Home | History | Annotate | Download | only in arm
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions
      6 // are met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the
     14 // distribution.
     15 //
     16 // - Neither the name of Sun Microsystems or the names of contributors may
     17 // be used to endorse or promote products derived from this software without
     18 // specific prior written permission.
     19 //
     20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     31 // OF THE POSSIBILITY OF SUCH DAMAGE.
     32 
     33 // The original source code covered by the above license above has been
     34 // modified significantly by Google Inc.
     35 // Copyright 2012 the V8 project authors. All rights reserved.
     36 
     37 #include "v8.h"
     38 
     39 #if V8_TARGET_ARCH_ARM
     40 
     41 #include "arm/assembler-arm-inl.h"
     42 #include "macro-assembler.h"
     43 #include "serialize.h"
     44 
     45 namespace v8 {
     46 namespace internal {
     47 
     48 #ifdef DEBUG
     49 bool CpuFeatures::initialized_ = false;
     50 #endif
     51 unsigned CpuFeatures::supported_ = 0;
     52 unsigned CpuFeatures::found_by_runtime_probing_only_ = 0;
     53 unsigned CpuFeatures::cross_compile_ = 0;
     54 unsigned CpuFeatures::cache_line_size_ = 64;
     55 
     56 
     57 ExternalReference ExternalReference::cpu_features() {
     58   ASSERT(CpuFeatures::initialized_);
     59   return ExternalReference(&CpuFeatures::supported_);
     60 }
     61 
     62 
     63 // Get the CPU features enabled by the build. For cross compilation the
     64 // preprocessor symbols CAN_USE_ARMV7_INSTRUCTIONS and CAN_USE_VFP3_INSTRUCTIONS
     65 // can be defined to enable ARMv7 and VFPv3 instructions when building the
     66 // snapshot.
     67 static unsigned CpuFeaturesImpliedByCompiler() {
     68   unsigned answer = 0;
     69 #ifdef CAN_USE_ARMV7_INSTRUCTIONS
     70   if (FLAG_enable_armv7) {
     71     answer |= 1u << ARMv7;
     72   }
     73 #endif  // CAN_USE_ARMV7_INSTRUCTIONS
     74 #ifdef CAN_USE_VFP3_INSTRUCTIONS
     75   if (FLAG_enable_vfp3) {
     76     answer |= 1u << VFP3 | 1u << ARMv7;
     77   }
     78 #endif  // CAN_USE_VFP3_INSTRUCTIONS
     79 #ifdef CAN_USE_VFP32DREGS
     80   if (FLAG_enable_32dregs) {
     81     answer |= 1u << VFP32DREGS;
     82   }
     83 #endif  // CAN_USE_VFP32DREGS
     84   if ((answer & (1u << ARMv7)) && FLAG_enable_unaligned_accesses) {
     85     answer |= 1u << UNALIGNED_ACCESSES;
     86   }
     87 
     88   return answer;
     89 }
     90 
     91 
     92 const char* DwVfpRegister::AllocationIndexToString(int index) {
     93   ASSERT(index >= 0 && index < NumAllocatableRegisters());
     94   ASSERT(kScratchDoubleReg.code() - kDoubleRegZero.code() ==
     95          kNumReservedRegisters - 1);
     96   if (index >= kDoubleRegZero.code())
     97     index += kNumReservedRegisters;
     98 
     99   return VFPRegisters::Name(index, true);
    100 }
    101 
    102 
    103 void CpuFeatures::Probe() {
    104   uint64_t standard_features = static_cast<unsigned>(
    105       OS::CpuFeaturesImpliedByPlatform()) | CpuFeaturesImpliedByCompiler();
    106   ASSERT(supported_ == 0 || supported_ == standard_features);
    107 #ifdef DEBUG
    108   initialized_ = true;
    109 #endif
    110 
    111   // Get the features implied by the OS and the compiler settings. This is the
    112   // minimal set of features which is also alowed for generated code in the
    113   // snapshot.
    114   supported_ |= standard_features;
    115 
    116   if (Serializer::enabled()) {
    117     // No probing for features if we might serialize (generate snapshot).
    118     printf("   ");
    119     PrintFeatures();
    120     return;
    121   }
    122 
    123 #ifndef __arm__
    124   // For the simulator=arm build, use VFP when FLAG_enable_vfp3 is
    125   // enabled. VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
    126   if (FLAG_enable_vfp3) {
    127     supported_ |=
    128         static_cast<uint64_t>(1) << VFP3 |
    129         static_cast<uint64_t>(1) << ARMv7;
    130   }
    131   if (FLAG_enable_neon) {
    132     supported_ |= 1u << NEON;
    133   }
    134   // For the simulator=arm build, use ARMv7 when FLAG_enable_armv7 is enabled
    135   if (FLAG_enable_armv7) {
    136     supported_ |= static_cast<uint64_t>(1) << ARMv7;
    137   }
    138 
    139   if (FLAG_enable_sudiv) {
    140     supported_ |= static_cast<uint64_t>(1) << SUDIV;
    141   }
    142 
    143   if (FLAG_enable_movw_movt) {
    144     supported_ |= static_cast<uint64_t>(1) << MOVW_MOVT_IMMEDIATE_LOADS;
    145   }
    146 
    147   if (FLAG_enable_32dregs) {
    148     supported_ |= static_cast<uint64_t>(1) << VFP32DREGS;
    149   }
    150 
    151   if (FLAG_enable_unaligned_accesses) {
    152     supported_ |= static_cast<uint64_t>(1) << UNALIGNED_ACCESSES;
    153   }
    154 
    155 #else  // __arm__
    156   // Probe for additional features not already known to be available.
    157   CPU cpu;
    158   if (!IsSupported(VFP3) && FLAG_enable_vfp3 && cpu.has_vfp3()) {
    159     // This implementation also sets the VFP flags if runtime
    160     // detection of VFP returns true. VFPv3 implies ARMv7, see ARM DDI
    161     // 0406B, page A1-6.
    162     found_by_runtime_probing_only_ |=
    163         static_cast<uint64_t>(1) << VFP3 |
    164         static_cast<uint64_t>(1) << ARMv7;
    165   }
    166 
    167   if (!IsSupported(NEON) && FLAG_enable_neon && cpu.has_neon()) {
    168     found_by_runtime_probing_only_ |= 1u << NEON;
    169   }
    170 
    171   if (!IsSupported(ARMv7) && FLAG_enable_armv7 && cpu.architecture() >= 7) {
    172     found_by_runtime_probing_only_ |= static_cast<uint64_t>(1) << ARMv7;
    173   }
    174 
    175   if (!IsSupported(SUDIV) && FLAG_enable_sudiv && cpu.has_idiva()) {
    176     found_by_runtime_probing_only_ |= static_cast<uint64_t>(1) << SUDIV;
    177   }
    178 
    179   if (!IsSupported(UNALIGNED_ACCESSES) && FLAG_enable_unaligned_accesses
    180       && cpu.architecture() >= 7) {
    181     found_by_runtime_probing_only_ |=
    182         static_cast<uint64_t>(1) << UNALIGNED_ACCESSES;
    183   }
    184 
    185   // Use movw/movt for QUALCOMM ARMv7 cores.
    186   if (cpu.implementer() == CPU::QUALCOMM &&
    187       cpu.architecture() >= 7 &&
    188       FLAG_enable_movw_movt) {
    189     found_by_runtime_probing_only_ |=
    190         static_cast<uint64_t>(1) << MOVW_MOVT_IMMEDIATE_LOADS;
    191   }
    192 
    193   // ARM Cortex-A9 and Cortex-A5 have 32 byte cachelines.
    194   if (cpu.implementer() == CPU::ARM &&
    195       (cpu.part() == CPU::ARM_CORTEX_A5 ||
    196        cpu.part() == CPU::ARM_CORTEX_A9)) {
    197     cache_line_size_ = 32;
    198   }
    199 
    200   if (!IsSupported(VFP32DREGS) && FLAG_enable_32dregs && cpu.has_vfp3_d32()) {
    201     found_by_runtime_probing_only_ |= static_cast<uint64_t>(1) << VFP32DREGS;
    202   }
    203 
    204   supported_ |= found_by_runtime_probing_only_;
    205 #endif
    206 
    207   // Assert that VFP3 implies ARMv7.
    208   ASSERT(!IsSupported(VFP3) || IsSupported(ARMv7));
    209 }
    210 
    211 
    212 void CpuFeatures::PrintTarget() {
    213   const char* arm_arch = NULL;
    214   const char* arm_test = "";
    215   const char* arm_fpu = "";
    216   const char* arm_thumb = "";
    217   const char* arm_float_abi = NULL;
    218 
    219 #if defined CAN_USE_ARMV7_INSTRUCTIONS
    220   arm_arch = "arm v7";
    221 #else
    222   arm_arch = "arm v6";
    223 #endif
    224 
    225 #ifdef __arm__
    226 
    227 # ifdef ARM_TEST
    228   arm_test = " test";
    229 # endif
    230 # if defined __ARM_NEON__
    231   arm_fpu = " neon";
    232 # elif defined CAN_USE_VFP3_INSTRUCTIONS
    233   arm_fpu = " vfp3";
    234 # else
    235   arm_fpu = " vfp2";
    236 # endif
    237 # if (defined __thumb__) || (defined __thumb2__)
    238   arm_thumb = " thumb";
    239 # endif
    240   arm_float_abi = OS::ArmUsingHardFloat() ? "hard" : "softfp";
    241 
    242 #else  // __arm__
    243 
    244   arm_test = " simulator";
    245 # if defined CAN_USE_VFP3_INSTRUCTIONS
    246 #  if defined CAN_USE_VFP32DREGS
    247   arm_fpu = " vfp3";
    248 #  else
    249   arm_fpu = " vfp3-d16";
    250 #  endif
    251 # else
    252   arm_fpu = " vfp2";
    253 # endif
    254 # if USE_EABI_HARDFLOAT == 1
    255   arm_float_abi = "hard";
    256 # else
    257   arm_float_abi = "softfp";
    258 # endif
    259 
    260 #endif  // __arm__
    261 
    262   printf("target%s %s%s%s %s\n",
    263          arm_test, arm_arch, arm_fpu, arm_thumb, arm_float_abi);
    264 }
    265 
    266 
    267 void CpuFeatures::PrintFeatures() {
    268   printf(
    269     "ARMv7=%d VFP3=%d VFP32DREGS=%d NEON=%d SUDIV=%d UNALIGNED_ACCESSES=%d "
    270     "MOVW_MOVT_IMMEDIATE_LOADS=%d",
    271     CpuFeatures::IsSupported(ARMv7),
    272     CpuFeatures::IsSupported(VFP3),
    273     CpuFeatures::IsSupported(VFP32DREGS),
    274     CpuFeatures::IsSupported(NEON),
    275     CpuFeatures::IsSupported(SUDIV),
    276     CpuFeatures::IsSupported(UNALIGNED_ACCESSES),
    277     CpuFeatures::IsSupported(MOVW_MOVT_IMMEDIATE_LOADS));
    278 #ifdef __arm__
    279   bool eabi_hardfloat = OS::ArmUsingHardFloat();
    280 #elif USE_EABI_HARDFLOAT
    281   bool eabi_hardfloat = true;
    282 #else
    283   bool eabi_hardfloat = false;
    284 #endif
    285     printf(" USE_EABI_HARDFLOAT=%d\n", eabi_hardfloat);
    286 }
    287 
    288 
    289 // -----------------------------------------------------------------------------
    290 // Implementation of RelocInfo
    291 
    292 const int RelocInfo::kApplyMask = 0;
    293 
    294 
    295 bool RelocInfo::IsCodedSpecially() {
    296   // The deserializer needs to know whether a pointer is specially coded.  Being
    297   // specially coded on ARM means that it is a movw/movt instruction.  We don't
    298   // generate those yet.
    299   return false;
    300 }
    301 
    302 
    303 void RelocInfo::PatchCode(byte* instructions, int instruction_count) {
    304   // Patch the code at the current address with the supplied instructions.
    305   Instr* pc = reinterpret_cast<Instr*>(pc_);
    306   Instr* instr = reinterpret_cast<Instr*>(instructions);
    307   for (int i = 0; i < instruction_count; i++) {
    308     *(pc + i) = *(instr + i);
    309   }
    310 
    311   // Indicate that code has changed.
    312   CPU::FlushICache(pc_, instruction_count * Assembler::kInstrSize);
    313 }
    314 
    315 
    316 // Patch the code at the current PC with a call to the target address.
    317 // Additional guard instructions can be added if required.
    318 void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) {
    319   // Patch the code at the current address with a call to the target.
    320   UNIMPLEMENTED();
    321 }
    322 
    323 
    324 // -----------------------------------------------------------------------------
    325 // Implementation of Operand and MemOperand
    326 // See assembler-arm-inl.h for inlined constructors
    327 
    328 Operand::Operand(Handle<Object> handle) {
    329   AllowDeferredHandleDereference using_raw_address;
    330   rm_ = no_reg;
    331   // Verify all Objects referred by code are NOT in new space.
    332   Object* obj = *handle;
    333   if (obj->IsHeapObject()) {
    334     ASSERT(!HeapObject::cast(obj)->GetHeap()->InNewSpace(obj));
    335     imm32_ = reinterpret_cast<intptr_t>(handle.location());
    336     rmode_ = RelocInfo::EMBEDDED_OBJECT;
    337   } else {
    338     // no relocation needed
    339     imm32_ = reinterpret_cast<intptr_t>(obj);
    340     rmode_ = RelocInfo::NONE32;
    341   }
    342 }
    343 
    344 
    345 Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) {
    346   ASSERT(is_uint5(shift_imm));
    347   ASSERT(shift_op != ROR || shift_imm != 0);  // use RRX if you mean it
    348   rm_ = rm;
    349   rs_ = no_reg;
    350   shift_op_ = shift_op;
    351   shift_imm_ = shift_imm & 31;
    352   if (shift_op == RRX) {
    353     // encoded as ROR with shift_imm == 0
    354     ASSERT(shift_imm == 0);
    355     shift_op_ = ROR;
    356     shift_imm_ = 0;
    357   }
    358 }
    359 
    360 
    361 Operand::Operand(Register rm, ShiftOp shift_op, Register rs) {
    362   ASSERT(shift_op != RRX);
    363   rm_ = rm;
    364   rs_ = no_reg;
    365   shift_op_ = shift_op;
    366   rs_ = rs;
    367 }
    368 
    369 
    370 MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) {
    371   rn_ = rn;
    372   rm_ = no_reg;
    373   offset_ = offset;
    374   am_ = am;
    375 }
    376 
    377 
    378 MemOperand::MemOperand(Register rn, Register rm, AddrMode am) {
    379   rn_ = rn;
    380   rm_ = rm;
    381   shift_op_ = LSL;
    382   shift_imm_ = 0;
    383   am_ = am;
    384 }
    385 
    386 
    387 MemOperand::MemOperand(Register rn, Register rm,
    388                        ShiftOp shift_op, int shift_imm, AddrMode am) {
    389   ASSERT(is_uint5(shift_imm));
    390   rn_ = rn;
    391   rm_ = rm;
    392   shift_op_ = shift_op;
    393   shift_imm_ = shift_imm & 31;
    394   am_ = am;
    395 }
    396 
    397 
    398 NeonMemOperand::NeonMemOperand(Register rn, AddrMode am, int align) {
    399   ASSERT((am == Offset) || (am == PostIndex));
    400   rn_ = rn;
    401   rm_ = (am == Offset) ? pc : sp;
    402   SetAlignment(align);
    403 }
    404 
    405 
    406 NeonMemOperand::NeonMemOperand(Register rn, Register rm, int align) {
    407   rn_ = rn;
    408   rm_ = rm;
    409   SetAlignment(align);
    410 }
    411 
    412 
    413 void NeonMemOperand::SetAlignment(int align) {
    414   switch (align) {
    415     case 0:
    416       align_ = 0;
    417       break;
    418     case 64:
    419       align_ = 1;
    420       break;
    421     case 128:
    422       align_ = 2;
    423       break;
    424     case 256:
    425       align_ = 3;
    426       break;
    427     default:
    428       UNREACHABLE();
    429       align_ = 0;
    430       break;
    431   }
    432 }
    433 
    434 
    435 NeonListOperand::NeonListOperand(DoubleRegister base, int registers_count) {
    436   base_ = base;
    437   switch (registers_count) {
    438     case 1:
    439       type_ = nlt_1;
    440       break;
    441     case 2:
    442       type_ = nlt_2;
    443       break;
    444     case 3:
    445       type_ = nlt_3;
    446       break;
    447     case 4:
    448       type_ = nlt_4;
    449       break;
    450     default:
    451       UNREACHABLE();
    452       type_ = nlt_1;
    453       break;
    454   }
    455 }
    456 
    457 
    458 // -----------------------------------------------------------------------------
    459 // Specific instructions, constants, and masks.
    460 
    461 // add(sp, sp, 4) instruction (aka Pop())
    462 const Instr kPopInstruction =
    463     al | PostIndex | 4 | LeaveCC | I | kRegister_sp_Code * B16 |
    464         kRegister_sp_Code * B12;
    465 // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r))
    466 // register r is not encoded.
    467 const Instr kPushRegPattern =
    468     al | B26 | 4 | NegPreIndex | kRegister_sp_Code * B16;
    469 // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r))
    470 // register r is not encoded.
