we can shift instead of multiply 2090 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0); 2091 2092 // Set up an APInt for the digit to add outside the loop so we don't 2093 // constantly construct/destruct it. 2094 APInt apdigit(getBitWidth(), 0); 2095 APInt apradix(getBitWidth(), radix); 2096 2097 // Enter digit traversal loop 2098 for (StringRef::iterator e = str.end(); p != e; ++p) { 2099 unsigned digit = getDigit(*p, radix); 2100 assert(digit < radix && "Invalid character in digit string"); 2101 2102 // Shift or multiply the value by the radix 2103 if (slen > 1) { 2104 if (shift) 2105 *this <<= shift; 2106 else 2107 *this *= apradix; 2108 } 2109 2110 // Add in the digit we just interpreted 2111 if (apdigit.isSingleWord()) 2112 apdigit.VAL = digit; 2113 else 2114 apdigit.pVal[0] = digit; 2115 *this += apdigit; 2116 } 2117 // If its negative, put it in two's complement form 2118 if (isNeg) { 2119 --(*this); 2120 this->flipAllBits(); 2121 } 2122 } 2123 2124 void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix, 2125 bool Signed, bool formatAsCLiteral) const { 2126 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2 || 2127 Radix == 36) && 2128 "Radix should be 2, 8, 10, 16, or 36!"); 2129 2130 const char *Prefix = ""; 2131 if (formatAsCLiteral) { 2132 switch (Radix) { 2133 case 2: 2134 // Binary literals are a non-standard extension added in gcc 4.3: 2135 // http://gcc.gnu.org/onlinedocs/gcc-4.3.0/gcc/Binary-constants.html 2136 Prefix = "0b"; 2137 break; 2138 case 8: 2139 Prefix = "0"; 2140 break; 2141 case 10: 2142 break; // No prefix 2143 case 16: 2144 Prefix = "0x"; 2145 break; 2146 default: 2147 llvm_unreachable("Invalid radix!"); 2148 } 2149 } 2150 2151 // First, check for a zero value and just short circuit the logic below. 2152 if (*this == 0) { 2153 while (*Prefix) { 2154 Str.push_back(*Prefix); 2155 ++Prefix; 2156 }; 2157 Str.push_back('0'); 2158 return; 2159 } 2160 2161 static const char Digits[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"; 2162 2163 if (isSingleWord()) { 2164 char Buffer[65]; 2165 char *BufPtr = Buffer+65; 2166 2167 uint64_t N; 2168 if (!Signed) { 2169 N = getZExtValue(); 2170 } else { 2171 int64_t I = getSExtValue(); 2172 if (I >= 0) { 2173 N = I; 2174 } else { 2175 Str.push_back('-'); 2176 N = -(uint64_t)I; 2177 } 2178 } 2179 2180 while (*Prefix) { 2181 Str.push_back(*Prefix); 2182 ++Prefix; 2183 }; 2184 2185 while (N) { 2186 *--BufPtr = Digits[N % Radix]; 2187 N /= Radix; 2188 } 2189 Str.append(BufPtr, Buffer+65); 2190 return; 2191 } 2192 2193 APInt Tmp(*this); 2194 2195 if (Signed && isNegative()) { 2196 // They want to print the signed version and it is a negative value 2197 // Flip the bits and add one to turn it into the equivalent positive 2198 // value and put a '-' in the result. 2199 Tmp.flipAllBits(); 2200 ++Tmp; 2201 Str.push_back('-'); 2202 } 2203 2204 while (*Prefix) { 2205 Str.push_back(*Prefix); 2206 ++Prefix; 2207 }; 2208 2209 // We insert the digits backward, then reverse them to get the right order. 2210 unsigned StartDig = Str.size(); 2211 2212 // For the 2, 8 and 16 bit cases, we can just shift instead of divide 2213 // because the number of bits per digit (1, 3 and 4 respectively) divides 2214 // equaly. We just shift until the value is zero. 2215 if (Radix == 2 || Radix == 8 || Radix == 16) { 2216 // Just shift tmp right for each digit width until it becomes zero 2217 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1)); 2218 unsigned MaskAmt = Radix - 1; 2219 2220 while (Tmp != 0) { 2221 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt; 2222 Str.push_back(Digits[Digit]); 2223 Tmp = Tmp.lshr(ShiftAmt); 2224 } 2225 } else { 2226 APInt divisor(Radix == 10? 