    471 const Instr kPopRegPattern =
    472     al | B26 | L | 4 | PostIndex | kRegister_sp_Code * B16;
    473 // mov lr, pc
    474 const Instr kMovLrPc = al | MOV | kRegister_pc_Code | kRegister_lr_Code * B12;
    475 // ldr rd, [pc, #offset]
    476 const Instr kLdrPCMask = 15 * B24 | 7 * B20 | 15 * B16;
    477 const Instr kLdrPCPattern = 5 * B24 | L | kRegister_pc_Code * B16;
    478 // vldr dd, [pc, #offset]
    479 const Instr kVldrDPCMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8;
    480 const Instr kVldrDPCPattern = 13 * B24 | L | kRegister_pc_Code * B16 | 11 * B8;
    481 // blxcc rm
    482 const Instr kBlxRegMask =
    483     15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4;
    484 const Instr kBlxRegPattern =
    485     B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX;
    486 const Instr kBlxIp = al | kBlxRegPattern | ip.code();
    487 const Instr kMovMvnMask = 0x6d * B21 | 0xf * B16;
    488 const Instr kMovMvnPattern = 0xd * B21;
    489 const Instr kMovMvnFlip = B22;
    490 const Instr kMovLeaveCCMask = 0xdff * B16;
    491 const Instr kMovLeaveCCPattern = 0x1a0 * B16;
    492 const Instr kMovwMask = 0xff * B20;
    493 const Instr kMovwPattern = 0x30 * B20;
    494 const Instr kMovwLeaveCCFlip = 0x5 * B21;
    495 const Instr kCmpCmnMask = 0xdd * B20 | 0xf * B12;
    496 const Instr kCmpCmnPattern = 0x15 * B20;
    497 const Instr kCmpCmnFlip = B21;
    498 const Instr kAddSubFlip = 0x6 * B21;
    499 const Instr kAndBicFlip = 0xe * B21;
    500 
    501 // A mask for the Rd register for push, pop, ldr, str instructions.
    502 const Instr kLdrRegFpOffsetPattern =
    503     al | B26 | L | Offset | kRegister_fp_Code * B16;
    504 const Instr kStrRegFpOffsetPattern =
    505     al | B26 | Offset | kRegister_fp_Code * B16;
    506 const Instr kLdrRegFpNegOffsetPattern =
    507     al | B26 | L | NegOffset | kRegister_fp_Code * B16;
    508 const Instr kStrRegFpNegOffsetPattern =
    509     al | B26 | NegOffset | kRegister_fp_Code * B16;
    510 const Instr kLdrStrInstrTypeMask = 0xffff0000;
    511 const Instr kLdrStrInstrArgumentMask = 0x0000ffff;
    512 const Instr kLdrStrOffsetMask = 0x00000fff;
    513 
    514 
    515 Assembler::Assembler(Isolate* isolate, void* buffer, int buffer_size)
    516     : AssemblerBase(isolate, buffer, buffer_size),
    517       recorded_ast_id_(TypeFeedbackId::None()),
    518       positions_recorder_(this) {
    519   reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
    520   num_pending_32_bit_reloc_info_ = 0;
    521   num_pending_64_bit_reloc_info_ = 0;
    522   next_buffer_check_ = 0;
    523   const_pool_blocked_nesting_ = 0;
    524   no_const_pool_before_ = 0;
    525   first_const_pool_32_use_ = -1;
    526   first_const_pool_64_use_ = -1;
    527   last_bound_pos_ = 0;
    528   ClearRecordedAstId();
    529 }
    530 
    531 
    532 Assembler::~Assembler() {
    533   ASSERT(const_pool_blocked_nesting_ == 0);
    534 }
    535 
    536 
    537 void Assembler::GetCode(CodeDesc* desc) {
    538   // Emit constant pool if necessary.
    539   CheckConstPool(true, false);
    540   ASSERT(num_pending_32_bit_reloc_info_ == 0);
    541   ASSERT(num_pending_64_bit_reloc_info_ == 0);
    542 
    543   // Set up code descriptor.
    544   desc->buffer = buffer_;
    545   desc->buffer_size = buffer_size_;
    546   desc->instr_size = pc_offset();
    547   desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
    548   desc->origin = this;
    549 }
    550 
    551 
    552 void Assembler::Align(int m) {
    553   ASSERT(m >= 4 && IsPowerOf2(m));
    554   while ((pc_offset() & (m - 1)) != 0) {
    555     nop();
    556   }
    557 }
    558 
    559 
    560 void Assembler::CodeTargetAlign() {
    561   // Preferred alignment of jump targets on some ARM chips.
    562   Align(8);
    563 }
    564 
    565 
    566 Condition Assembler::GetCondition(Instr instr) {
    567   return Instruction::ConditionField(instr);
    568 }
    569 
    570 
    571 bool Assembler::IsBranch(Instr instr) {
    572   return (instr & (B27 | B25)) == (B27 | B25);
    573 }
    574 
    575 
    576 int Assembler::GetBranchOffset(Instr instr) {
    577   ASSERT(IsBranch(instr));
    578   // Take the jump offset in the lower 24 bits, sign extend it and multiply it
    579   // with 4 to get the offset in bytes.
    580   return ((instr & kImm24Mask) << 8) >> 6;
    581 }
    582 
    583 
    584 bool Assembler::IsLdrRegisterImmediate(Instr instr) {
    585   return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20);
    586 }
    587 
    588 
    589 bool Assembler::IsVldrDRegisterImmediate(Instr instr) {
    590   return (instr & (15 * B24 | 3 * B20 | 15 * B8)) == (13 * B24 | B20 | 11 * B8);
    591 }
    592 
    593 
    594 int Assembler::GetLdrRegisterImmediateOffset(Instr instr) {
    595   ASSERT(IsLdrRegisterImmediate(instr));
    596   bool positive = (instr & B23) == B23;
    597   int offset = instr & kOff12Mask;  // Zero extended offset.
    598   return positive ? offset : -offset;
    599 }
    600 
    601 
    602 int Assembler::GetVldrDRegisterImmediateOffset(Instr instr) {
    603   ASSERT(IsVldrDRegisterImmediate(instr));
    604   bool positive = (instr & B23) == B23;
    605   int offset = instr & kOff8Mask;  // Zero extended offset.
    606   offset <<= 2;
    607   return positive ? offset : -offset;
    608 }
    609 
    610 
    611 Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) {
    612   ASSERT(IsLdrRegisterImmediate(instr));
    613   bool positive = offset >= 0;
    614   if (!positive) offset = -offset;
    615   ASSERT(is_uint12(offset));
    616   // Set bit indicating whether the offset should be added.
    617   instr = (instr & ~B23) | (positive ? B23 : 0);
    618   // Set the actual offset.
    619   return (instr & ~kOff12Mask) | offset;
    620 }
    621 
    622 
    623 Instr Assembler::SetVldrDRegisterImmediateOffset(Instr instr, int offset) {
    624   ASSERT(IsVldrDRegisterImmediate(instr));
    625   ASSERT((offset & ~3) == offset);  // Must be 64-bit aligned.
    626   bool positive = offset >= 0;
    627   if (!positive) offset = -offset;
    628   ASSERT(is_uint10(offset));
    629   // Set bit indicating whether the offset should be added.
    630   instr = (instr & ~B23) | (positive ? B23 : 0);
    631   // Set the actual offset. Its bottom 2 bits are zero.
    632   return (instr & ~kOff8Mask) | (offset >> 2);
    633 }
    634 
    635 
    636 bool Assembler::IsStrRegisterImmediate(Instr instr) {
    637   return (instr & (B27 | B26 | B25 | B22 | B20)) == B26;
    638 }
    639 
    640 
    641 Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) {
    642   ASSERT(IsStrRegisterImmediate(instr));
    643   bool positive = offset >= 0;
    644   if (!positive) offset = -offset;
    645   ASSERT(is_uint12(offset));
    646   // Set bit indicating whether the offset should be added.
    647   instr = (instr & ~B23) | (positive ? B23 : 0);
    648   // Set the actual offset.
    649   return (instr & ~kOff12Mask) | offset;
    650 }
    651 
    652 
    653 bool Assembler::IsAddRegisterImmediate(Instr instr) {
    654   return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23);
    655 }
    656 
    657 
    658 Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) {
    659   ASSERT(IsAddRegisterImmediate(instr));
    660   ASSERT(offset >= 0);
    661   ASSERT(is_uint12(offset));
    662   // Set the offset.
    663   return (instr & ~kOff12Mask) | offset;
    664 }
    665 
    666 
    667 Register Assembler::GetRd(Instr instr) {
    668   Register reg;
    669   reg.code_ = Instruction::RdValue(instr);
    670   return reg;
    671 }
    672 
    673 
    674 Register Assembler::GetRn(Instr instr) {
    675   Register reg;
    676   reg.code_ = Instruction::RnValue(instr);
    677   return reg;
    678 }
    679 
    680 
    681 Register Assembler::GetRm(Instr instr) {
    682   Register reg;
    683   reg.code_ = Instruction::RmValue(instr);
    684   return reg;
    685 }
    686 
    687 
    688 bool Assembler::IsPush(Instr instr) {
    689   return ((instr & ~kRdMask) == kPushRegPattern);
    690 }
    691 
    692 
    693 bool Assembler::IsPop(Instr instr) {
    694   return ((instr & ~kRdMask) == kPopRegPattern);
    695 }
    696 
    697 
    698 bool Assembler::IsStrRegFpOffset(Instr instr) {
    699   return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern);
    700 }
    701 
    702 
    703 bool Assembler::IsLdrRegFpOffset(Instr instr) {
    704   return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern);
    705 }
    706 
    707 
    708 bool Assembler::IsStrRegFpNegOffset(Instr instr) {
    709   return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern);
    710 }
    711 
    712 
    713 bool Assembler::IsLdrRegFpNegOffset(Instr instr) {
    714   return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern);
    715 }
    716 
    717 
    718 bool Assembler::IsLdrPcImmediateOffset(Instr instr) {
    719   // Check the instruction is indeed a
    720   // ldr<cond> <Rd>, [pc +/- offset_12].
    721   return (instr & kLdrPCMask) == kLdrPCPattern;
    722 }
    723 
    724 
    725 bool Assembler::IsVldrDPcImmediateOffset(Instr instr) {
    726   // Check the instruction is indeed a
    727   // vldr<cond> <Dd>, [pc +/- offset_10].
    728   return (instr & kVldrDPCMask) == kVldrDPCPattern;
    729 }
    730 
    731 
    732 bool Assembler::IsTstImmediate(Instr instr) {
    733   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
    734       (I | TST | S);
    735 }
    736 
    737 
    738 bool Assembler::IsCmpRegister(Instr instr) {
    739   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask | B4)) ==
    740       (CMP | S);
    741 }
    742 
    743 
    744 bool Assembler::IsCmpImmediate(Instr instr) {
    745   return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) ==
    746       (I | CMP | S);
    747 }
    748 
    749 
    750 Register Assembler::GetCmpImmediateRegister(Instr instr) {
    751   ASSERT(IsCmpImmediate(instr));
    752   return GetRn(instr);
    753 }
    754 
    755 
    756 int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
    757   ASSERT(IsCmpImmediate(instr));
    758   return instr & kOff12Mask;
    759 }
    760 
    761 
    762 // Labels refer to positions in the (to be) generated code.
    763 // There are bound, linked, and unused labels.
    764 //
    765 // Bound labels refer to known positions in the already
    766 // generated code. pos() is the position the label refers to.
    767 //
    768 // Linked labels refer to unknown positions in the code
    769 // to be generated; pos() is the position of the last
    770 // instruction using the label.
    771 //
    772 // The linked labels form a link chain by making the branch offset
    773 // in the instruction steam to point to the previous branch
    774 // instruction using the same label.
    775 //
    776 // The link chain is terminated by a branch offset pointing to the
    777 // same position.
    778 
    779 
    780 int Assembler::target_at(int pos)  {
    781   Instr instr = instr_at(pos);
    782   if (is_uint24(instr)) {
    783     // Emitted link to a label, not part of a branch.
    784     return instr;
    785   }
    786   ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx imm24
    787   int imm26 = ((instr & kImm24Mask) << 8) >> 6;
    788   if ((Instruction::ConditionField(instr) == kSpecialCondition) &&
    789       ((instr & B24) != 0)) {
    790     // blx uses bit 24 to encode bit 2 of imm26
    791     imm26 += 2;
    792   }
    793   return pos + kPcLoadDelta + imm26;
    794 }
    795 
    796 
    797 void Assembler::target_at_put(int pos, int target_pos) {
    798   Instr instr = instr_at(pos);
    799   if (is_uint24(instr)) {
    800     ASSERT(target_pos == pos || target_pos >= 0);
    801     // Emitted link to a label, not part of a branch.
    802     // Load the position of the label relative to the generated code object
    803     // pointer in a register.
    804 
    805     // Here are the instructions we need to emit:
    806     //   For ARMv7: target24 => target16_1:target16_0
    807     //      movw dst, #target16_0
    808     //      movt dst, #target16_1
    809     //   For ARMv6: target24 => target8_2:target8_1:target8_0
    810     //      mov dst, #target8_0
    811     //      orr dst, dst, #target8_1 << 8
    812     //      orr dst, dst, #target8_2 << 16
    813 
    814     // We extract the destination register from the emitted nop instruction.
    815     Register dst = Register::from_code(
    816         Instruction::RmValue(instr_at(pos + kInstrSize)));
    817     ASSERT(IsNop(instr_at(pos + kInstrSize), dst.code()));
    818     uint32_t target24 = target_pos + (Code::kHeaderSize - kHeapObjectTag);
    819     ASSERT(is_uint24(target24));
    820     if (is_uint8(target24)) {
    821       // If the target fits in a byte then only patch with a mov
    822       // instruction.
    823       CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
    824                           1,
    825                           CodePatcher::DONT_FLUSH);
    826       patcher.masm()->mov(dst, Operand(target24));
    827     } else {
    828       uint16_t target16_0 = target24 & kImm16Mask;
    829       uint16_t target16_1 = target24 >> 16;
    830       if (CpuFeatures::IsSupported(ARMv7)) {
    831         // Patch with movw/movt.
    832         if (target16_1 == 0) {
    833           CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
    834                               1,
    835                               CodePatcher::DONT_FLUSH);
    836           patcher.masm()->movw(dst, target16_0);
    837         } else {
    838           CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
    839                               2,
    840                               CodePatcher::DONT_FLUSH);
    841           patcher.masm()->movw(dst, target16_0);
    842           patcher.masm()->movt(dst, target16_1);
    843         }
    844       } else {
    845         // Patch with a sequence of mov/orr/orr instructions.
    846         uint8_t target8_0 = target16_0 & kImm8Mask;
    847         uint8_t target8_1 = target16_0 >> 8;
    848         uint8_t target8_2 = target16_1 & kImm8Mask;
    849         if (target8_2 == 0) {
    850           CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
    851                               2,
    852                               CodePatcher::DONT_FLUSH);
    853           patcher.masm()->mov(dst, Operand(target8_0));
    854           patcher.masm()->orr(dst, dst, Operand(target8_1 << 8));
    855         } else {
    856           CodePatcher patcher(reinterpret_cast<byte*>(buffer_ + pos),
    857                               3,
    858                               CodePatcher::DONT_FLUSH);
    859           patcher.masm()->mov(dst, Operand(target8_0));
    860           patcher.masm()->orr(dst, dst, Operand(target8_1 << 8));
    861           patcher.masm()->orr(dst, dst, Operand(target8_2 << 16));
    862         }
    863       }
    864     }
    865     return;
    866   }
    867   int imm26 = target_pos - (pos + kPcLoadDelta);
    868   ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx imm24
    869   if (Instruction::ConditionField(instr) == kSpecialCondition) {
    870     // blx uses bit 24 to encode bit 2 of imm26
    871     ASSERT((imm26 & 1) == 0);
    872     instr = (instr & ~(B24 | kImm24Mask)) | ((imm26 & 2) >> 1)*B24;
    873   } else {
    874     ASSERT((imm26 & 3) == 0);
    875     instr &= ~kImm24Mask;
    876   }
    877   int imm24 = imm26 >> 2;
    878   ASSERT(is_int24(imm24));
    879   instr_at_put(pos, instr | (imm24 & kImm24Mask));
    880 }
    881 
    882 
    883 void Assembler::print(Label* L) {
    884   if (L->is_unused()) {
    885     PrintF("unused label\n");
    886   } else if (L->is_bound()) {
    887     PrintF("bound label to %d\n", L->pos());
    888   } else if (L->is_linked()) {
    889     Label l = *L;
    890     PrintF("unbound label");
    891     while (l.is_linked()) {
    892       PrintF("@ %d ", l.pos());
    893       Instr instr = instr_at(l.pos());
    894       if ((instr & ~kImm24Mask) == 0) {
    895         PrintF("value\n");
    896       } else {
    897         ASSERT((instr & 7*B25) == 5*B25);  // b, bl, or blx
    898         Condition cond = Instruction::ConditionField(instr);
    899         const char* b;
    900         const char* c;
    901         if (cond == kSpecialCondition) {
    902           b = "blx";
    903           c = "";
    904         } else {
    905           if ((instr & B24) != 0)
    906             b = "bl";
    907           else
    908             b = "b";
    909 
    910           switch (cond) {
    911             case eq: c = "eq"; break;
    912             case ne: c = "ne"; break;
    913             case hs: c = "hs"; break;
    914             case lo: c = "lo"; break;
    915             case mi: c = "mi"; break;
    916             case pl: c = "pl"; break;
    917             case vs: c = "vs"; break;
    918             case vc: c = "vc"; break;
    919             case hi: c = "hi"; break;
    920             case ls: c = "ls"; break;
    921             case ge: c = "ge"; break;
    922             case lt: c = "lt"; break;
    923             case gt: c = "gt"; break;
    924             case le: c = "le"; break;
    925             case al: c = ""; break;
    926             default:
    927               c = "";
    928               UNREACHABLE();
    929           }
    930         }
    931         PrintF("%s%s\n", b, c);
    932       }
    933       next(&l);
    934     }
    935   } else {
    936     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
    937   }
    938 }
    939 
    940 
    941 void Assembler::bind_to(Label* L, int pos) {
    942   ASSERT(0 <= pos && pos <= pc_offset());  // must have a valid binding position
    943   while (L->is_linked()) {
    944     int fixup_pos = L->pos();
    945     next(L);  // call next before overwriting link with target at fixup_pos
    946     target_at_put(fixup_pos, pos);
    947   }
    948   L->bind_to(pos);
    949 
    950   // Keep track of the last bound label so we don't eliminate any instructions
    951   // before a bound label.