4 : 8, Radix); 2227 while (Tmp != 0) { 2228 APInt APdigit(1, 0); 2229 APInt tmp2(Tmp.getBitWidth(), 0); 2230 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2, 2231 &APdigit); 2232 unsigned Digit = (unsigned)APdigit.getZExtValue(); 2233 assert(Digit < Radix && "divide failed"); 2234 Str.push_back(Digits[Digit]); 2235 Tmp = tmp2; 2236 } 2237 } 2238 2239 // Reverse the digits before returning. 2240 std::reverse(Str.begin()+StartDig, Str.end()); 2241 } 2242 2243 /// toString - This returns the APInt as a std::string. Note that this is an 2244 /// inefficient method. It is better to pass in a SmallVector/SmallString 2245 /// to the methods above. 2246 std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const { 2247 SmallString<40> S; 2248 toString(S, Radix, Signed, /* formatAsCLiteral = */false); 2249 return S.str(); 2250 } 2251 2252 2253 void APInt::dump() const { 2254 SmallString<40> S, U; 2255 this->toStringUnsigned(U); 2256 this->toStringSigned(S); 2257 dbgs() << "APInt(" << BitWidth << "b, " 2258 << U.str() << "u " << S.str() << "s)"; 2259 } 2260 2261 void APInt::print(raw_ostream &OS, bool isSigned) const { 2262 SmallString<40> S; 2263 this->toString(S, 10, isSigned, /* formatAsCLiteral = */false); 2264 OS << S.str(); 2265 } 2266 2267 // This implements a variety of operations on a representation of 2268 // arbitrary precision, two's-complement, bignum integer values. 2269 2270 // Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe 2271 // and unrestricting assumption. 2272 #define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1] 2273 COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0); 2274 2275 /* Some handy functions local to this file. */ 2276 namespace { 2277 2278 /* Returns the integer part with the least significant BITS set. 2279 BITS cannot be zero. */ 2280 static inline integerPart 2281 lowBitMask(unsigned int bits) 2282 { 2283 assert(bits != 0 && bits <= integerPartWidth); 2284 2285 return ~(integerPart) 0 >> (integerPartWidth - bits); 2286 } 2287 2288 /* Returns the value of the lower half of PART. */ 2289 static inline integerPart 2290 lowHalf(integerPart part) 2291 { 2292 return part & lowBitMask(integerPartWidth / 2); 2293 } 2294 2295 /* Returns the value of the upper half of PART. */ 2296 static inline integerPart 2297 highHalf(integerPart part) 2298 { 2299 return part >> (integerPartWidth / 2); 2300 } 2301 2302 /* Returns the bit number of the most significant set bit of a part. 2303 If the input number has no bits set -1U is returned. */ 2304 static unsigned int 2305 partMSB(integerPart value) 2306 { 2307 return findLastSet(value, ZB_Max); 2308 } 2309 2310 /* Returns the bit number of the least significant set bit of a 2311 part. If the input number has no bits set -1U is returned. */ 2312 static unsigned int 2313 partLSB(integerPart value) 2314 { 2315 return findFirstSet(value, ZB_Max); 2316 } 2317 } 2318 2319 /* Sets the least significant part of a bignum to the input value, and 2320 zeroes out higher parts. */ 2321 void 2322 APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts) 2323 { 2324 unsigned int i; 2325 2326 assert(parts > 0); 2327 2328 dst[0] = part; 2329 for (i = 1; i < parts; i++) 2330 dst[i] = 0; 2331 } 2332 2333 /* Assign one bignum to another. */ 2334 void 2335 APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts) 2336 { 2337 unsigned int i; 2338 2339 for (i = 0; i < parts; i++) 2340 dst[i] = src[i]; 2341 } 2342 2343 /* Returns true if a bignum is zero, false otherwise. */ 2344 bool 