    952   if (pos > last_bound_pos_)
    953     last_bound_pos_ = pos;
    954 }
    955 
    956 
    957 void Assembler::bind(Label* L) {
    958   ASSERT(!L->is_bound());  // label can only be bound once
    959   bind_to(L, pc_offset());
    960 }
    961 
    962 
    963 void Assembler::next(Label* L) {
    964   ASSERT(L->is_linked());
    965   int link = target_at(L->pos());
    966   if (link == L->pos()) {
    967     // Branch target points to the same instuction. This is the end of the link
    968     // chain.
    969     L->Unuse();
    970   } else {
    971     ASSERT(link >= 0);
    972     L->link_to(link);
    973   }
    974 }
    975 
    976 
    977 // Low-level code emission routines depending on the addressing mode.
    978 // If this returns true then you have to use the rotate_imm and immed_8
    979 // that it returns, because it may have already changed the instruction
    980 // to match them!
    981 static bool fits_shifter(uint32_t imm32,
    982                          uint32_t* rotate_imm,
    983                          uint32_t* immed_8,
    984                          Instr* instr) {
    985   // imm32 must be unsigned.
    986   for (int rot = 0; rot < 16; rot++) {
    987     uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot));
    988     if ((imm8 <= 0xff)) {
    989       *rotate_imm = rot;
    990       *immed_8 = imm8;
    991       return true;
    992     }
    993   }
    994   // If the opcode is one with a complementary version and the complementary
    995   // immediate fits, change the opcode.
    996   if (instr != NULL) {
    997     if ((*instr & kMovMvnMask) == kMovMvnPattern) {
    998       if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
    999         *instr ^= kMovMvnFlip;
   1000         return true;
   1001       } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) {
   1002         if (CpuFeatures::IsSupported(ARMv7)) {
   1003           if (imm32 < 0x10000) {
   1004             *instr ^= kMovwLeaveCCFlip;
   1005             *instr |= EncodeMovwImmediate(imm32);
   1006             *rotate_imm = *immed_8 = 0;  // Not used for movw.
   1007             return true;
   1008           }
   1009         }
   1010       }
   1011     } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) {
   1012       if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
   1013         *instr ^= kCmpCmnFlip;
   1014         return true;
   1015       }
   1016     } else {
   1017       Instr alu_insn = (*instr & kALUMask);
   1018       if (alu_insn == ADD ||
   1019           alu_insn == SUB) {
   1020         if (fits_shifter(-static_cast<int>(imm32), rotate_imm, immed_8, NULL)) {
   1021           *instr ^= kAddSubFlip;
   1022           return true;
   1023         }
   1024       } else if (alu_insn == AND ||
   1025                  alu_insn == BIC) {
   1026         if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) {
   1027           *instr ^= kAndBicFlip;
   1028           return true;
   1029         }
   1030       }
   1031     }
   1032   }
   1033   return false;
   1034 }
   1035 
   1036 
   1037 // We have to use the temporary register for things that can be relocated even
   1038 // if they can be encoded in the ARM's 12 bits of immediate-offset instruction
   1039 // space.  There is no guarantee that the relocated location can be similarly
   1040 // encoded.
   1041 bool Operand::must_output_reloc_info(const Assembler* assembler) const {
   1042   if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
   1043 #ifdef DEBUG
   1044     if (!Serializer::enabled()) {
   1045       Serializer::TooLateToEnableNow();
   1046     }
   1047 #endif  // def DEBUG
   1048     if (assembler != NULL && assembler->predictable_code_size()) return true;
   1049     return Serializer::enabled();
   1050   } else if (RelocInfo::IsNone(rmode_)) {
   1051     return false;
   1052   }
   1053   return true;
   1054 }
   1055 
   1056 
   1057 static bool use_movw_movt(const Operand& x, const Assembler* assembler) {
   1058   if (Assembler::use_immediate_embedded_pointer_loads(assembler)) {
   1059     return true;
   1060   }
   1061   if (x.must_output_reloc_info(assembler)) {
   1062     return false;
   1063   }
   1064   return CpuFeatures::IsSupported(ARMv7);
   1065 }
   1066 
   1067 
   1068 bool Operand::is_single_instruction(const Assembler* assembler,
   1069                                     Instr instr) const {
   1070   if (rm_.is_valid()) return true;
   1071   uint32_t dummy1, dummy2;
   1072   if (must_output_reloc_info(assembler) ||
   1073       !fits_shifter(imm32_, &dummy1, &dummy2, &instr)) {
   1074     // The immediate operand cannot be encoded as a shifter operand, or use of
   1075     // constant pool is required. For a mov instruction not setting the
   1076     // condition code additional instruction conventions can be used.
   1077     if ((instr & ~kCondMask) == 13*B21) {  // mov, S not set
   1078       return !use_movw_movt(*this, assembler);
   1079     } else {
   1080       // If this is not a mov or mvn instruction there will always an additional
   1081       // instructions - either mov or ldr. The mov might actually be two
   1082       // instructions mov or movw followed by movt so including the actual
   1083       // instruction two or three instructions will be generated.
   1084       return false;
   1085     }
   1086   } else {
   1087     // No use of constant pool and the immediate operand can be encoded as a
   1088     // shifter operand.
   1089     return true;
   1090   }
   1091 }
   1092 
   1093 
   1094 void Assembler::move_32_bit_immediate(Condition cond,
   1095                                       Register rd,
   1096                                       SBit s,
   1097                                       const Operand& x) {
   1098   if (rd.code() != pc.code() && s == LeaveCC) {
   1099     if (use_movw_movt(x, this)) {
   1100       if (x.must_output_reloc_info(this)) {
   1101         RecordRelocInfo(x.rmode_, x.imm32_, DONT_USE_CONSTANT_POOL);
   1102         // Make sure the movw/movt doesn't get separated.
   1103         BlockConstPoolFor(2);
   1104       }
   1105       emit(cond | 0x30*B20 | rd.code()*B12 |
   1106            EncodeMovwImmediate(x.imm32_ & 0xffff));
   1107       movt(rd, static_cast<uint32_t>(x.imm32_) >> 16, cond);
   1108       return;
   1109     }
   1110   }
   1111 
   1112   RecordRelocInfo(x.rmode_, x.imm32_, USE_CONSTANT_POOL);
   1113   ldr(rd, MemOperand(pc, 0), cond);
   1114 }
   1115 
   1116 
   1117 void Assembler::addrmod1(Instr instr,
   1118                          Register rn,
   1119                          Register rd,
   1120                          const Operand& x) {
   1121   CheckBuffer();
   1122   ASSERT((instr & ~(kCondMask | kOpCodeMask | S)) == 0);
   1123   if (!x.rm_.is_valid()) {
   1124     // Immediate.
   1125     uint32_t rotate_imm;
   1126     uint32_t immed_8;
   1127     if (x.must_output_reloc_info(this) ||
   1128         !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) {
   1129       // The immediate operand cannot be encoded as a shifter operand, so load
   1130       // it first to register ip and change the original instruction to use ip.
   1131       // However, if the original instruction is a 'mov rd, x' (not setting the
   1132       // condition code), then replace it with a 'ldr rd, [pc]'.
   1133       CHECK(!rn.is(ip));  // rn should never be ip, or will be trashed
   1134       Condition cond = Instruction::ConditionField(instr);
   1135       if ((instr & ~kCondMask) == 13*B21) {  // mov, S not set
   1136         move_32_bit_immediate(cond, rd, LeaveCC, x);
   1137       } else {
   1138         if ((instr & kMovMvnMask) == kMovMvnPattern) {
   1139           // Moves need to use a constant pool entry.
   1140           RecordRelocInfo(x.rmode_, x.imm32_, USE_CONSTANT_POOL);
   1141           ldr(ip, MemOperand(pc, 0), cond);
   1142         } else if (x.must_output_reloc_info(this)) {
   1143           // Otherwise, use most efficient form of fetching from constant pool.
   1144           move_32_bit_immediate(cond, ip, LeaveCC, x);
   1145         } else {
   1146           // If this is not a mov or mvn instruction we may still be able to
   1147           // avoid a constant pool entry by using mvn or movw.
   1148           mov(ip, x, LeaveCC, cond);
   1149         }
   1150         addrmod1(instr, rn, rd, Operand(ip));
   1151       }
   1152       return;
   1153     }
   1154     instr |= I | rotate_imm*B8 | immed_8;
   1155   } else if (!x.rs_.is_valid()) {
   1156     // Immediate shift.
   1157     instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
   1158   } else {
   1159     // Register shift.
   1160     ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc));
   1161     instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code();
   1162   }
   1163   emit(instr | rn.code()*B16 | rd.code()*B12);
   1164   if (rn.is(pc) || x.rm_.is(pc)) {
   1165     // Block constant pool emission for one instruction after reading pc.
   1166     BlockConstPoolFor(1);
   1167   }
   1168 }
   1169 
   1170 
   1171 void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) {
   1172   ASSERT((instr & ~(kCondMask | B | L)) == B26);
   1173   int am = x.am_;
   1174   if (!x.rm_.is_valid()) {
   1175     // Immediate offset.
   1176     int offset_12 = x.offset_;
   1177     if (offset_12 < 0) {
   1178       offset_12 = -offset_12;
   1179       am ^= U;
   1180     }
   1181     if (!is_uint12(offset_12)) {
   1182       // Immediate offset cannot be encoded, load it first to register ip
   1183       // rn (and rd in a load) should never be ip, or will be trashed.
   1184       ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
   1185       mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
   1186       addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_));
   1187       return;
   1188     }
   1189     ASSERT(offset_12 >= 0);  // no masking needed
   1190     instr |= offset_12;
   1191   } else {
   1192     // Register offset (shift_imm_ and shift_op_ are 0) or scaled
   1193     // register offset the constructors make sure than both shift_imm_
   1194     // and shift_op_ are initialized.
   1195     ASSERT(!x.rm_.is(pc));
   1196     instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code();
   1197   }
   1198   ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
   1199   emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
   1200 }
   1201 
   1202 
   1203 void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) {
   1204   ASSERT((instr & ~(kCondMask | L | S6 | H)) == (B4 | B7));
   1205   ASSERT(x.rn_.is_valid());
   1206   int am = x.am_;
   1207   if (!x.rm_.is_valid()) {
   1208     // Immediate offset.
   1209     int offset_8 = x.offset_;
   1210     if (offset_8 < 0) {
   1211       offset_8 = -offset_8;
   1212       am ^= U;
   1213     }
   1214     if (!is_uint8(offset_8)) {
   1215       // Immediate offset cannot be encoded, load it first to register ip
   1216       // rn (and rd in a load) should never be ip, or will be trashed.
   1217       ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
   1218       mov(ip, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr));
   1219       addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
   1220       return;
   1221     }
   1222     ASSERT(offset_8 >= 0);  // no masking needed
   1223     instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf);
   1224   } else if (x.shift_imm_ != 0) {
   1225     // Scaled register offset not supported, load index first
   1226     // rn (and rd in a load) should never be ip, or will be trashed.
   1227     ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip)));
   1228     mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC,
   1229         Instruction::ConditionField(instr));
   1230     addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_));
   1231     return;
   1232   } else {
   1233     // Register offset.
   1234     ASSERT((am & (P|W)) == P || !x.rm_.is(pc));  // no pc index with writeback
   1235     instr |= x.rm_.code();
   1236   }
   1237   ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
   1238   emit(instr | am | x.rn_.code()*B16 | rd.code()*B12);
   1239 }
   1240 
   1241 
   1242 void Assembler::addrmod4(Instr instr, Register rn, RegList rl) {
   1243   ASSERT((instr & ~(kCondMask | P | U | W | L)) == B27);
   1244   ASSERT(rl != 0);
   1245   ASSERT(!rn.is(pc));
   1246   emit(instr | rn.code()*B16 | rl);
   1247 }
   1248 
   1249 
   1250 void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) {
   1251   // Unindexed addressing is not encoded by this function.
   1252   ASSERT_EQ((B27 | B26),
   1253             (instr & ~(kCondMask | kCoprocessorMask | P | U | N | W | L)));
   1254   ASSERT(x.rn_.is_valid() && !x.rm_.is_valid());
   1255   int am = x.am_;
   1256   int offset_8 = x.offset_;
   1257   ASSERT((offset_8 & 3) == 0);  // offset must be an aligned word offset
   1258   offset_8 >>= 2;
   1259   if (offset_8 < 0) {
   1260     offset_8 = -offset_8;
   1261     am ^= U;
   1262   }
   1263   ASSERT(is_uint8(offset_8));  // unsigned word offset must fit in a byte
   1264   ASSERT((am & (P|W)) == P || !x.rn_.is(pc));  // no pc base with writeback
   1265 
   1266   // Post-indexed addressing requires W == 1; different than in addrmod2/3.
   1267   if ((am & P) == 0)
   1268     am |= W;
   1269 
   1270   ASSERT(offset_8 >= 0);  // no masking needed
   1271   emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8);
   1272 }
   1273 
   1274 
   1275 int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) {
   1276   int target_pos;
   1277   if (L->is_bound()) {
   1278     target_pos = L->pos();
   1279   } else {
   1280     if (L->is_linked()) {
   1281       // Point to previous instruction that uses the link.
   1282       target_pos = L->pos();
   1283     } else {
   1284       // First entry of the link chain points to itself.
   1285       target_pos = pc_offset();
   1286     }
   1287     L->link_to(pc_offset());
   1288   }
   1289 
   1290   // Block the emission of the constant pool, since the branch instruction must
   1291   // be emitted at the pc offset recorded by the label.
   1292   BlockConstPoolFor(1);
   1293   return target_pos - (pc_offset() + kPcLoadDelta);
   1294 }
   1295 
   1296 
   1297 // Branch instructions.
   1298 void Assembler::b(int branch_offset, Condition cond) {
   1299   ASSERT((branch_offset & 3) == 0);
   1300   int imm24 = branch_offset >> 2;
   1301   ASSERT(is_int24(imm24));
   1302   emit(cond | B27 | B25 | (imm24 & kImm24Mask));
   1303 
   1304   if (cond == al) {
   1305     // Dead code is a good location to emit the constant pool.
   1306     CheckConstPool(false, false);
   1307   }
   1308 }
   1309 
   1310 
   1311 void Assembler::bl(int branch_offset, Condition cond) {
   1312   positions_recorder()->WriteRecordedPositions();
   1313   ASSERT((branch_offset & 3) == 0);
   1314   int imm24 = branch_offset >> 2;
   1315   ASSERT(is_int24(imm24));
   1316   emit(cond | B27 | B25 | B24 | (imm24 & kImm24Mask));
   1317 }
   1318 
   1319 
   1320 void Assembler::blx(int branch_offset) {  // v5 and above
   1321   positions_recorder()->WriteRecordedPositions();
   1322   ASSERT((branch_offset & 1) == 0);
   1323   int h = ((branch_offset & 2) >> 1)*B24;
   1324   int imm24 = branch_offset >> 2;
   1325   ASSERT(is_int24(imm24));
   1326   emit(kSpecialCondition | B27 | B25 | h | (imm24 & kImm24Mask));
   1327 }
   1328 
   1329 
   1330 void Assembler::blx(Register target, Condition cond) {  // v5 and above
   1331   positions_recorder()->WriteRecordedPositions();
   1332   ASSERT(!target.is(pc));
   1333   emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BLX | target.code());
   1334 }
   1335 
   1336 
   1337 void Assembler::bx(Register target, Condition cond) {  // v5 and above, plus v4t
   1338   positions_recorder()->WriteRecordedPositions();
   1339   ASSERT(!target.is(pc));  // use of pc is actually allowed, but discouraged
   1340   emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | BX | target.code());
   1341 }
   1342 
   1343 
   1344 // Data-processing instructions.
   1345 
   1346 void Assembler::and_(Register dst, Register src1, const Operand& src2,
   1347                      SBit s, Condition cond) {
   1348   addrmod1(cond | AND | s, src1, dst, src2);
   1349 }
   1350 
   1351 
   1352 void Assembler::eor(Register dst, Register src1, const Operand& src2,
   1353                     SBit s, Condition cond) {
   1354   addrmod1(cond | EOR | s, src1, dst, src2);
   1355 }
   1356 
   1357 
   1358 void Assembler::sub(Register dst, Register src1, const Operand& src2,
   1359                     SBit s, Condition cond) {
   1360   addrmod1(cond | SUB | s, src1, dst, src2);
   1361 }
   1362 
   1363 
   1364 void Assembler::rsb(Register dst, Register src1, const Operand& src2,
   1365                     SBit s, Condition cond) {
   1366   addrmod1(cond | RSB | s, src1, dst, src2);
   1367 }
   1368 
   1369 
   1370 void Assembler::add(Register dst, Register src1, const Operand& src2,
   1371                     SBit s, Condition cond) {
   1372   addrmod1(cond | ADD | s, src1, dst, src2);
   1373 }
   1374 
   1375 
   1376 void Assembler::adc(Register dst, Register src1, const Operand& src2,
   1377                     SBit s, Condition cond) {
   1378   addrmod1(cond | ADC | s, src1, dst, src2);
   1379 }
   1380 
   1381 
   1382 void Assembler::sbc(Register dst, Register src1, const Operand& src2,
   1383                     SBit s, Condition cond) {
   1384   addrmod1(cond | SBC | s, src1, dst, src2);
   1385 }
   1386 
   1387 
   1388 void Assembler::rsc(Register dst, Register src1, const Operand& src2,
   1389                     SBit s, Condition cond) {
   1390   addrmod1(cond | RSC | s, src1, dst, src2);
   1391 }
   1392 
   1393 
   1394 void Assembler::tst(Register src1, const Operand& src2, Condition cond) {
   1395   addrmod1(cond | TST | S, src1, r0, src2);
   1396 }
   1397 
   1398 
   1399 void Assembler::teq(Register src1, const Operand& src2, Condition cond) {
   1400   addrmod1(cond | TEQ | S, src1, r0, src2);
   1401 }
   1402 
   1403 
   1404 void Assembler::cmp(Register src1, const Operand& src2, Condition cond) {
   1405   addrmod1(cond | CMP | S, src1, r0, src2);
   1406 }
   1407 
   1408 
   1409 void Assembler::cmp_raw_immediate(
   1410     Register src, int raw_immediate, Condition cond) {
   1411   ASSERT(is_uint12(raw_immediate));
   1412   emit(cond | I | CMP | S | src.code() << 16 | raw_immediate);
   1413 }
   1414 
   1415 
   1416 void Assembler::cmn(Register src1, const Operand& src2, Condition cond) {
   1417   addrmod1(cond | CMN | S, src1, r0, src2);
   1418 }
   1419 
   1420 
   1421 void Assembler::orr(Register dst, Register src1, const Operand& src2,
   1422                     SBit s, Condition cond) {
   1423   addrmod1(cond | ORR | s, src1, dst, src2);
   1424 }
   1425 
   1426 
   1427 void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) {
   1428   if (dst.is(pc)) {
   1429     positions_recorder()->WriteRecordedPositions();
   1430   }
   1431   // Don't allow nop instructions in the form mov rn, rn to be generated using
   1432   // the mov instruction. They must be generated using nop(int/NopMarkerTypes)
   1433   // or MarkCode(int/NopMarkerTypes) pseudo instructions.
   1434   ASSERT(!(src.is_reg() && src.rm().is(dst) && s == LeaveCC && cond == al));
   1435   addrmod1(cond | MOV | s, r0, dst, src);
   1436 }
   1437 
   1438 
   1439 void Assembler::mov_label_offset(Register dst, Label* label) {
   1440   if (label->is_bound()) {
   1441     mov(dst, Operand(label->pos() + (Code::kHeaderSize - kHeapObjectTag)));
   1442   } else {
   1443     // Emit the link to the label in the code stream followed by extra nop
   1444     // instructions.
   1445     // If the label is not linked, then start a new link chain by linking it to
   1446     // itself, emitting pc_offset().
   1447     int link = label->is_linked() ? label->pos() : pc_offset();
   1448     label->link_to(pc_offset());
   1449 
   1450     // When the label is bound, these instructions will be patched with a
   1451     // sequence of movw/movt or mov/orr/orr instructions. They will load the
   1452     // destination register with the position of the label from the beginning
   1453     // of the code.
   1454     //
   1455     // The link will be extracted from the first instruction and the destination
   1456     // register from the second.
   1457     //   For ARMv7:
   1458     //      link
   1459     //      mov dst, dst
   1460     //   For ARMv6:
   1461     //      link
   1462     //      mov dst, dst
   1463     //      mov dst, dst
   1464     //
   1465     // When the label gets bound: target_at extracts the link and target_at_put
   1466     // patches the instructions.
   1467     ASSERT(is_uint24(link));
   1468     BlockConstPoolScope block_const_pool(this);
   1469     emit(link);
   1470     nop(dst.code());
   1471     if (!CpuFeatures::IsSupported(ARMv7)) {
   1472       nop(dst.code());
   1473     }
   1474   }
   1475 }
   1476 
   1477 
   1478 void Assembler::movw(Register reg, uint32_t immediate, Condition cond) {
   1479   ASSERT(immediate < 0x10000);
   1480   // May use movw if supported, but on unsupported platforms will try to use
   1481   // equivalent rotated immed_8 value and other tricks before falling back to a
   1482   // constant pool load.
   1483   mov(reg, Operand(immediate), LeaveCC, cond);
   1484 }
   1485 
   1486 
   1487 void Assembler::movt(Register reg, uint32_t immediate, Condition cond) {
   1488   emit(cond | 0x34*B20 | reg.code()*B12 | EncodeMovwImmediate(immediate));
   1489 }
   1490 
   1491 
   1492 void Assembler::bic(Register dst, Register src1, const Operand& src2,
   1493                     SBit s, Condition cond) {
   1494   addrmod1(cond | BIC | s, src1, dst, src2);
   1495 }
   1496 
   1497 
   1498 void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) {
   1499   addrmod1(cond | MVN | s, r0, dst, src);
   1500 }
   1501 
   1502 
   1503 // Multiply instructions.
   1504 void Assembler::mla(Register dst, Register src1, Register src2, Register srcA,
   1505                     SBit s, Condition cond) {
   1506   ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
   1507   emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 |
   1508        src2.code()*B8 | B7 | B4 | src1.code());
   1509 }
   1510 
   1511 
   1512 void Assembler::mls(Register dst, Register src1, Register src2, Register srcA,
   1513                     Condition cond) {
   1514   ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc));
   1515   emit(cond | B22 | B21 | dst.code()*B16 | srcA.code()*B12 |
   1516        src2.code()*B8 | B7 | B4 | src1.code());
   1517 }
   1518 
   1519 
   1520 void Assembler::sdiv(Register dst, Register src1, Register src2,
   1521                      Condition cond) {
   1522   ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
   1523   ASSERT(IsEnabled(SUDIV));
   1524   emit(cond | B26 | B25| B24 | B20 | dst.code()*B16 | 0xf * B12 |
   1525        src2.code()*B8 | B4 | src1.code());
   1526 }
   1527 
   1528 
   1529 void Assembler::mul(Register dst, Register src1, Register src2,
   1530                     SBit s, Condition cond) {
   1531   ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc));
   1532   // dst goes in bits 16-19 for this instruction!
   1533   emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code());
   1534 }
   1535 
   1536 
   1537 void Assembler::smlal(Register dstL,
   1538                       Register dstH,
   1539                       Register src1,
   1540                       Register src2,
   1541                       SBit s,
   1542                       Condition cond) {
   1543   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1544   ASSERT(!dstL.is(dstH));
   1545   emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 |
   1546        src2.code()*B8 | B7 | B4 | src1.code());
   1547 }
   1548 
   1549 
   1550 void Assembler::smull(Register dstL,
   1551                       Register dstH,
   1552                       Register src1,
   1553                       Register src2,
   1554                       SBit s,
   1555                       Condition cond) {
   1556   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1557   ASSERT(!dstL.is(dstH));
   1558   emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 |
   1559        src2.code()*B8 | B7 | B4 | src1.code());
   1560 }
   1561 
   1562 
   1563 void Assembler::umlal(Register dstL,
   1564                       Register dstH,
   1565                       Register src1,
   1566                       Register src2,
   1567                       SBit s,
   1568                       Condition cond) {
   1569   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1570   ASSERT(!dstL.is(dstH));
   1571   emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 |
   1572        src2.code()*B8 | B7 | B4 | src1.code());
   1573 }
   1574 
   1575 
   1576 void Assembler::umull(Register dstL,
   1577                       Register dstH,
   1578                       Register src1,
   1579                       Register src2,
   1580                       SBit s,
   1581                       Condition cond) {
   1582   ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc));
   1583   ASSERT(!dstL.is(dstH));
   1584   emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 |
   1585        src2.code()*B8 | B7 | B4 | src1.code());
   1586 }
   1587 
   1588 
   1589 // Miscellaneous arithmetic instructions.
   1590 void Assembler::clz(Register dst, Register src, Condition cond) {
   1591   // v5 and above.
   1592   ASSERT(!dst.is(pc) && !src.is(pc));
   1593   emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 |
   1594        15*B8 | CLZ | src.code());
   1595 }
   1596 
   1597 
   1598 // Saturating instructions.
   1599 
   1600 // Unsigned saturate.
   1601 void Assembler::usat(Register dst,
   1602                      int satpos,
   1603                      const Operand& src,
   1604                      Condition cond) {
   1605   // v6 and above.
   1606   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1607   ASSERT(!dst.is(pc) && !src.rm_.is(pc));
   1608   ASSERT((satpos >= 0) && (satpos <= 31));
   1609   ASSERT((src.shift_op_ == ASR) || (src.shift_op_ == LSL));
   1610   ASSERT(src.rs_.is(no_reg));
   1611 
   1612   int sh = 0;
   1613   if (src.shift_op_ == ASR) {
   1614       sh = 1;
   1615   }
   1616 
   1617   emit(cond | 0x6*B24 | 0xe*B20 | satpos*B16 | dst.code()*B12 |
   1618        src.shift_imm_*B7 | sh*B6 | 0x1*B4 | src.rm_.code());
   1619 }
   1620 
   1621 
   1622 // Bitfield manipulation instructions.
   1623 
   1624 // Unsigned bit field extract.
   1625 // Extracts #width adjacent bits from position #lsb in a register, and
   1626 // writes them to the low bits of a destination register.
   1627 //   ubfx dst, src, #lsb, #width
   1628 void Assembler::ubfx(Register dst,
   1629                      Register src,
   1630                      int lsb,
   1631                      int width,
   1632                      Condition cond) {
   1633   // v7 and above.
   1634   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1635   ASSERT(!dst.is(pc) && !src.is(pc));
   1636   ASSERT((lsb >= 0) && (lsb <= 31));
   1637   ASSERT((width >= 1) && (width <= (32 - lsb)));
   1638   emit(cond | 0xf*B23 | B22 | B21 | (width - 1)*B16 | dst.code()*B12 |
   1639        lsb*B7 | B6 | B4 | src.code());
   1640 }
   1641 
   1642 
   1643 // Signed bit field extract.
   1644 // Extracts #width adjacent bits from position #lsb in a register, and
   1645 // writes them to the low bits of a destination register. The extracted
   1646 // value is sign extended to fill the destination register.
   1647 //   sbfx dst, src, #lsb, #width
   1648 void Assembler::sbfx(Register dst,
   1649                      Register src,
   1650                      int lsb,
   1651                      int width,
   1652                      Condition cond) {
   1653   // v7 and above.
   1654   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1655   ASSERT(!dst.is(pc) && !src.is(pc));
   1656   ASSERT((lsb >= 0) && (lsb <= 31));
   1657   ASSERT((width >= 1) && (width <= (32 - lsb)));
   1658   emit(cond | 0xf*B23 | B21 | (width - 1)*B16 | dst.code()*B12 |
   1659        lsb*B7 | B6 | B4 | src.code());
   1660 }
   1661 
   1662 
   1663 // Bit field clear.
   1664 // Sets #width adjacent bits at position #lsb in the destination register
   1665 // to zero, preserving the value of the other bits.
   1666 //   bfc dst, #lsb, #width
   1667 void Assembler::bfc(Register dst, int lsb, int width, Condition cond) {
   1668   // v7 and above.
   1669   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1670   ASSERT(!dst.is(pc));
   1671   ASSERT((lsb >= 0) && (lsb <= 31));
   1672   ASSERT((width >= 1) && (width <= (32 - lsb)));
   1673   int msb = lsb + width - 1;
   1674   emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 | 0xf);
   1675 }
   1676 
   1677 
   1678 // Bit field insert.
   1679 // Inserts #width adjacent bits from the low bits of the source register
   1680 // into position #lsb of the destination register.
   1681 //   bfi dst, src, #lsb, #width
   1682 void Assembler::bfi(Register dst,
   1683                     Register src,
   1684                     int lsb,
   1685                     int width,
   1686                     Condition cond) {
   1687   // v7 and above.
   1688   ASSERT(CpuFeatures::IsSupported(ARMv7));
   1689   ASSERT(!dst.is(pc) && !src.is(pc));
   1690   ASSERT((lsb >= 0) && (lsb <= 31));
   1691   ASSERT((width >= 1) && (width <= (32 - lsb)));
   1692   int msb = lsb + width - 1;
   1693   emit(cond | 0x1f*B22 | msb*B16 | dst.code()*B12 | lsb*B7 | B4 |
   1694        src.code());
   1695 }
   1696 
   1697 
   1698 void Assembler::pkhbt(Register dst,
   1699                       Register src1,
   1700                       const Operand& src2,
   1701                       Condition cond ) {
   1702   // Instruction details available in ARM DDI 0406C.b, A8.8.125.
   1703   // cond(31-28) | 01101000(27-20) | Rn(19-16) |
   1704   // Rd(15-12) | imm5(11-7) | 0(6) | 01(5-4) | Rm(3-0)
   1705   ASSERT(!dst.is(pc));
   1706   ASSERT(!src1.is(pc));
   1707   ASSERT(!src2.rm().is(pc));
   1708   ASSERT(!src2.rm().is(no_reg));
   1709   ASSERT(src2.rs().is(no_reg));
   1710   ASSERT((src2.shift_imm_ >= 0) && (src2.shift_imm_ <= 31));
   1711   ASSERT(src2.shift_op() == LSL);
   1712   emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 |
   1713        src2.shift_imm_*B7 | B4 | src2.rm().code());
   1714 }
   1715 
   1716 
   1717 void Assembler::pkhtb(Register dst,
   1718                       Register src1,
   1719                       const Operand& src2,
   1720                       Condition cond) {
   1721   // Instruction details available in ARM DDI 0406C.b, A8.8.125.
   1722   // cond(31-28) | 01101000(27-20) | Rn(19-16) |
   1723   // Rd(15-12) | imm5(11-7) | 1(6) | 01(5-4) | Rm(3-0)
   1724   ASSERT(!dst.is(pc));
   1725   ASSERT(!src1.is(pc));
   1726   ASSERT(!src2.rm().is(pc));
   1727   ASSERT(!src2.rm().is(no_reg));
   1728   ASSERT(src2.rs().is(no_reg));
   1729   ASSERT((src2.shift_imm_ >= 1) && (src2.shift_imm_ <= 32));
   1730   ASSERT(src2.shift_op() == ASR);
   1731   int asr = (src2.shift_imm_ == 32) ? 0 : src2.shift_imm_;
   1732   emit(cond | 0x68*B20 | src1.code()*B16 | dst.code()*B12 |
   1733        asr*B7 | B6 | B4 | src2.rm().code());
   1734 }
   1735 
   1736 
   1737 void Assembler::uxtb(Register dst,
   1738                      const Operand& src,
   1739                      Condition cond) {
   1740   // Instruction details available in ARM DDI 0406C.b, A8.8.274.
   1741   // cond(31-28) | 01101110(27-20) | 1111(19-16) |
   1742   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
   1743   ASSERT(!dst.is(pc));
   1744   ASSERT(!src.rm().is(pc));
   1745   ASSERT(!src.rm().is(no_reg));
   1746   ASSERT(src.rs().is(no_reg));
   1747   ASSERT((src.shift_imm_ == 0) ||
   1748          (src.shift_imm_ == 8) ||
   1749          (src.shift_imm_ == 16) ||
   1750          (src.shift_imm_ == 24));
   1751   ASSERT(src.shift_op() == ROR);
   1752   emit(cond | 0x6E*B20 | 0xF*B16 | dst.code()*B12 |
   1753        ((src.shift_imm_ >> 1)&0xC)*B8 | 7*B4 | src.rm().code());
   1754 }
   1755 
   1756 
   1757 void Assembler::uxtab(Register dst,
   1758                       Register src1,
   1759                       const Operand& src2,
   1760                       Condition cond) {
   1761   // Instruction details available in ARM DDI 0406C.b, A8.8.271.
   1762   // cond(31-28) | 01101110(27-20) | Rn(19-16) |
   1763   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
   1764   ASSERT(!dst.is(pc));
   1765   ASSERT(!src1.is(pc));
   1766   ASSERT(!src2.rm().is(pc));
   1767   ASSERT(!src2.rm().is(no_reg));
   1768   ASSERT(src2.rs().is(no_reg));
   1769   ASSERT((src2.shift_imm_ == 0) ||
   1770          (src2.shift_imm_ == 8) ||
   1771          (src2.shift_imm_ == 16) ||
   1772          (src2.shift_imm_ == 24));
   1773   ASSERT(src2.shift_op() == ROR);
   1774   emit(cond | 0x6E*B20 | src1.code()*B16 | dst.code()*B12 |
   1775        ((src2.shift_imm_ >> 1) &0xC)*B8 | 7*B4 | src2.rm().code());
   1776 }
   1777 
   1778 
   1779 void Assembler::uxtb16(Register dst,
   1780                        const Operand& src,
   1781                        Condition cond) {
   1782   // Instruction details available in ARM DDI 0406C.b, A8.8.275.
   1783   // cond(31-28) | 01101100(27-20) | 1111(19-16) |
   1784   // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0)
   1785   ASSERT(!dst.is(pc));
   1786   ASSERT(!src.rm().is(pc));
   1787   ASSERT(!src.rm().is(no_reg));
   1788   ASSERT(src.rs().is(no_reg));
   1789   ASSERT((src.shift_imm_ == 0) ||
   1790          (src.shift_imm_ == 8) ||
   1791          (src.shift_imm_ == 16) ||
   1792          (src.shift_imm_ == 24));
   1793   ASSERT(src.shift_op() == ROR);
   1794   emit(cond | 0x6C*B20 | 0xF*B16 | dst.code()*B12 |
   1795        ((src.shift_imm_ >> 1)&0xC)*B8 | 7*B4 | src.rm().code());
   1796 }
   1797 
   1798 
   1799 // Status register access instructions.