2345 APInt::tcIsZero(const integerPart *src, unsigned int parts) 2346 { 2347 unsigned int i; 2348 2349 for (i = 0; i < parts; i++) 2350 if (src[i]) 2351 return false; 2352 2353 return true; 2354 } 2355 2356 /* Extract the given bit of a bignum; returns 0 or 1. */ 2357 int 2358 APInt::tcExtractBit(const integerPart *parts, unsigned int bit) 2359 { 2360 return (parts[bit / integerPartWidth] & 2361 ((integerPart) 1 << bit % integerPartWidth)) != 0; 2362 } 2363 2364 /* Set the given bit of a bignum. */ 2365 void 2366 APInt::tcSetBit(integerPart *parts, unsigned int bit) 2367 { 2368 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth); 2369 } 2370 2371 /* Clears the given bit of a bignum. */ 2372 void 2373 APInt::tcClearBit(integerPart *parts, unsigned int bit) 2374 { 2375 parts[bit / integerPartWidth] &= 2376 ~((integerPart) 1 << (bit % integerPartWidth)); 2377 } 2378 2379 /* Returns the bit number of the least significant set bit of a 2380 number. If the input number has no bits set -1U is returned. */ 2381 unsigned int 2382 APInt::tcLSB(const integerPart *parts, unsigned int n) 2383 { 2384 unsigned int i, lsb; 2385 2386 for (i = 0; i < n; i++) { 2387 if (parts[i] != 0) { 2388 lsb = partLSB(parts[i]); 2389 2390 return lsb + i * integerPartWidth; 2391 } 2392 } 2393 2394 return -1U; 2395 } 2396 2397 /* Returns the bit number of the most significant set bit of a number. 2398 If the input number has no bits set -1U is returned. */ 2399 unsigned int 2400 APInt::tcMSB(const integerPart *parts, unsigned int n) 2401 { 2402 unsigned int msb; 2403 2404 do { 2405 --n; 2406 2407 if (parts[n] != 0) { 2408 msb = partMSB(parts[n]); 2409 2410 return msb + n * integerPartWidth; 2411 } 2412 } while (n); 2413 2414 return -1U; 2415 } 2416 2417 /* Copy the bit vector of width srcBITS from SRC, starting at bit 2418 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes 2419 the least significant bit of DST. All high bits above srcBITS in 2420 DST are zero-filled. */ 2421 void 2422 APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src, 2423 unsigned int srcBits, unsigned int srcLSB) 2424 { 2425 unsigned int firstSrcPart, dstParts, shift, n; 2426 2427 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth; 2428 assert(dstParts <= dstCount); 2429 2430 firstSrcPart = srcLSB / integerPartWidth; 2431 tcAssign (dst, src + firstSrcPart, dstParts); 2432 2433 shift = srcLSB % integerPartWidth; 2434 tcShiftRight (dst, dstParts, shift); 2435 2436 /* We now have (dstParts * integerPartWidth - shift) bits from SRC 2437 in DST. If this is less that srcBits, append the rest, else 2438 clear the high bits. */ 2439 n = dstParts * integerPartWidth - shift; 2440 if (n < srcBits) { 2441 integerPart mask = lowBitMask (srcBits - n); 2442 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask) 2443 << n % integerPartWidth); 2444 } else if (n > srcBits) { 2445 if (srcBits % integerPartWidth) 2446 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth); 2447 } 2448 2449 /* Clear high parts. */ 2450 while (dstParts < dstCount) 2451 dst[dstParts++] = 0; 2452 } 2453 2454 /* DST += RHS + C where C is zero or one. Returns the carry flag. */ 2455 integerPart 2456 APInt::tcAdd(integerPart *dst, const integerPart *rhs, 2457 integerPart c, unsigned int parts) 2458 { 2459 unsigned int i; 2460 2461 assert(c <= 1); 2462 2463 for (i = 0; i < parts; i++) { 2464 integerPart l; 2465 2466 l = dst[i]; 2467 if (c) { 2468 dst[i] += rhs[i] + 1; 2469 c = (dst[i] <= l); 2470 } else { 2471 dst[i] += rhs[i]; 2472 c = (dst[i] < l); 2473 } 2474 } 2475 2476 return c; 2477 } 2478 2479 /* DST -= RHS + C where