   1800 void Assembler::mrs(Register dst, SRegister s, Condition cond) {
   1801   ASSERT(!dst.is(pc));
   1802   emit(cond | B24 | s | 15*B16 | dst.code()*B12);
   1803 }
   1804 
   1805 
   1806 void Assembler::msr(SRegisterFieldMask fields, const Operand& src,
   1807                     Condition cond) {
   1808   ASSERT(fields >= B16 && fields < B20);  // at least one field set
   1809   Instr instr;
   1810   if (!src.rm_.is_valid()) {
   1811     // Immediate.
   1812     uint32_t rotate_imm;
   1813     uint32_t immed_8;
   1814     if (src.must_output_reloc_info(this) ||
   1815         !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) {
   1816       // Immediate operand cannot be encoded, load it first to register ip.
   1817       RecordRelocInfo(src.rmode_, src.imm32_);
   1818       ldr(ip, MemOperand(pc, 0), cond);
   1819       msr(fields, Operand(ip), cond);
   1820       return;
   1821     }
   1822     instr = I | rotate_imm*B8 | immed_8;
   1823   } else {
   1824     ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0);  // only rm allowed
   1825     instr = src.rm_.code();
   1826   }
   1827   emit(cond | instr | B24 | B21 | fields | 15*B12);
   1828 }
   1829 
   1830 
   1831 // Load/Store instructions.
   1832 void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) {
   1833   if (dst.is(pc)) {
   1834     positions_recorder()->WriteRecordedPositions();
   1835   }
   1836   addrmod2(cond | B26 | L, dst, src);
   1837 }
   1838 
   1839 
   1840 void Assembler::str(Register src, const MemOperand& dst, Condition cond) {
   1841   addrmod2(cond | B26, src, dst);
   1842 }
   1843 
   1844 
   1845 void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) {
   1846   addrmod2(cond | B26 | B | L, dst, src);
   1847 }
   1848 
   1849 
   1850 void Assembler::strb(Register src, const MemOperand& dst, Condition cond) {
   1851   addrmod2(cond | B26 | B, src, dst);
   1852 }
   1853 
   1854 
   1855 void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) {
   1856   addrmod3(cond | L | B7 | H | B4, dst, src);
   1857 }
   1858 
   1859 
   1860 void Assembler::strh(Register src, const MemOperand& dst, Condition cond) {
   1861   addrmod3(cond | B7 | H | B4, src, dst);
   1862 }
   1863 
   1864 
   1865 void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) {
   1866   addrmod3(cond | L | B7 | S6 | B4, dst, src);
   1867 }
   1868 
   1869 
   1870 void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) {
   1871   addrmod3(cond | L | B7 | S6 | H | B4, dst, src);
   1872 }
   1873 
   1874 
   1875 void Assembler::ldrd(Register dst1, Register dst2,
   1876                      const MemOperand& src, Condition cond) {
   1877   ASSERT(IsEnabled(ARMv7));
   1878   ASSERT(src.rm().is(no_reg));
   1879   ASSERT(!dst1.is(lr));  // r14.
   1880   ASSERT_EQ(0, dst1.code() % 2);
   1881   ASSERT_EQ(dst1.code() + 1, dst2.code());
   1882   addrmod3(cond | B7 | B6 | B4, dst1, src);
   1883 }
   1884 
   1885 
   1886 void Assembler::strd(Register src1, Register src2,
   1887                      const MemOperand& dst, Condition cond) {
   1888   ASSERT(dst.rm().is(no_reg));
   1889   ASSERT(!src1.is(lr));  // r14.
   1890   ASSERT_EQ(0, src1.code() % 2);
   1891   ASSERT_EQ(src1.code() + 1, src2.code());
   1892   ASSERT(IsEnabled(ARMv7));
   1893   addrmod3(cond | B7 | B6 | B5 | B4, src1, dst);
   1894 }
   1895 
   1896 
   1897 // Preload instructions.
   1898 void Assembler::pld(const MemOperand& address) {
   1899   // Instruction details available in ARM DDI 0406C.b, A8.8.128.
   1900   // 1111(31-28) | 0111(27-24) | U(23) | R(22) | 01(21-20) | Rn(19-16) |
   1901   // 1111(15-12) | imm5(11-07) | type(6-5) | 0(4)| Rm(3-0) |
   1902   ASSERT(address.rm().is(no_reg));
   1903   ASSERT(address.am() == Offset);
   1904   int U = B23;
   1905   int offset = address.offset();
   1906   if (offset < 0) {
   1907     offset = -offset;
   1908     U = 0;
   1909   }
   1910   ASSERT(offset < 4096);
   1911   emit(kSpecialCondition | B26 | B24 | U | B22 | B20 | address.rn().code()*B16 |
   1912        0xf*B12 | offset);
   1913 }
   1914 
   1915 
   1916 // Load/Store multiple instructions.
   1917 void Assembler::ldm(BlockAddrMode am,
   1918                     Register base,
   1919                     RegList dst,
   1920                     Condition cond) {
   1921   // ABI stack constraint: ldmxx base, {..sp..}  base != sp  is not restartable.
   1922   ASSERT(base.is(sp) || (dst & sp.bit()) == 0);
   1923 
   1924   addrmod4(cond | B27 | am | L, base, dst);
   1925 
   1926   // Emit the constant pool after a function return implemented by ldm ..{..pc}.
   1927   if (cond == al && (dst & pc.bit()) != 0) {
   1928     // There is a slight chance that the ldm instruction was actually a call,
   1929     // in which case it would be wrong to return into the constant pool; we
   1930     // recognize this case by checking if the emission of the pool was blocked
   1931     // at the pc of the ldm instruction by a mov lr, pc instruction; if this is
   1932     // the case, we emit a jump over the pool.
   1933     CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize);
   1934   }
   1935 }
   1936 
   1937 
   1938 void Assembler::stm(BlockAddrMode am,
   1939                     Register base,
   1940                     RegList src,
   1941                     Condition cond) {
   1942   addrmod4(cond | B27 | am, base, src);
   1943 }
   1944 
   1945 
   1946 // Exception-generating instructions and debugging support.
   1947 // Stops with a non-negative code less than kNumOfWatchedStops support
   1948 // enabling/disabling and a counter feature. See simulator-arm.h .
   1949 void Assembler::stop(const char* msg, Condition cond, int32_t code) {
   1950 #ifndef __arm__
   1951   ASSERT(code >= kDefaultStopCode);
   1952   {
   1953     // The Simulator will handle the stop instruction and get the message
   1954     // address. It expects to find the address just after the svc instruction.
   1955     BlockConstPoolScope block_const_pool(this);
   1956     if (code >= 0) {
   1957       svc(kStopCode + code, cond);
   1958     } else {
   1959       svc(kStopCode + kMaxStopCode, cond);
   1960     }
   1961     emit(reinterpret_cast<Instr>(msg));
   1962   }
   1963 #else  // def __arm__
   1964   if (cond != al) {
   1965     Label skip;
   1966     b(&skip, NegateCondition(cond));
   1967     bkpt(0);
   1968     bind(&skip);
   1969   } else {
   1970     bkpt(0);
   1971   }
   1972 #endif  // def __arm__
   1973 }
   1974 
   1975 
   1976 void Assembler::bkpt(uint32_t imm16) {  // v5 and above
   1977   ASSERT(is_uint16(imm16));
   1978   emit(al | B24 | B21 | (imm16 >> 4)*B8 | BKPT | (imm16 & 0xf));
   1979 }
   1980 
   1981 
   1982 void Assembler::svc(uint32_t imm24, Condition cond) {
   1983   ASSERT(is_uint24(imm24));
   1984   emit(cond | 15*B24 | imm24);
   1985 }
   1986 
   1987 
   1988 // Coprocessor instructions.
   1989 void Assembler::cdp(Coprocessor coproc,
   1990                     int opcode_1,
   1991                     CRegister crd,
   1992                     CRegister crn,
   1993                     CRegister crm,
   1994                     int opcode_2,
   1995                     Condition cond) {
   1996   ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2));
   1997   emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 |
   1998        crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code());
   1999 }
   2000 
   2001 
   2002 void Assembler::cdp2(Coprocessor coproc,
   2003                      int opcode_1,
   2004                      CRegister crd,
   2005                      CRegister crn,
   2006                      CRegister crm,
   2007                      int opcode_2) {  // v5 and above
   2008   cdp(coproc, opcode_1, crd, crn, crm, opcode_2, kSpecialCondition);
   2009 }
   2010 
   2011 
   2012 void Assembler::mcr(Coprocessor coproc,
   2013                     int opcode_1,
   2014                     Register rd,
   2015                     CRegister crn,
   2016                     CRegister crm,
   2017                     int opcode_2,
   2018                     Condition cond) {
   2019   ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
   2020   emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 |
   2021        rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
   2022 }
   2023 
   2024 
   2025 void Assembler::mcr2(Coprocessor coproc,
   2026                      int opcode_1,
   2027                      Register rd,
   2028                      CRegister crn,
   2029                      CRegister crm,
   2030                      int opcode_2) {  // v5 and above
   2031   mcr(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
   2032 }
   2033 
   2034 
   2035 void Assembler::mrc(Coprocessor coproc,
   2036                     int opcode_1,
   2037                     Register rd,
   2038                     CRegister crn,
   2039                     CRegister crm,
   2040                     int opcode_2,
   2041                     Condition cond) {
   2042   ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2));
   2043   emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 |
   2044        rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code());
   2045 }
   2046 
   2047 
   2048 void Assembler::mrc2(Coprocessor coproc,
   2049                      int opcode_1,
   2050                      Register rd,
   2051                      CRegister crn,
   2052                      CRegister crm,
   2053                      int opcode_2) {  // v5 and above
   2054   mrc(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition);
   2055 }
   2056 
   2057 
   2058 void Assembler::ldc(Coprocessor coproc,
   2059                     CRegister crd,
   2060                     const MemOperand& src,
   2061                     LFlag l,
   2062                     Condition cond) {
   2063   addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src);
   2064 }
   2065 
   2066 
   2067 void Assembler::ldc(Coprocessor coproc,
   2068                     CRegister crd,
   2069                     Register rn,
   2070                     int option,
   2071                     LFlag l,
   2072                     Condition cond) {
   2073   // Unindexed addressing.
   2074   ASSERT(is_uint8(option));
   2075   emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 |
   2076        coproc*B8 | (option & 255));
   2077 }
   2078 
   2079 
   2080 void Assembler::ldc2(Coprocessor coproc,
   2081                      CRegister crd,
   2082                      const MemOperand& src,
   2083                      LFlag l) {  // v5 and above
   2084   ldc(coproc, crd, src, l, kSpecialCondition);
   2085 }
   2086 
   2087 
   2088 void Assembler::ldc2(Coprocessor coproc,
   2089                      CRegister crd,
   2090                      Register rn,
   2091                      int option,
   2092                      LFlag l) {  // v5 and above
   2093   ldc(coproc, crd, rn, option, l, kSpecialCondition);
   2094 }
   2095 
   2096 
   2097 // Support for VFP.
   2098 
   2099 void Assembler::vldr(const DwVfpRegister dst,
   2100                      const Register base,
   2101                      int offset,
   2102                      const Condition cond) {
   2103   // Ddst = MEM(Rbase + offset).
   2104   // Instruction details available in ARM DDI 0406C.b, A8-924.
   2105   // cond(31-28) | 1101(27-24)| U(23) | D(22) | 01(21-20) | Rbase(19-16) |
   2106   // Vd(15-12) | 1011(11-8) | offset
   2107   int u = 1;
   2108   if (offset < 0) {
   2109     offset = -offset;
   2110     u = 0;
   2111   }
   2112   int vd, d;
   2113   dst.split_code(&vd, &d);
   2114 
   2115   ASSERT(offset >= 0);
   2116   if ((offset % 4) == 0 && (offset / 4) < 256) {
   2117     emit(cond | 0xD*B24 | u*B23 | d*B22 | B20 | base.code()*B16 | vd*B12 |
   2118          0xB*B8 | ((offset / 4) & 255));
   2119   } else {
   2120     // Larger offsets must be handled by computing the correct address
   2121     // in the ip register.
   2122     ASSERT(!base.is(ip));
   2123     if (u == 1) {
   2124       add(ip, base, Operand(offset));
   2125     } else {
   2126       sub(ip, base, Operand(offset));
   2127     }
   2128     emit(cond | 0xD*B24 | d*B22 | B20 | ip.code()*B16 | vd*B12 | 0xB*B8);
   2129   }
   2130 }
   2131 
   2132 
   2133 void Assembler::vldr(const DwVfpRegister dst,
   2134                      const MemOperand& operand,
   2135                      const Condition cond) {
   2136   ASSERT(!operand.rm().is_valid());
   2137   ASSERT(operand.am_ == Offset);
   2138   vldr(dst, operand.rn(), operand.offset(), cond);
   2139 }
   2140 
   2141 
   2142 void Assembler::vldr(const SwVfpRegister dst,
   2143                      const Register base,
   2144                      int offset,
   2145                      const Condition cond) {
   2146   // Sdst = MEM(Rbase + offset).
   2147   // Instruction details available in ARM DDI 0406A, A8-628.
   2148   // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) |
   2149   // Vdst(15-12) | 1010(11-8) | offset
   2150   int u = 1;
   2151   if (offset < 0) {
   2152     offset = -offset;
   2153     u = 0;
   2154   }
   2155   int sd, d;
   2156   dst.split_code(&sd, &d);
   2157   ASSERT(offset >= 0);
   2158 
   2159   if ((offset % 4) == 0 && (offset / 4) < 256) {
   2160   emit(cond | u*B23 | d*B22 | 0xD1*B20 | base.code()*B16 | sd*B12 |
   2161        0xA*B8 | ((offset / 4) & 255));
   2162   } else {
   2163     // Larger offsets must be handled by computing the correct address
   2164     // in the ip register.
   2165     ASSERT(!base.is(ip));
   2166     if (u == 1) {
   2167       add(ip, base, Operand(offset));
   2168     } else {
   2169       sub(ip, base, Operand(offset));
   2170     }
   2171     emit(cond | d*B22 | 0xD1*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
   2172   }
   2173 }
   2174 
   2175 
   2176 void Assembler::vldr(const SwVfpRegister dst,
   2177                      const MemOperand& operand,
   2178                      const Condition cond) {
   2179   ASSERT(!operand.rm().is_valid());
   2180   ASSERT(operand.am_ == Offset);
   2181   vldr(dst, operand.rn(), operand.offset(), cond);
   2182 }
   2183 
   2184 
   2185 void Assembler::vstr(const DwVfpRegister src,
   2186                      const Register base,
   2187                      int offset,
   2188                      const Condition cond) {
   2189   // MEM(Rbase + offset) = Dsrc.
   2190   // Instruction details available in ARM DDI 0406C.b, A8-1082.
   2191   // cond(31-28) | 1101(27-24)| U(23) | D(22) | 00(21-20) | Rbase(19-16) |
   2192   // Vd(15-12) | 1011(11-8) | (offset/4)
   2193   int u = 1;
   2194   if (offset < 0) {
   2195     offset = -offset;
   2196     u = 0;
   2197   }
   2198   ASSERT(offset >= 0);
   2199   int vd, d;
   2200   src.split_code(&vd, &d);
   2201 
   2202   if ((offset % 4) == 0 && (offset / 4) < 256) {
   2203     emit(cond | 0xD*B24 | u*B23 | d*B22 | base.code()*B16 | vd*B12 | 0xB*B8 |
   2204          ((offset / 4) & 255));
   2205   } else {
   2206     // Larger offsets must be handled by computing the correct address
   2207     // in the ip register.
   2208     ASSERT(!base.is(ip));
   2209     if (u == 1) {
   2210       add(ip, base, Operand(offset));
   2211     } else {
   2212       sub(ip, base, Operand(offset));
   2213     }
   2214     emit(cond | 0xD*B24 | d*B22 | ip.code()*B16 | vd*B12 | 0xB*B8);
   2215   }
   2216 }
   2217 
   2218 
   2219 void Assembler::vstr(const DwVfpRegister src,
   2220                      const MemOperand& operand,
   2221                      const Condition cond) {
   2222   ASSERT(!operand.rm().is_valid());
   2223   ASSERT(operand.am_ == Offset);
   2224   vstr(src, operand.rn(), operand.offset(), cond);
   2225 }
   2226 
   2227 
   2228 void Assembler::vstr(const SwVfpRegister src,
   2229                      const Register base,
   2230                      int offset,
   2231                      const Condition cond) {
   2232   // MEM(Rbase + offset) = SSrc.
   2233   // Instruction details available in ARM DDI 0406A, A8-786.
   2234   // cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) |
   2235   // Vdst(15-12) | 1010(11-8) | (offset/4)
   2236   int u = 1;
   2237   if (offset < 0) {
   2238     offset = -offset;
   2239     u = 0;
   2240   }
   2241   int sd, d;
   2242   src.split_code(&sd, &d);
   2243   ASSERT(offset >= 0);
   2244   if ((offset % 4) == 0 && (offset / 4) < 256) {
   2245     emit(cond | u*B23 | d*B22 | 0xD0*B20 | base.code()*B16 | sd*B12 |
   2246          0xA*B8 | ((offset / 4) & 255));
   2247   } else {
   2248     // Larger offsets must be handled by computing the correct address
   2249     // in the ip register.
   2250     ASSERT(!base.is(ip));
   2251     if (u == 1) {
   2252       add(ip, base, Operand(offset));
   2253     } else {
   2254       sub(ip, base, Operand(offset));
   2255     }
   2256     emit(cond | d*B22 | 0xD0*B20 | ip.code()*B16 | sd*B12 | 0xA*B8);
   2257   }
   2258 }
   2259 
   2260 
   2261 void Assembler::vstr(const SwVfpRegister src,
   2262                      const MemOperand& operand,
   2263                      const Condition cond) {
   2264   ASSERT(!operand.rm().is_valid());
   2265   ASSERT(operand.am_ == Offset);
   2266   vstr(src, operand.rn(), operand.offset(), cond);
   2267 }
   2268 
   2269 
   2270 void  Assembler::vldm(BlockAddrMode am,
   2271                       Register base,
   2272                       DwVfpRegister first,
   2273                       DwVfpRegister last,
   2274                       Condition cond) {
   2275   // Instruction details available in ARM DDI 0406C.b, A8-922.