C is zero or one. Returns the carry flag. */ 2480 integerPart 2481 APInt::tcSubtract(integerPart *dst, const integerPart *rhs, 2482 integerPart c, unsigned int parts) 2483 { 2484 unsigned int i; 2485 2486 assert(c <= 1); 2487 2488 for (i = 0; i < parts; i++) { 2489 integerPart l; 2490 2491 l = dst[i]; 2492 if (c) { 2493 dst[i] -= rhs[i] + 1; 2494 c = (dst[i] >= l); 2495 } else { 2496 dst[i] -= rhs[i]; 2497 c = (dst[i] > l); 2498 } 2499 } 2500 2501 return c; 2502 } 2503 2504 /* Negate a bignum in-place. */ 2505 void 2506 APInt::tcNegate(integerPart *dst, unsigned int parts) 2507 { 2508 tcComplement(dst, parts); 2509 tcIncrement(dst, parts); 2510 } 2511 2512 /* DST += SRC * MULTIPLIER + CARRY if add is true 2513 DST = SRC * MULTIPLIER + CARRY if add is false 2514 2515 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC 2516 they must start at the same point, i.e. DST == SRC. 2517 2518 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is 2519 returned. Otherwise DST is filled with the least significant 2520 DSTPARTS parts of the result, and if all of the omitted higher 2521 parts were zero return zero, otherwise overflow occurred and 2522 return one. */ 2523 int 2524 APInt::tcMultiplyPart(integerPart *dst, const integerPart *src, 2525 integerPart multiplier, integerPart carry, 2526 unsigned int srcParts, unsigned int dstParts, 2527 bool add) 2528 { 2529 unsigned int i, n; 2530 2531 /* Otherwise our writes of DST kill our later reads of SRC. */ 2532 assert(dst <= src || dst >= src + srcParts); 2533 assert(dstParts <= srcParts + 1); 2534 2535 /* N loops; minimum of dstParts and srcParts. */ 2536 n = dstParts < srcParts ? dstParts: srcParts; 2537 2538 for (i = 0; i < n; i++) { 2539 integerPart low, mid, high, srcPart; 2540 2541 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY. 2542 2543 This cannot overflow, because 2544 2545 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1) 2546 2547 which is less than n^2. */ 2548 2549 srcPart = src[i]; 2550 2551 if (multiplier == 0 || srcPart == 0) { 2552 low = carry; 2553 high = 0; 2554 } else { 2555 low = lowHalf(srcPart) * lowHalf(multiplier); 2556 high = highHalf(srcPart) * highHalf(multiplier); 2557 2558 mid = lowHalf(srcPart) * highHalf(multiplier); 2559 high += highHalf(mid); 2560 mid <<= integerPartWidth / 2; 2561 if (low + mid < low) 2562 high++; 2563 low += mid; 2564 2565 mid = highHalf(srcPart) * lowHalf(multiplier); 2566 high += highHalf(mid); 2567 mid <<= integerPartWidth / 2; 2568 if (low + mid < low) 2569 high++; 2570 low += mid; 2571 2572 /* Now add carry. */ 2573 if (low + carry < low) 2574 high++; 2575 low += carry; 2576 } 2577 2578 if (add) { 2579 /* And now DST[i], and store the new low part there. */ 2580 if (low + dst[i] < low) 2581 high++; 2582 dst[i] += low; 2583 } else 2584 dst[i] = low; 2585 2586 carry = high; 2587 } 2588 2589 if (i < dstParts) { 2590 /* Full multiplication, there is no overflow. */ 2591 assert(i + 1 == dstParts); 2592 dst[i] = carry; 2593 return 0; 2594 } else { 2595 /* We overflowed if there is carry. */ 2596 if (carry) 2597 return 1; 2598 2599 /* We would overflow if any significant unwritten parts would be 2600 non-zero. This is true if any remaining src parts are non-zero 2601 and the multiplier is non-zero. */ 2602 if (multiplier) 2603 for (; i < srcParts; i++) 2604 if (src[i]) 2605 return 1; 2606 2607 /* We fitted in the narrow destination. */ 2608 return 0; 2609 } 2610 } 2611 2612 /* DST = LHS * RHS, where DST has the same width as the operands and 2613 is filled with the least significant parts of the result. Returns 2614 one if overflow