   2276   // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
   2277   // first(15-12) | 1011(11-8) | (count * 2)
   2278   ASSERT_LE(first.code(), last.code());
   2279   ASSERT(am == ia || am == ia_w || am == db_w);
   2280   ASSERT(!base.is(pc));
   2281 
   2282   int sd, d;
   2283   first.split_code(&sd, &d);
   2284   int count = last.code() - first.code() + 1;
   2285   ASSERT(count <= 16);
   2286   emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
   2287        0xB*B8 | count*2);
   2288 }
   2289 
   2290 
   2291 void  Assembler::vstm(BlockAddrMode am,
   2292                       Register base,
   2293                       DwVfpRegister first,
   2294                       DwVfpRegister last,
   2295                       Condition cond) {
   2296   // Instruction details available in ARM DDI 0406C.b, A8-1080.
   2297   // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
   2298   // first(15-12) | 1011(11-8) | (count * 2)
   2299   ASSERT_LE(first.code(), last.code());
   2300   ASSERT(am == ia || am == ia_w || am == db_w);
   2301   ASSERT(!base.is(pc));
   2302 
   2303   int sd, d;
   2304   first.split_code(&sd, &d);
   2305   int count = last.code() - first.code() + 1;
   2306   ASSERT(count <= 16);
   2307   emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
   2308        0xB*B8 | count*2);
   2309 }
   2310 
   2311 void  Assembler::vldm(BlockAddrMode am,
   2312                       Register base,
   2313                       SwVfpRegister first,
   2314                       SwVfpRegister last,
   2315                       Condition cond) {
   2316   // Instruction details available in ARM DDI 0406A, A8-626.
   2317   // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) |
   2318   // first(15-12) | 1010(11-8) | (count/2)
   2319   ASSERT_LE(first.code(), last.code());
   2320   ASSERT(am == ia || am == ia_w || am == db_w);
   2321   ASSERT(!base.is(pc));
   2322 
   2323   int sd, d;
   2324   first.split_code(&sd, &d);
   2325   int count = last.code() - first.code() + 1;
   2326   emit(cond | B27 | B26 | am | d*B22 | B20 | base.code()*B16 | sd*B12 |
   2327        0xA*B8 | count);
   2328 }
   2329 
   2330 
   2331 void  Assembler::vstm(BlockAddrMode am,
   2332                       Register base,
   2333                       SwVfpRegister first,
   2334                       SwVfpRegister last,
   2335                       Condition cond) {
   2336   // Instruction details available in ARM DDI 0406A, A8-784.
   2337   // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) |
   2338   // first(15-12) | 1011(11-8) | (count/2)
   2339   ASSERT_LE(first.code(), last.code());
   2340   ASSERT(am == ia || am == ia_w || am == db_w);
   2341   ASSERT(!base.is(pc));
   2342 
   2343   int sd, d;
   2344   first.split_code(&sd, &d);
   2345   int count = last.code() - first.code() + 1;
   2346   emit(cond | B27 | B26 | am | d*B22 | base.code()*B16 | sd*B12 |
   2347        0xA*B8 | count);
   2348 }
   2349 
   2350 
   2351 static void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi) {
   2352   uint64_t i;
   2353   OS::MemCopy(&i, &d, 8);
   2354 
   2355   *lo = i & 0xffffffff;
   2356   *hi = i >> 32;
   2357 }
   2358 
   2359 
   2360 // Only works for little endian floating point formats.
   2361 // We don't support VFP on the mixed endian floating point platform.
   2362 static bool FitsVMOVDoubleImmediate(double d, uint32_t *encoding) {
   2363   ASSERT(CpuFeatures::IsSupported(VFP3));
   2364 
   2365   // VMOV can accept an immediate of the form:
   2366   //
   2367   //  +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7
   2368   //
   2369   // The immediate is encoded using an 8-bit quantity, comprised of two
   2370   // 4-bit fields. For an 8-bit immediate of the form:
   2371   //
   2372   //  [abcdefgh]
   2373   //
   2374   // where a is the MSB and h is the LSB, an immediate 64-bit double can be
   2375   // created of the form:
   2376   //
   2377   //  [aBbbbbbb,bbcdefgh,00000000,00000000,
   2378   //      00000000,00000000,00000000,00000000]
   2379   //
   2380   // where B = ~b.
   2381   //
   2382 
   2383   uint32_t lo, hi;
   2384   DoubleAsTwoUInt32(d, &lo, &hi);
   2385 
   2386   // The most obvious constraint is the long block of zeroes.
   2387   if ((lo != 0) || ((hi & 0xffff) != 0)) {
   2388     return false;
   2389   }
   2390 
   2391   // Bits 62:55 must be all clear or all set.
   2392   if (((hi & 0x3fc00000) != 0) && ((hi & 0x3fc00000) != 0x3fc00000)) {
   2393     return false;
   2394   }
   2395 
   2396   // Bit 63 must be NOT bit 62.
   2397   if (((hi ^ (hi << 1)) & (0x40000000)) == 0) {
   2398     return false;
   2399   }
   2400 
   2401   // Create the encoded immediate in the form:
   2402   //  [00000000,0000abcd,00000000,0000efgh]
   2403   *encoding  = (hi >> 16) & 0xf;      // Low nybble.
   2404   *encoding |= (hi >> 4) & 0x70000;   // Low three bits of the high nybble.
   2405   *encoding |= (hi >> 12) & 0x80000;  // Top bit of the high nybble.
   2406 
   2407   return true;
   2408 }
   2409 
   2410 
   2411 void Assembler::vmov(const DwVfpRegister dst,
   2412                      double imm,
   2413                      const Register scratch) {
   2414   uint32_t enc;
   2415   if (CpuFeatures::IsSupported(VFP3) && FitsVMOVDoubleImmediate(imm, &enc)) {
   2416     // The double can be encoded in the instruction.
   2417     //
   2418     // Dd = immediate
   2419     // Instruction details available in ARM DDI 0406C.b, A8-936.
   2420     // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | imm4H(19-16) |
   2421     // Vd(15-12) | 101(11-9) | sz=1(8) | imm4L(3-0)
   2422     int vd, d;
   2423     dst.split_code(&vd, &d);
   2424     emit(al | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | enc);
   2425   } else if (FLAG_enable_vldr_imm) {
   2426     // TODO(jfb) Temporarily turned off until we have constant blinding or
   2427     //           some equivalent mitigation: an attacker can otherwise control
   2428     //           generated data which also happens to be executable, a Very Bad
   2429     //           Thing indeed.
   2430     //           Blinding gets tricky because we don't have xor, we probably
   2431     //           need to add/subtract without losing precision, which requires a
   2432     //           cookie value that Lithium is probably better positioned to
   2433     //           choose.
   2434     //           We could also add a few peepholes here like detecting 0.0 and
   2435     //           -0.0 and doing a vmov from the sequestered d14, forcing denorms
   2436     //           to zero (we set flush-to-zero), and normalizing NaN values.
   2437     //           We could also detect redundant values.
   2438     //           The code could also randomize the order of values, though
   2439     //           that's tricky because vldr has a limited reach. Furthermore
   2440     //           it breaks load locality.
   2441     RecordRelocInfo(imm);
   2442     vldr(dst, MemOperand(pc, 0));
   2443   } else {
   2444     // Synthesise the double from ARM immediates.
   2445     uint32_t lo, hi;
   2446     DoubleAsTwoUInt32(imm, &lo, &hi);
   2447 
   2448     if (scratch.is(no_reg)) {
   2449       if (dst.code() < 16) {
   2450         const LowDwVfpRegister loc = LowDwVfpRegister::from_code(dst.code());
   2451         // Move the low part of the double into the lower of the corresponsing S
   2452         // registers of D register dst.
   2453         mov(ip, Operand(lo));
   2454         vmov(loc.low(), ip);
   2455 
   2456         // Move the high part of the double into the higher of the
   2457         // corresponsing S registers of D register dst.
   2458         mov(ip, Operand(hi));
   2459         vmov(loc.high(), ip);
   2460       } else {
   2461         // D16-D31 does not have S registers, so move the low and high parts
   2462         // directly to the D register using vmov.32.
   2463         // Note: This may be slower, so we only do this when we have to.
   2464         mov(ip, Operand(lo));
   2465         vmov(dst, VmovIndexLo, ip);
   2466         mov(ip, Operand(hi));
   2467         vmov(dst, VmovIndexHi, ip);
   2468       }
   2469     } else {
   2470       // Move the low and high parts of the double to a D register in one
   2471       // instruction.
   2472       mov(ip, Operand(lo));
   2473       mov(scratch, Operand(hi));
   2474       vmov(dst, ip, scratch);
   2475     }
   2476   }
   2477 }
   2478 
   2479 
   2480 void Assembler::vmov(const SwVfpRegister dst,
   2481                      const SwVfpRegister src,
   2482                      const Condition cond) {
   2483   // Sd = Sm
   2484   // Instruction details available in ARM DDI 0406B, A8-642.
   2485   int sd, d, sm, m;
   2486   dst.split_code(&sd, &d);
   2487   src.split_code(&sm, &m);
   2488   emit(cond | 0xE*B24 | d*B22 | 0xB*B20 | sd*B12 | 0xA*B8 | B6 | m*B5 | sm);
   2489 }
   2490 
   2491 
   2492 void Assembler::vmov(const DwVfpRegister dst,
   2493                      const DwVfpRegister src,
   2494                      const Condition cond) {
   2495   // Dd = Dm
   2496   // Instruction details available in ARM DDI 0406C.b, A8-938.
   2497   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
   2498   // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2499   int vd, d;
   2500   dst.split_code(&vd, &d);
   2501   int vm, m;
   2502   src.split_code(&vm, &m);
   2503   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B6 | m*B5 |
   2504        vm);
   2505 }
   2506 
   2507 
   2508 void Assembler::vmov(const DwVfpRegister dst,
   2509                      const VmovIndex index,
   2510                      const Register src,
   2511                      const Condition cond) {
   2512   // Dd[index] = Rt
   2513   // Instruction details available in ARM DDI 0406C.b, A8-940.
   2514   // cond(31-28) | 1110(27-24) | 0(23) | opc1=0index(22-21) | 0(20) |
   2515   // Vd(19-16) | Rt(15-12) | 1011(11-8) | D(7) | opc2=00(6-5) | 1(4) | 0000(3-0)
   2516   ASSERT(index.index == 0 || index.index == 1);
   2517   int vd, d;
   2518   dst.split_code(&vd, &d);
   2519   emit(cond | 0xE*B24 | index.index*B21 | vd*B16 | src.code()*B12 | 0xB*B8 |
   2520        d*B7 | B4);
   2521 }
   2522 
   2523 
   2524 void Assembler::vmov(const Register dst,
   2525                      const VmovIndex index,
   2526                      const DwVfpRegister src,
   2527                      const Condition cond) {
   2528   // Dd[index] = Rt
   2529   // Instruction details available in ARM DDI 0406C.b, A8.8.342.
   2530   // cond(31-28) | 1110(27-24) | U=0(23) | opc1=0index(22-21) | 1(20) |
   2531   // Vn(19-16) | Rt(15-12) | 1011(11-8) | N(7) | opc2=00(6-5) | 1(4) | 0000(3-0)
   2532   ASSERT(index.index == 0 || index.index == 1);
   2533   int vn, n;
   2534   src.split_code(&vn, &n);
   2535   emit(cond | 0xE*B24 | index.index*B21 | B20 | vn*B16 | dst.code()*B12 |
   2536        0xB*B8 | n*B7 | B4);
   2537 }
   2538 
   2539 
   2540 void Assembler::vmov(const DwVfpRegister dst,
   2541                      const Register src1,
   2542                      const Register src2,
   2543                      const Condition cond) {
   2544   // Dm = <Rt,Rt2>.
   2545   // Instruction details available in ARM DDI 0406C.b, A8-948.
   2546   // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) |
   2547   // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
   2548   ASSERT(!src1.is(pc) && !src2.is(pc));
   2549   int vm, m;
   2550   dst.split_code(&vm, &m);
   2551   emit(cond | 0xC*B24 | B22 | src2.code()*B16 |
   2552        src1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm);
   2553 }
   2554 
   2555 
   2556 void Assembler::vmov(const Register dst1,
   2557                      const Register dst2,
   2558                      const DwVfpRegister src,
   2559                      const Condition cond) {
   2560   // <Rt,Rt2> = Dm.
   2561   // Instruction details available in ARM DDI 0406C.b, A8-948.
   2562   // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) |
   2563   // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm
   2564   ASSERT(!dst1.is(pc) && !dst2.is(pc));
   2565   int vm, m;
   2566   src.split_code(&vm, &m);
   2567   emit(cond | 0xC*B24 | B22 | B20 | dst2.code()*B16 |
   2568        dst1.code()*B12 | 0xB*B8 | m*B5 | B4 | vm);
   2569 }
   2570 
   2571 
   2572 void Assembler::vmov(const SwVfpRegister dst,
   2573                      const Register src,
   2574                      const Condition cond) {
   2575   // Sn = Rt.
   2576   // Instruction details available in ARM DDI 0406A, A8-642.
   2577   // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) |
   2578   // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
   2579   ASSERT(!src.is(pc));
   2580   int sn, n;
   2581   dst.split_code(&sn, &n);
   2582   emit(cond | 0xE*B24 | sn*B16 | src.code()*B12 | 0xA*B8 | n*B7 | B4);
   2583 }
   2584 
   2585 
   2586 void Assembler::vmov(const Register dst,
   2587                      const SwVfpRegister src,
   2588                      const Condition cond) {
   2589   // Rt = Sn.
   2590   // Instruction details available in ARM DDI 0406A, A8-642.
   2591   // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) |
   2592   // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0)
   2593   ASSERT(!dst.is(pc));
   2594   int sn, n;
   2595   src.split_code(&sn, &n);
   2596   emit(cond | 0xE*B24 | B20 | sn*B16 | dst.code()*B12 | 0xA*B8 | n*B7 | B4);
   2597 }
   2598 
   2599 
   2600 // Type of data to read from or write to VFP register.
   2601 // Used as specifier in generic vcvt instruction.
   2602 enum VFPType { S32, U32, F32, F64 };
   2603 
   2604 
   2605 static bool IsSignedVFPType(VFPType type) {
   2606   switch (type) {
   2607     case S32:
   2608       return true;
   2609     case U32:
   2610       return false;
   2611     default:
   2612       UNREACHABLE();
   2613       return false;
   2614   }
   2615 }
   2616 
   2617 
   2618 static bool IsIntegerVFPType(VFPType type) {
   2619   switch (type) {
   2620     case S32:
   2621     case U32:
   2622       return true;
   2623     case F32:
   2624     case F64:
   2625       return false;
   2626     default:
   2627       UNREACHABLE();
   2628       return false;
   2629   }
   2630 }
   2631 
   2632 
   2633 static bool IsDoubleVFPType(VFPType type) {
   2634   switch (type) {
   2635     case F32:
   2636       return false;
   2637     case F64:
   2638       return true;
   2639     default:
   2640       UNREACHABLE();
   2641       return false;
   2642   }
   2643 }
   2644 
   2645 
   2646 // Split five bit reg_code based on size of reg_type.
   2647 //  32-bit register codes are Vm:M
   2648 //  64-bit register codes are M:Vm
   2649 // where Vm is four bits, and M is a single bit.
   2650 static void SplitRegCode(VFPType reg_type,
   2651                          int reg_code,
   2652                          int* vm,
   2653                          int* m) {
   2654   ASSERT((reg_code >= 0) && (reg_code <= 31));
   2655   if (IsIntegerVFPType(reg_type) || !IsDoubleVFPType(reg_type)) {
   2656     // 32 bit type.
   2657     *m  = reg_code & 0x1;
   2658     *vm = reg_code >> 1;
   2659   } else {
   2660     // 64 bit type.
   2661     *m  = (reg_code & 0x10) >> 4;
   2662     *vm = reg_code & 0x0F;
   2663   }
   2664 }
   2665 
   2666 
   2667 // Encode vcvt.src_type.dst_type instruction.
   2668 static Instr EncodeVCVT(const VFPType dst_type,
   2669                         const int dst_code,
   2670                         const VFPType src_type,
   2671                         const int src_code,
   2672                         VFPConversionMode mode,
   2673                         const Condition cond) {
   2674   ASSERT(src_type != dst_type);
   2675   int D, Vd, M, Vm;
   2676   SplitRegCode(src_type, src_code, &Vm, &M);
   2677   SplitRegCode(dst_type, dst_code, &Vd, &D);
   2678 
   2679   if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) {
   2680     // Conversion between IEEE floating point and 32-bit integer.
   2681     // Instruction details available in ARM DDI 0406B, A8.6.295.
   2682     // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) |
   2683     // Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2684     ASSERT(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type));
   2685 
   2686     int sz, opc2, op;
   2687 
   2688     if (IsIntegerVFPType(dst_type)) {
   2689       opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4;
   2690       sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
   2691       op = mode;
   2692     } else {
   2693       ASSERT(IsIntegerVFPType(src_type));
   2694       opc2 = 0x0;
   2695       sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0;
   2696       op = IsSignedVFPType(src_type) ? 0x1 : 0x0;
   2697     }
   2698 
   2699     return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | B19 | opc2*B16 |
   2700             Vd*B12 | 0x5*B9 | sz*B8 | op*B7 | B6 | M*B5 | Vm);
   2701   } else {
   2702     // Conversion between IEEE double and single precision.
   2703     // Instruction details available in ARM DDI 0406B, A8.6.298.
   2704     // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) |
   2705     // Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2706     int sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0;
   2707     return (cond | 0xE*B24 | B23 | D*B22 | 0x3*B20 | 0x7*B16 |
   2708             Vd*B12 | 0x5*B9 | sz*B8 | B7 | B6 | M*B5 | Vm);
   2709   }
   2710 }
   2711 
   2712 
   2713 void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
   2714                              const SwVfpRegister src,
   2715                              VFPConversionMode mode,
   2716                              const Condition cond) {
   2717   emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond));
   2718 }
   2719 
   2720 
   2721 void Assembler::vcvt_f32_s32(const SwVfpRegister dst,
   2722                              const SwVfpRegister src,
   2723                              VFPConversionMode mode,
   2724                              const Condition cond) {
   2725   emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond));
   2726 }
   2727 
   2728 
   2729 void Assembler::vcvt_f64_u32(const DwVfpRegister dst,
   2730                              const SwVfpRegister src,
   2731                              VFPConversionMode mode,
   2732                              const Condition cond) {
   2733   emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond));
   2734 }
   2735 
   2736 
   2737 void Assembler::vcvt_s32_f64(const SwVfpRegister dst,
   2738                              const DwVfpRegister src,
   2739                              VFPConversionMode mode,
   2740                              const Condition cond) {
   2741   emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond));
   2742 }
   2743 
   2744 
   2745 void Assembler::vcvt_u32_f64(const SwVfpRegister dst,
   2746                              const DwVfpRegister src,
   2747                              VFPConversionMode mode,
   2748                              const Condition cond) {
   2749   emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond));
   2750 }
   2751 
   2752 
   2753 void Assembler::vcvt_f64_f32(const DwVfpRegister dst,
   2754                              const SwVfpRegister src,
   2755                              VFPConversionMode mode,
   2756                              const Condition cond) {
   2757   emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond));
   2758 }
   2759 
   2760 
   2761 void Assembler::vcvt_f32_f64(const SwVfpRegister dst,
   2762                              const DwVfpRegister src,
   2763                              VFPConversionMode mode,
   2764                              const Condition cond) {
   2765   emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond));
   2766 }
   2767 
   2768 
   2769 void Assembler::vcvt_f64_s32(const DwVfpRegister dst,
   2770                              int fraction_bits,
   2771                              const Condition cond) {
   2772   // Instruction details available in ARM DDI 0406C.b, A8-874.
   2773   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 1010(19-16) | Vd(15-12) |
   2774   // 101(11-9) | sf=1(8) | sx=1(7) | 1(6) | i(5) | 0(4) | imm4(3-0)
   2775   ASSERT(fraction_bits > 0 && fraction_bits <= 32);
   2776   ASSERT(CpuFeatures::IsSupported(VFP3));
   2777   int vd, d;
   2778   dst.split_code(&vd, &d);
   2779   int i = ((32 - fraction_bits) >> 4) & 1;
   2780   int imm4 = (32 - fraction_bits) & 0xf;
   2781   emit(cond | 0xE*B24 | B23 | d*B22 | 0x3*B20 | B19 | 0x2*B16 |
   2782        vd*B12 | 0x5*B9 | B8 | B7 | B6 | i*B5 | imm4);
   2783 }
   2784 
   2785 
   2786 void Assembler::vneg(const DwVfpRegister dst,
   2787                      const DwVfpRegister src,
   2788                      const Condition cond) {
   2789   // Instruction details available in ARM DDI 0406C.b, A8-968.
   2790   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0001(19-16) | Vd(15-12) |
   2791   // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2792   int vd, d;
   2793   dst.split_code(&vd, &d);
   2794   int vm, m;
   2795   src.split_code(&vm, &m);
   2796 
   2797   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | B6 |
   2798        m*B5 | vm);
   2799 }
   2800 
   2801 
   2802 void Assembler::vabs(const DwVfpRegister dst,
   2803                      const DwVfpRegister src,
   2804                      const Condition cond) {
   2805   // Instruction details available in ARM DDI 0406C.b, A8-524.
   2806   // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) |
   2807   // 101(11-9) | sz=1(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2808   int vd, d;
   2809   dst.split_code(&vd, &d);
   2810   int vm, m;
   2811   src.split_code(&vm, &m);
   2812   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | vd*B12 | 0x5*B9 | B8 | B7 | B6 |
   2813        m*B5 | vm);
   2814 }
   2815 
   2816 
   2817 void Assembler::vadd(const DwVfpRegister dst,
   2818                      const DwVfpRegister src1,
   2819                      const DwVfpRegister src2,
   2820                      const Condition cond) {
   2821   // Dd = vadd(Dn, Dm) double precision floating point addition.
   2822   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   2823   // Instruction details available in ARM DDI 0406C.b, A8-830.
   2824   // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
   2825   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
   2826   int vd, d;
   2827   dst.split_code(&vd, &d);
   2828   int vn, n;
   2829   src1.split_code(&vn, &n);
   2830   int vm, m;
   2831   src2.split_code(&vm, &m);
   2832   emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
   2833        n*B7 | m*B5 | vm);
   2834 }
   2835 
   2836 
   2837 void Assembler::vsub(const DwVfpRegister dst,
   2838                      const DwVfpRegister src1,
   2839                      const DwVfpRegister src2,
   2840                      const Condition cond) {
   2841   // Dd = vsub(Dn, Dm) double precision floating point subtraction.
   2842   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   2843   // Instruction details available in ARM DDI 0406C.b, A8-1086.
   2844   // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) |
   2845   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2846   int vd, d;
   2847   dst.split_code(&vd, &d);
   2848   int vn, n;
   2849   src1.split_code(&vn, &n);
   2850   int vm, m;
   2851   src2.split_code(&vm, &m);
   2852   emit(cond | 0x1C*B23 | d*B22 | 0x3*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
   2853        n*B7 | B6 | m*B5 | vm);
   2854 }
   2855 
   2856 
   2857 void Assembler::vmul(const DwVfpRegister dst,
   2858                      const DwVfpRegister src1,
   2859                      const DwVfpRegister src2,
   2860                      const Condition cond) {
   2861   // Dd = vmul(Dn, Dm) double precision floating point multiplication.
   2862   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   2863   // Instruction details available in ARM DDI 0406C.b, A8-960.
   2864   // cond(31-28) | 11100(27-23)| D(22) | 10(21-20) | Vn(19-16) |
   2865   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
   2866   int vd, d;
   2867   dst.split_code(&vd, &d);
   2868   int vn, n;
   2869   src1.split_code(&vn, &n);
   2870   int vm, m;
   2871   src2.split_code(&vm, &m);
   2872   emit(cond | 0x1C*B23 | d*B22 | 0x2*B20 | vn*B16 | vd*B12 | 0x5*B9 | B8 |
   2873        n*B7 | m*B5 | vm);
   2874 }
   2875 
   2876 
   2877 void Assembler::vmla(const DwVfpRegister dst,
   2878                      const DwVfpRegister src1,
   2879                      const DwVfpRegister src2,
   2880                      const Condition cond) {
   2881   // Instruction details available in ARM DDI 0406C.b, A8-932.
   2882   // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
   2883   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=0(6) | M(5) | 0(4) | Vm(3-0)
   2884   int vd, d;
   2885   dst.split_code(&vd, &d);
   2886   int vn, n;
   2887   src1.split_code(&vn, &n);
   2888   int vm, m;
   2889   src2.split_code(&vm, &m);
   2890   emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 |
   2891        vm);
   2892 }
   2893 
   2894 
   2895 void Assembler::vmls(const DwVfpRegister dst,
   2896                      const DwVfpRegister src1,
   2897                      const DwVfpRegister src2,
   2898                      const Condition cond) {
   2899   // Instruction details available in ARM DDI 0406C.b, A8-932.
   2900   // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) |
   2901   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=1(6) | M(5) | 0(4) | Vm(3-0)
   2902   int vd, d;
   2903   dst.split_code(&vd, &d);
   2904   int vn, n;
   2905   src1.split_code(&vn, &n);
   2906   int vm, m;
   2907   src2.split_code(&vm, &m);
   2908   emit(cond | 0x1C*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | B6 |
   2909        m*B5 | vm);
   2910 }
   2911 
   2912 
   2913 void Assembler::vdiv(const DwVfpRegister dst,
   2914                      const DwVfpRegister src1,
   2915                      const DwVfpRegister src2,
   2916                      const Condition cond) {
   2917   // Dd = vdiv(Dn, Dm) double precision floating point division.
   2918   // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm.
   2919   // Instruction details available in ARM DDI 0406C.b, A8-882.
   2920   // cond(31-28) | 11101(27-23)| D(22) | 00(21-20) | Vn(19-16) |
   2921   // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0)
   2922   int vd, d;
   2923   dst.split_code(&vd, &d);
   2924   int vn, n;
   2925   src1.split_code(&vn, &n);
   2926   int vm, m;
   2927   src2.split_code(&vm, &m);
   2928   emit(cond | 0x1D*B23 | d*B22 | vn*B16 | vd*B12 | 0x5*B9 | B8 | n*B7 | m*B5 |
   2929        vm);
   2930 }
   2931 
   2932 
   2933 void Assembler::vcmp(const DwVfpRegister src1,
   2934                      const DwVfpRegister src2,
   2935                      const Condition cond) {
   2936   // vcmp(Dd, Dm) double precision floating point comparison.
   2937   // Instruction details available in ARM DDI 0406C.b, A8-864.
   2938   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0100(19-16) |
   2939   // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | M(5) | 0(4) | Vm(3-0)
   2940   int vd, d;
   2941   src1.split_code(&vd, &d);
   2942   int vm, m;
   2943   src2.split_code(&vm, &m);
   2944   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x4*B16 | vd*B12 | 0x5*B9 | B8 | B6 |
   2945        m*B5 | vm);
   2946 }
   2947 
   2948 
   2949 void Assembler::vcmp(const DwVfpRegister src1,
   2950                      const double src2,
   2951                      const Condition cond) {
   2952   // vcmp(Dd, #0.0) double precision floating point comparison.
   2953   // Instruction details available in ARM DDI 0406C.b, A8-864.
   2954   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0101(19-16) |
   2955   // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | 0(5) | 0(4) | 0000(3-0)
   2956   ASSERT(src2 == 0.0);
   2957   int vd, d;
   2958   src1.split_code(&vd, &d);
   2959   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | 0x5*B16 | vd*B12 | 0x5*B9 | B8 | B6);
   2960 }
   2961 
   2962 
   2963 void Assembler::vmsr(Register dst, Condition cond) {
   2964   // Instruction details available in ARM DDI 0406A, A8-652.
   2965   // cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) |
   2966   // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
   2967   emit(cond | 0xE*B24 | 0xE*B20 |  B16 |
   2968        dst.code()*B12 | 0xA*B8 | B4);
   2969 }
   2970 
   2971 
   2972 void Assembler::vmrs(Register dst, Condition cond) {
   2973   // Instruction details available in ARM DDI 0406A, A8-652.
   2974   // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) |
   2975   // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0)
   2976   emit(cond | 0xE*B24 | 0xF*B20 |  B16 |
   2977        dst.code()*B12 | 0xA*B8 | B4);
   2978 }
   2979 
   2980 
   2981 void Assembler::vsqrt(const DwVfpRegister dst,
   2982                       const DwVfpRegister src,
   2983                       const Condition cond) {
   2984   // Instruction details available in ARM DDI 0406C.b, A8-1058.
   2985   // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0001(19-16) |
   2986   // Vd(15-12) | 101(11-9) | sz=1(8) | 11(7-6) | M(5) | 0(4) | Vm(3-0)
   2987   int vd, d;
   2988   dst.split_code(&vd, &d);
   2989   int vm, m;
   2990   src.split_code(&vm, &m);
   2991   emit(cond | 0x1D*B23 | d*B22 | 0x3*B20 | B16 | vd*B12 | 0x5*B9 | B8 | 0x3*B6 |
   2992        m*B5 | vm);
   2993 }
   2994 
   2995 
   2996 // Support for NEON.
   2997 
   2998 void Assembler::vld1(NeonSize size,
   2999                      const NeonListOperand& dst,
   3000                      const NeonMemOperand& src) {
   3001   // Instruction details available in ARM DDI 0406C.b, A8.8.320.
   3002   // 1111(31-28) | 01000(27-23) | D(22) | 10(21-20) | Rn(19-16) |
   3003   // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0)
   3004   ASSERT(CpuFeatures::IsSupported(NEON));
   3005   int vd, d;
   3006   dst.base().split_code(&vd, &d);
   3007   emit(0xFU*B28 | 4*B24 | d*B22 | 2*B20 | src.rn().code()*B16 | vd*B12 |
   3008        dst.type()*B8 | size*B6 | src.align()*B4 | src.rm().code());
   3009 }
   3010 
   3011 
   3012 void Assembler::vst1(NeonSize size,
   3013                      const NeonListOperand& src,
   3014                      const NeonMemOperand& dst) {
   3015   // Instruction details available in ARM DDI 0406C.b, A8.8.404.
   3016   // 1111(31-28) | 01000(27-23) | D(22) | 00(21-20) | Rn(19-16) |
   3017   // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0)
   3018   ASSERT(CpuFeatures::IsSupported(NEON));
   3019   int vd, d;
   3020   src.base().split_code(&vd, &d);
   3021   emit(0xFU*B28 | 4*B24 | d*B22 | dst.rn().code()*B16 | vd*B12 | src.type()*B8 |
   3022        size*B6 | dst.align()*B4 | dst.rm().code());
   3023 }
   3024 
   3025 
   3026 void Assembler::vmovl(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src) {
   3027   // Instruction details available in ARM DDI 0406C.b, A8.8.346.
   3028   // 1111(31-28) | 001(27-25) | U(24) | 1(23) | D(22) | imm3(21-19) |
   3029   // 000(18-16) | Vd(15-12) | 101000(11-6) | M(5) | 1(4) | Vm(3-0)
   3030   ASSERT(CpuFeatures::IsSupported(NEON));
   3031   int vd, d;
   3032   dst.split_code(&vd, &d);
   3033   int vm, m;
   3034   src.split_code(&vm, &m);
   3035   emit(0xFU*B28 | B25 | (dt & NeonDataTypeUMask) | B23 | d*B22 |
   3036         (dt & NeonDataTypeSizeMask)*B19 | vd*B12 | 0xA*B8 | m*B5 | B4 | vm);
   3037 }
   3038 
   3039 
   3040 // Pseudo instructions.
   3041 void Assembler::nop(int type) {
   3042   // ARMv6{K/T2} and v7 have an actual NOP instruction but it serializes
   3043   // some of the CPU's pipeline and has to issue. Older ARM chips simply used
   3044   // MOV Rx, Rx as NOP and it performs better even in newer CPUs.
   3045   // We therefore use MOV Rx, Rx, even on newer CPUs, and use Rx to encode
   3046   // a type.
   3047   ASSERT(0 <= type && type <= 14);  // mov pc, pc isn't a nop.
   3048   emit(al | 13*B21 | type*B12 | type);
   3049 }
   3050 
   3051 
   3052 bool Assembler::IsMovT(Instr instr) {
   3053   instr &= ~(((kNumberOfConditions - 1) << 28) |  // Mask off conditions
   3054              ((kNumRegisters-1)*B12) |            // mask out register
   3055              EncodeMovwImmediate(0xFFFF));        // mask out immediate value
   3056   return instr == 0x34*B20;
   3057 }
   3058 
   3059 
   3060 bool Assembler::IsMovW(Instr instr) {
   3061   instr &= ~(((kNumberOfConditions - 1) << 28) |  // Mask off conditions
   3062              ((kNumRegisters-1)*B12) |            // mask out destination
   3063              EncodeMovwImmediate(0xFFFF));        // mask out immediate value
   3064   return instr == 0x30*B20;
   3065 }
   3066 
   3067 
   3068 bool Assembler::IsNop(Instr instr, int type) {
   3069   ASSERT(0 <= type && type <= 14);  // mov pc, pc isn't a nop.
   3070   // Check for mov rx, rx where x = type.
   3071   return instr == (al | 13*B21 | type*B12 | type);
   3072 }
   3073 
   3074 
   3075 bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) {
   3076   uint32_t dummy1;
   3077   uint32_t dummy2;
   3078   return fits_shifter(imm32, &dummy1, &dummy2, NULL);
   3079 }
   3080 
   3081 
   3082 // Debugging.
   3083 void Assembler::RecordJSReturn() {
   3084   positions_recorder()->WriteRecordedPositions();
   3085   CheckBuffer();
   3086   RecordRelocInfo(RelocInfo::JS_RETURN);
   3087 }
   3088 
   3089 
   3090 void Assembler::RecordDebugBreakSlot() {
   3091   positions_recorder()->WriteRecordedPositions();
   3092   CheckBuffer();
   3093   RecordRelocInfo(RelocInfo::DEBUG_BREAK_SLOT);
   3094 }
   3095 
   3096 
   3097 void Assembler::RecordComment(const char* msg) {
   3098   if (FLAG_code_comments) {
   3099     CheckBuffer();
   3100     RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg));
   3101   }
   3102 }
   3103 
   3104 
   3105 void Assembler::RecordConstPool(int size) {
   3106   // We only need this for debugger support, to correctly compute offsets in the
   3107   // code.
   3108 #ifdef ENABLE_DEBUGGER_SUPPORT
   3109   RecordRelocInfo(RelocInfo::CONST_POOL, static_cast<intptr_t>(size));
   3110 #endif
   3111 }
   3112 
   3113 
   3114 void Assembler::GrowBuffer() {
   3115   if (!own_buffer_) FATAL("external code buffer is too small");
   3116 
   3117   // Compute new buffer size.