occurred, otherwise zero. DST must be disjoint 2615 from both operands. */ 2616 int 2617 APInt::tcMultiply(integerPart *dst, const integerPart *lhs, 2618 const integerPart *rhs, unsigned int parts) 2619 { 2620 unsigned int i; 2621 int overflow; 2622 2623 assert(dst != lhs && dst != rhs); 2624 2625 overflow = 0; 2626 tcSet(dst, 0, parts); 2627 2628 for (i = 0; i < parts; i++) 2629 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts, 2630 parts - i, true); 2631 2632 return overflow; 2633 } 2634 2635 /* DST = LHS * RHS, where DST has width the sum of the widths of the 2636 operands. No overflow occurs. DST must be disjoint from both 2637 operands. Returns the number of parts required to hold the 2638 result. */ 2639 unsigned int 2640 APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs, 2641 const integerPart *rhs, unsigned int lhsParts, 2642 unsigned int rhsParts) 2643 { 2644 /* Put the narrower number on the LHS for less loops below. */ 2645 if (lhsParts > rhsParts) { 2646 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts); 2647 } else { 2648 unsigned int n; 2649 2650 assert(dst != lhs && dst != rhs); 2651 2652 tcSet(dst, 0, rhsParts); 2653 2654 for (n = 0; n < lhsParts; n++) 2655 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true); 2656 2657 n = lhsParts + rhsParts; 2658 2659 return n - (dst[n - 1] == 0); 2660 } 2661 } 2662 2663 /* If RHS is zero LHS and REMAINDER are left unchanged, return one. 2664 Otherwise set LHS to LHS / RHS with the fractional part discarded, 2665 set REMAINDER to the remainder, return zero. i.e. 2666 2667 OLD_LHS = RHS * LHS + REMAINDER 2668 2669 SCRATCH is a bignum of the same size as the operands and result for 2670 use by the routine; its contents need not be initialized and are 2671 destroyed. LHS, REMAINDER and SCRATCH must be distinct. 2672 */ 2673 int 2674 APInt::tcDivide(integerPart *lhs, const integerPart *rhs, 2675 integerPart *remainder, integerPart *srhs, 2676 unsigned int parts) 2677 { 2678 unsigned int n, shiftCount; 2679 integerPart mask; 2680 2681 assert(lhs != remainder && lhs != srhs && remainder != srhs); 2682 2683 shiftCount = tcMSB(rhs, parts) + 1; 2684 if (shiftCount == 0) 2685 return true; 2686 2687 shiftCount = parts * integerPartWidth - shiftCount; 2688 n = shiftCount / integerPartWidth; 2689 mask = (integerPart) 1 << (shiftCount % integerPartWidth); 2690 2691 tcAssign(srhs, rhs, parts); 2692 tcShiftLeft(srhs, parts, shiftCount); 2693 tcAssign(remainder, lhs, parts); 2694 tcSet(lhs, 0, parts); 2695 2696 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to 2697 the total. */ 2698 for (;;) { 2699 int compare; 2700 2701 compare = tcCompare(remainder, srhs, parts); 2702 if (compare >= 0) { 2703 tcSubtract(remainder, srhs, 0, parts); 2704 lhs[n] |= mask; 2705 } 2706 2707 if (shiftCount == 0) 2708 break; 2709 shiftCount--; 2710 tcShiftRight(srhs, parts, 1); 2711 if ((mask >>= 1) == 0) 2712 mask = (integerPart) 1 << (integerPartWidth - 1), n--; 2713 } 2714 2715 return false; 2716 } 2717 2718 /* Shift a bignum left COUNT bits in-place. Shifted in bits are zero. 2719 There are no restrictions on COUNT. */ 2720 void 2721 APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count) 2722 { 2723 if (count) { 2724 unsigned int jump, shift; 2725 2726 /* Jump is the inter-part jump; shift is is intra-part shift. */ 2727 jump = count / integerPartWidth; 2728 shift = count % integerPartWidth; 2729 2730 while (parts > jump) { 2731 integerPart part; 2732 2733 parts--; 2734 2735 /* dst[i] comes from the two parts src[i - jump] and, if we have 2736 an intra-part shift, src[i - jump - 1]. */ 2737 part = dst[parts - jump]; 2738 if (shift) { 2739 part <<= shift; 2740 if (parts >= jump + 1) 2741 part |= dst[parts - jump - 1] >> (integerPartWidth - shift); 2742 } 2743 2744 dst[parts] = part; 2745 } 2746 2747 while (parts > 0) 2748 dst[--parts] = 0; 2749 } 2750 } 2751 2752 /* Shift a bignum right COUNT bits in-place. Shifted in bits are 2753 zero. There are no restrictions on COUNT. */ 2754 void 2755 APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count) 2756 { 2757 if (count) { 2758 unsigned int i, jump, shift; 2759 2760 /* Jump is the inter-part jump; shift is is intra-part shift. */ 2761 jump = count / integerPartWidth; 2762 shift = count % integerPartWidth; 2763 2764 /* Perform the shift. This leaves the most significant COUNT bits 2765 of the result at zero. */ 2766 for (i = 0; i < parts; i++) { 2767 integerPart part; 2768 2769 if (i + jump >= parts) { 2770 part = 0; 2771 } else { 2772 part = dst[i + jump]; 2773 if (shift) { 2774 part >>= shift; 2775 if (i + jump + 1 < parts) 2776 part |= dst[i + jump + 1] << (integerPartWidth - shift); 2777 } 2778 } 2779 2780 dst[i] = part; 2781 } 2782 } 2783 } 2784 2785 /* Bitwise and of two bignums. */ 2786 void 2787 APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts) 2788 { 2789 unsigned int i; 2790 2791 for (i = 0; i < parts; i++) 2792 dst[i] &= rhs[i]; 2793 } 2794 2795 /* Bitwise inclusive or of two bignums. */ 2796 void 2797 APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts) 2798 { 2799 unsigned int i; 2800 2801 for (i = 0; i < parts; i++) 2802 dst[i] |= rhs[i]; 2803 } 2804 2805 /* Bitwise exclusive or of two bignums. */ 2806 void 2807 APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts) 2808 { 2809 unsigned int i; 2810 2811 for (i = 0; i < parts; i++) 2812 dst[i] ^= rhs[i]; 2813 } 2814 2815 /* Complement a bignum in-place. */ 2816 void 2817 APInt::tcComplement(integerPart *dst, unsigned int parts) 2818 { 2819 unsigned int i; 2820 2821 for (i = 0; i < parts; i++) 2822 dst[i] = ~dst[i]; 2823 } 2824 2825 /* Comparison (unsigned) of two bignums. */ 2826 int 2827 APInt::tcCompare(const integerPart *lhs, const integerPart *rhs, 2828 unsigned int parts) 2829 { 2830 while (parts) { 2831 parts--; 2832 if (lhs[parts] == rhs[parts]) 2833 continue; 2834 2835 if (lhs[parts] > rhs[parts]) 2836 return 1; 2837 else 2838 return -1; 2839 } 2840 2841 return 0; 2842 } 2843 2844 /* Increment a bignum in-place, return the carry flag. */ 2845 integerPart 2846 APInt::tcIncrement(integerPart *dst, unsigned int parts) 2847 { 2848 unsigned int i; 2849 2850 for (i = 0; i < parts; i++) 2851 if (++dst[i] != 0) 2852 break; 2853 2854 return i == parts; 2855 } 2856 2857 /* Decrement a bignum in-place, return the borrow flag. */ 2858 integerPart 2859 APInt::tcDecrement(integerPart *dst, unsigned int parts) { 2860 for (unsigned int i = 0; i < parts; i++) { 2861 // If the current word is non-zero, then the decrement has no effect on the 2862 // higher-order words of the integer and no borrow can occur. Exit early. 2863 if (dst[i]--) 2864 return 0; 2865 } 2866 // If every word was zero, then there is a borrow. 2867 return 1; 2868 } 2869 2870 2871 /* Set the least significant BITS bits of a bignum, clear the 2872 rest. */ 2873 void 2874 APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts, 2875 unsigned int bits) 2876 { 2877 unsigned int i; 2878 2879 i = 0; 2880 while (bits > integerPartWidth) { 2881 dst[i++] = ~(integerPart) 0; 2882 bits -= integerPartWidth; 2883 } 2884 2885 if (bits) 2886 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits); 2887 2888 while (i < parts) 2889 dst[i++] = 0; 2890 } 2891