   3118   CodeDesc desc;  // the new buffer
   3119   if (buffer_size_ < 4*KB) {
   3120     desc.buffer_size = 4*KB;
   3121   } else if (buffer_size_ < 1*MB) {
   3122     desc.buffer_size = 2*buffer_size_;
   3123   } else {
   3124     desc.buffer_size = buffer_size_ + 1*MB;
   3125   }
   3126   CHECK_GT(desc.buffer_size, 0);  // no overflow
   3127 
   3128   // Set up new buffer.
   3129   desc.buffer = NewArray<byte>(desc.buffer_size);
   3130 
   3131   desc.instr_size = pc_offset();
   3132   desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
   3133 
   3134   // Copy the data.
   3135   int pc_delta = desc.buffer - buffer_;
   3136   int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
   3137   OS::MemMove(desc.buffer, buffer_, desc.instr_size);
   3138   OS::MemMove(reloc_info_writer.pos() + rc_delta,
   3139               reloc_info_writer.pos(), desc.reloc_size);
   3140 
   3141   // Switch buffers.
   3142   DeleteArray(buffer_);
   3143   buffer_ = desc.buffer;
   3144   buffer_size_ = desc.buffer_size;
   3145   pc_ += pc_delta;
   3146   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
   3147                                reloc_info_writer.last_pc() + pc_delta);
   3148 
   3149   // None of our relocation types are pc relative pointing outside the code
   3150   // buffer nor pc absolute pointing inside the code buffer, so there is no need
   3151   // to relocate any emitted relocation entries.
   3152 
   3153   // Relocate pending relocation entries.
   3154   for (int i = 0; i < num_pending_32_bit_reloc_info_; i++) {
   3155     RelocInfo& rinfo = pending_32_bit_reloc_info_[i];
   3156     ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
   3157            rinfo.rmode() != RelocInfo::POSITION);
   3158     if (rinfo.rmode() != RelocInfo::JS_RETURN) {
   3159       rinfo.set_pc(rinfo.pc() + pc_delta);
   3160     }
   3161   }
   3162   for (int i = 0; i < num_pending_64_bit_reloc_info_; i++) {
   3163     RelocInfo& rinfo = pending_64_bit_reloc_info_[i];
   3164     ASSERT(rinfo.rmode() == RelocInfo::NONE64);
   3165     rinfo.set_pc(rinfo.pc() + pc_delta);
   3166   }
   3167 }
   3168 
   3169 
   3170 void Assembler::db(uint8_t data) {
   3171   // No relocation info should be pending while using db. db is used
   3172   // to write pure data with no pointers and the constant pool should
   3173   // be emitted before using db.
   3174   ASSERT(num_pending_32_bit_reloc_info_ == 0);
   3175   ASSERT(num_pending_64_bit_reloc_info_ == 0);
   3176   CheckBuffer();
   3177   *reinterpret_cast<uint8_t*>(pc_) = data;
   3178   pc_ += sizeof(uint8_t);
   3179 }
   3180 
   3181 
   3182 void Assembler::dd(uint32_t data) {
   3183   // No relocation info should be pending while using dd. dd is used
   3184   // to write pure data with no pointers and the constant pool should
   3185   // be emitted before using dd.
   3186   ASSERT(num_pending_32_bit_reloc_info_ == 0);
   3187   ASSERT(num_pending_64_bit_reloc_info_ == 0);
   3188   CheckBuffer();
   3189   *reinterpret_cast<uint32_t*>(pc_) = data;
   3190   pc_ += sizeof(uint32_t);
   3191 }
   3192 
   3193 
   3194 void Assembler::emit_code_stub_address(Code* stub) {
   3195   CheckBuffer();
   3196   *reinterpret_cast<uint32_t*>(pc_) =
   3197       reinterpret_cast<uint32_t>(stub->instruction_start());
   3198   pc_ += sizeof(uint32_t);
   3199 }
   3200 
   3201 
   3202 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data,
   3203                                 UseConstantPoolMode mode) {
   3204   // We do not try to reuse pool constants.
   3205   RelocInfo rinfo(pc_, rmode, data, NULL);
   3206   if (((rmode >= RelocInfo::JS_RETURN) &&
   3207        (rmode <= RelocInfo::DEBUG_BREAK_SLOT)) ||
   3208       (rmode == RelocInfo::CONST_POOL) ||
   3209       mode == DONT_USE_CONSTANT_POOL) {
   3210     // Adjust code for new modes.
   3211     ASSERT(RelocInfo::IsDebugBreakSlot(rmode)
   3212            || RelocInfo::IsJSReturn(rmode)
   3213            || RelocInfo::IsComment(rmode)
   3214            || RelocInfo::IsPosition(rmode)
   3215            || RelocInfo::IsConstPool(rmode)
   3216            || mode == DONT_USE_CONSTANT_POOL);
   3217     // These modes do not need an entry in the constant pool.
   3218   } else {
   3219     RecordRelocInfoConstantPoolEntryHelper(rinfo);
   3220   }
   3221   if (!RelocInfo::IsNone(rinfo.rmode())) {
   3222     // Don't record external references unless the heap will be serialized.
   3223     if (rmode == RelocInfo::EXTERNAL_REFERENCE) {
   3224 #ifdef DEBUG
   3225       if (!Serializer::enabled()) {
   3226         Serializer::TooLateToEnableNow();
   3227       }
   3228 #endif
   3229       if (!Serializer::enabled() && !emit_debug_code()) {
   3230         return;
   3231       }
   3232     }
   3233     ASSERT(buffer_space() >= kMaxRelocSize);  // too late to grow buffer here
   3234     if (rmode == RelocInfo::CODE_TARGET_WITH_ID) {
   3235       RelocInfo reloc_info_with_ast_id(pc_,
   3236                                        rmode,
   3237                                        RecordedAstId().ToInt(),
   3238                                        NULL);
   3239       ClearRecordedAstId();
   3240       reloc_info_writer.Write(&reloc_info_with_ast_id);
   3241     } else {
   3242       reloc_info_writer.Write(&rinfo);
   3243     }
   3244   }
   3245 }
   3246 
   3247 
   3248 void Assembler::RecordRelocInfo(double data) {
   3249   // We do not try to reuse pool constants.
   3250   RelocInfo rinfo(pc_, data);
   3251   RecordRelocInfoConstantPoolEntryHelper(rinfo);
   3252 }
   3253 
   3254 
   3255 void Assembler::RecordRelocInfoConstantPoolEntryHelper(const RelocInfo& rinfo) {
   3256   if (rinfo.rmode() == RelocInfo::NONE64) {
   3257     ASSERT(num_pending_64_bit_reloc_info_ < kMaxNumPending64RelocInfo);
   3258     if (num_pending_64_bit_reloc_info_ == 0) {
   3259       first_const_pool_64_use_ = pc_offset();
   3260     }
   3261     pending_64_bit_reloc_info_[num_pending_64_bit_reloc_info_++] = rinfo;
   3262   } else {
   3263     ASSERT(num_pending_32_bit_reloc_info_ < kMaxNumPending32RelocInfo);
   3264     if (num_pending_32_bit_reloc_info_ == 0) {
   3265       first_const_pool_32_use_ = pc_offset();
   3266     }
   3267     pending_32_bit_reloc_info_[num_pending_32_bit_reloc_info_++] = rinfo;
   3268   }
   3269   // Make sure the constant pool is not emitted in place of the next
   3270   // instruction for which we just recorded relocation info.
   3271   BlockConstPoolFor(1);
   3272 }
   3273 
   3274 
   3275 void Assembler::BlockConstPoolFor(int instructions) {
   3276   int pc_limit = pc_offset() + instructions * kInstrSize;
   3277   if (no_const_pool_before_ < pc_limit) {
   3278     // Max pool start (if we need a jump and an alignment).
   3279 #ifdef DEBUG
   3280     int start = pc_limit + kInstrSize + 2 * kPointerSize;
   3281     ASSERT((num_pending_32_bit_reloc_info_ == 0) ||
   3282            (start - first_const_pool_32_use_ +
   3283             num_pending_64_bit_reloc_info_ * kDoubleSize < kMaxDistToIntPool));
   3284     ASSERT((num_pending_64_bit_reloc_info_ == 0) ||
   3285            (start - first_const_pool_64_use_ < kMaxDistToFPPool));
   3286 #endif
   3287     no_const_pool_before_ = pc_limit;
   3288   }
   3289 
   3290   if (next_buffer_check_ < no_const_pool_before_) {
   3291     next_buffer_check_ = no_const_pool_before_;
   3292   }
   3293 }
   3294 
   3295 
   3296 void Assembler::CheckConstPool(bool force_emit, bool require_jump) {
   3297   // Some short sequence of instruction mustn't be broken up by constant pool
   3298   // emission, such sequences are protected by calls to BlockConstPoolFor and
   3299   // BlockConstPoolScope.
   3300   if (is_const_pool_blocked()) {
   3301     // Something is wrong if emission is forced and blocked at the same time.
   3302     ASSERT(!force_emit);
   3303     return;
   3304   }
   3305 
   3306   // There is nothing to do if there are no pending constant pool entries.
   3307   if ((num_pending_32_bit_reloc_info_ == 0) &&
   3308       (num_pending_64_bit_reloc_info_ == 0)) {
   3309     // Calculate the offset of the next check.
   3310     next_buffer_check_ = pc_offset() + kCheckPoolInterval;
   3311     return;
   3312   }
   3313 
   3314   // Check that the code buffer is large enough before emitting the constant
   3315   // pool (include the jump over the pool and the constant pool marker and
   3316   // the gap to the relocation information).
   3317   int jump_instr = require_jump ? kInstrSize : 0;
   3318   int size_up_to_marker = jump_instr + kInstrSize;
   3319   int size_after_marker = num_pending_32_bit_reloc_info_ * kPointerSize;
   3320   bool has_fp_values = (num_pending_64_bit_reloc_info_ > 0);
   3321   bool require_64_bit_align = false;
   3322   if (has_fp_values) {
   3323     require_64_bit_align = (((uintptr_t)pc_ + size_up_to_marker) & 0x7);
   3324     if (require_64_bit_align) {
   3325       size_after_marker += kInstrSize;
   3326     }
   3327     size_after_marker += num_pending_64_bit_reloc_info_ * kDoubleSize;
   3328   }
   3329 
   3330   int size = size_up_to_marker + size_after_marker;
   3331 
   3332   // We emit a constant pool when:
   3333   //  * requested to do so by parameter force_emit (e.g. after each function).
   3334   //  * the distance from the first instruction accessing the constant pool to
   3335   //    any of the constant pool entries will exceed its limit the next
   3336   //    time the pool is checked. This is overly restrictive, but we don't emit
   3337   //    constant pool entries in-order so it's conservatively correct.
   3338   //  * the instruction doesn't require a jump after itself to jump over the
   3339   //    constant pool, and we're getting close to running out of range.
   3340   if (!force_emit) {
   3341     ASSERT((first_const_pool_32_use_ >= 0) || (first_const_pool_64_use_ >= 0));
   3342     bool need_emit = false;
   3343     if (has_fp_values) {
   3344       int dist64 = pc_offset() +
   3345                    size -
   3346                    num_pending_32_bit_reloc_info_ * kPointerSize -
   3347                    first_const_pool_64_use_;
   3348       if ((dist64 >= kMaxDistToFPPool - kCheckPoolInterval) ||
   3349           (!require_jump && (dist64 >= kMaxDistToFPPool / 2))) {
   3350         need_emit = true;
   3351       }
   3352     }
   3353     int dist32 =
   3354       pc_offset() + size - first_const_pool_32_use_;
   3355     if ((dist32 >= kMaxDistToIntPool - kCheckPoolInterval) ||
   3356         (!require_jump && (dist32 >= kMaxDistToIntPool / 2))) {
   3357       need_emit = true;
   3358     }
   3359     if (!need_emit) return;
   3360   }
   3361 
   3362   int needed_space = size + kGap;
   3363   while (buffer_space() <= needed_space) GrowBuffer();
   3364 
   3365   {
   3366     // Block recursive calls to CheckConstPool.
   3367     BlockConstPoolScope block_const_pool(this);
   3368     RecordComment("[ Constant Pool");
   3369     RecordConstPool(size);
   3370 
   3371     // Emit jump over constant pool if necessary.
   3372     Label after_pool;
   3373     if (require_jump) {
   3374       b(&after_pool);
   3375     }
   3376 
   3377     // Put down constant pool marker "Undefined instruction".
   3378     // The data size helps disassembly know what to print.
   3379     emit(kConstantPoolMarker |
   3380          EncodeConstantPoolLength(size_after_marker / kPointerSize));
   3381 
   3382     if (require_64_bit_align) {
   3383       emit(kConstantPoolMarker);
   3384     }
   3385 
   3386     // Emit 64-bit constant pool entries first: their range is smaller than
   3387     // 32-bit entries.
   3388     for (int i = 0; i < num_pending_64_bit_reloc_info_; i++) {
   3389       RelocInfo& rinfo = pending_64_bit_reloc_info_[i];
   3390 
   3391       ASSERT(!((uintptr_t)pc_ & 0x7));  // Check 64-bit alignment.
   3392 
   3393       Instr instr = instr_at(rinfo.pc());
   3394       // Instruction to patch must be 'vldr rd, [pc, #offset]' with offset == 0.
   3395       ASSERT((IsVldrDPcImmediateOffset(instr) &&
   3396               GetVldrDRegisterImmediateOffset(instr) == 0));
   3397 
   3398       int delta = pc_ - rinfo.pc() - kPcLoadDelta;
   3399       ASSERT(is_uint10(delta));
   3400 
   3401       bool found = false;
   3402       uint64_t value = rinfo.raw_data64();
   3403       for (int j = 0; j < i; j++) {
   3404         RelocInfo& rinfo2 = pending_64_bit_reloc_info_[j];
   3405         if (value == rinfo2.raw_data64()) {
   3406           found = true;
   3407           ASSERT(rinfo2.rmode() == RelocInfo::NONE64);
   3408           Instr instr2 = instr_at(rinfo2.pc());
   3409           ASSERT(IsVldrDPcImmediateOffset(instr2));
   3410           delta = GetVldrDRegisterImmediateOffset(instr2);
   3411           delta += rinfo2.pc() - rinfo.pc();
   3412           break;
   3413         }
   3414       }
   3415 
   3416       instr_at_put(rinfo.pc(), SetVldrDRegisterImmediateOffset(instr, delta));
   3417 
   3418       if (!found) {
   3419         uint64_t uint_data = rinfo.raw_data64();
   3420         emit(uint_data & 0xFFFFFFFF);
   3421         emit(uint_data >> 32);
   3422       }
   3423     }
   3424 
   3425     // Emit 32-bit constant pool entries.
   3426     for (int i = 0; i < num_pending_32_bit_reloc_info_; i++) {
   3427       RelocInfo& rinfo = pending_32_bit_reloc_info_[i];
   3428       ASSERT(rinfo.rmode() != RelocInfo::COMMENT &&
   3429              rinfo.rmode() != RelocInfo::POSITION &&
   3430              rinfo.rmode() != RelocInfo::STATEMENT_POSITION &&
   3431              rinfo.rmode() != RelocInfo::CONST_POOL &&
   3432              rinfo.rmode() != RelocInfo::NONE64);
   3433 
   3434       Instr instr = instr_at(rinfo.pc());
   3435 
   3436       // 64-bit loads shouldn't get here.
   3437       ASSERT(!IsVldrDPcImmediateOffset(instr));
   3438 
   3439       if (IsLdrPcImmediateOffset(instr) &&
   3440           GetLdrRegisterImmediateOffset(instr) == 0) {
   3441         int delta = pc_ - rinfo.pc() - kPcLoadDelta;
   3442         ASSERT(is_uint12(delta));
   3443         // 0 is the smallest delta:
   3444         //   ldr rd, [pc, #0]
   3445         //   constant pool marker
   3446         //   data
   3447 
   3448         bool found = false;
   3449         if (!Serializer::enabled() && (rinfo.rmode() >= RelocInfo::CELL)) {
   3450           for (int j = 0; j < i; j++) {
   3451             RelocInfo& rinfo2 = pending_32_bit_reloc_info_[j];
   3452 
   3453             if ((rinfo2.data() == rinfo.data()) &&
   3454                 (rinfo2.rmode() == rinfo.rmode())) {
   3455               Instr instr2 = instr_at(rinfo2.pc());
   3456               if (IsLdrPcImmediateOffset(instr2)) {
   3457                 delta = GetLdrRegisterImmediateOffset(instr2);
   3458                 delta += rinfo2.pc() - rinfo.pc();
   3459                 found = true;
   3460                 break;
   3461               }
   3462             }
   3463           }
   3464         }
   3465 
   3466         instr_at_put(rinfo.pc(), SetLdrRegisterImmediateOffset(instr, delta));
   3467 
   3468         if (!found) {
   3469           emit(rinfo.data());
   3470         }
   3471       } else {
   3472         ASSERT(IsMovW(instr));
   3473       }
   3474     }
   3475 
   3476     num_pending_32_bit_reloc_info_ = 0;
   3477     num_pending_64_bit_reloc_info_ = 0;
   3478     first_const_pool_32_use_ = -1;
   3479     first_const_pool_64_use_ = -1;
   3480 
   3481     RecordComment("]");
   3482 
   3483     if (after_pool.is_linked()) {
   3484       bind(&after_pool);
   3485     }
   3486   }
   3487 
   3488   // Since a constant pool was just emitted, move the check offset forward by
   3489   // the standard interval.
   3490   next_buffer_check_ = pc_offset() + kCheckPoolInterval;
   3491 }
   3492 
   3493 
   3494 } }  // namespace v8::internal
   3495 
   3496 #endif  // V8_TARGET_ARCH_ARM
   3497