Home | History | Annotate | Download | only in common
      1 /*
      2  *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include "./vpx_config.h"
     12 #include "vp9/common/vp9_loopfilter.h"
     13 #include "vp9/common/vp9_onyxc_int.h"
     14 #include "vp9/common/vp9_reconinter.h"
     15 #include "vpx_mem/vpx_mem.h"
     16 
     17 #include "vp9/common/vp9_seg_common.h"
     18 
     19 // This structure holds bit masks for all 8x8 blocks in a 64x64 region.
     20 // Each 1 bit represents a position in which we want to apply the loop filter.
     21 // Left_ entries refer to whether we apply a filter on the border to the
     22 // left of the block.   Above_ entries refer to whether or not to apply a
     23 // filter on the above border.   Int_ entries refer to whether or not to
     24 // apply borders on the 4x4 edges within the 8x8 block that each bit
     25 // represents.
     26 // Since each transform is accompanied by a potentially different type of
     27 // loop filter there is a different entry in the array for each transform size.
     28 typedef struct {
     29   uint64_t left_y[TX_SIZES];
     30   uint64_t above_y[TX_SIZES];
     31   uint64_t int_4x4_y;
     32   uint16_t left_uv[TX_SIZES];
     33   uint16_t above_uv[TX_SIZES];
     34   uint16_t int_4x4_uv;
     35   uint8_t lfl_y[64];
     36   uint8_t lfl_uv[16];
     37 } LOOP_FILTER_MASK;
     38 
     39 // 64 bit masks for left transform size.  Each 1 represents a position where
     40 // we should apply a loop filter across the left border of an 8x8 block
     41 // boundary.
     42 //
     43 // In the case of TX_16X16->  ( in low order byte first we end up with
     44 // a mask that looks like this
     45 //
     46 //    10101010
     47 //    10101010
     48 //    10101010
     49 //    10101010
     50 //    10101010
     51 //    10101010
     52 //    10101010
     53 //    10101010
     54 //
     55 // A loopfilter should be applied to every other 8x8 horizontally.
     56 static const uint64_t left_64x64_txform_mask[TX_SIZES]= {
     57     0xffffffffffffffff,  // TX_4X4
     58     0xffffffffffffffff,  // TX_8x8
     59     0x5555555555555555,  // TX_16x16
     60     0x1111111111111111,  // TX_32x32
     61 };
     62 
     63 // 64 bit masks for above transform size.  Each 1 represents a position where
     64 // we should apply a loop filter across the top border of an 8x8 block
     65 // boundary.
     66 //
     67 // In the case of TX_32x32 ->  ( in low order byte first we end up with
     68 // a mask that looks like this
     69 //
     70 //    11111111
     71 //    00000000
     72 //    00000000
     73 //    00000000
     74 //    11111111
     75 //    00000000
     76 //    00000000
     77 //    00000000
     78 //
     79 // A loopfilter should be applied to every other 4 the row vertically.
     80 static const uint64_t above_64x64_txform_mask[TX_SIZES]= {
     81     0xffffffffffffffff,  // TX_4X4
     82     0xffffffffffffffff,  // TX_8x8
     83     0x00ff00ff00ff00ff,  // TX_16x16
     84     0x000000ff000000ff,  // TX_32x32
     85 };
     86 
     87 // 64 bit masks for prediction sizes (left).  Each 1 represents a position
     88 // where left border of an 8x8 block.  These are aligned to the right most
     89 // appropriate bit,  and then shifted into place.
     90 //
     91 // In the case of TX_16x32 ->  ( low order byte first ) we end up with
     92 // a mask that looks like this :
     93 //
     94 //  10000000
     95 //  10000000
     96 //  10000000
     97 //  10000000
     98 //  00000000
     99 //  00000000
    100 //  00000000
    101 //  00000000
    102 static const uint64_t left_prediction_mask[BLOCK_SIZES] = {
    103     0x0000000000000001,  // BLOCK_4X4,
    104     0x0000000000000001,  // BLOCK_4X8,
    105     0x0000000000000001,  // BLOCK_8X4,
    106     0x0000000000000001,  // BLOCK_8X8,
    107     0x0000000000000101,  // BLOCK_8X16,
    108     0x0000000000000001,  // BLOCK_16X8,
    109     0x0000000000000101,  // BLOCK_16X16,
    110     0x0000000001010101,  // BLOCK_16X32,
    111     0x0000000000000101,  // BLOCK_32X16,
    112     0x0000000001010101,  // BLOCK_32X32,
    113     0x0101010101010101,  // BLOCK_32X64,
    114     0x0000000001010101,  // BLOCK_64X32,
    115     0x0101010101010101,  // BLOCK_64X64
    116 };
    117 
    118 // 64 bit mask to shift and set for each prediction size.
    119 static const uint64_t above_prediction_mask[BLOCK_SIZES] = {
    120     0x0000000000000001,  // BLOCK_4X4
    121     0x0000000000000001,  // BLOCK_4X8
    122     0x0000000000000001,  // BLOCK_8X4
    123     0x0000000000000001,  // BLOCK_8X8
    124     0x0000000000000001,  // BLOCK_8X16,
    125     0x0000000000000003,  // BLOCK_16X8
    126     0x0000000000000003,  // BLOCK_16X16
    127     0x0000000000000003,  // BLOCK_16X32,
    128     0x000000000000000f,  // BLOCK_32X16,
    129     0x000000000000000f,  // BLOCK_32X32,
    130     0x000000000000000f,  // BLOCK_32X64,
    131     0x00000000000000ff,  // BLOCK_64X32,
    132     0x00000000000000ff,  // BLOCK_64X64
    133 };
    134 // 64 bit mask to shift and set for each prediction size.  A bit is set for
    135 // each 8x8 block that would be in the left most block of the given block
    136 // size in the 64x64 block.
    137 static const uint64_t size_mask[BLOCK_SIZES] = {
    138     0x0000000000000001,  // BLOCK_4X4
    139     0x0000000000000001,  // BLOCK_4X8
    140     0x0000000000000001,  // BLOCK_8X4
    141     0x0000000000000001,  // BLOCK_8X8
    142     0x0000000000000101,  // BLOCK_8X16,
    143     0x0000000000000003,  // BLOCK_16X8
    144     0x0000000000000303,  // BLOCK_16X16
    145     0x0000000003030303,  // BLOCK_16X32,
    146     0x0000000000000f0f,  // BLOCK_32X16,
    147     0x000000000f0f0f0f,  // BLOCK_32X32,
    148     0x0f0f0f0f0f0f0f0f,  // BLOCK_32X64,
    149     0x00000000ffffffff,  // BLOCK_64X32,
    150     0xffffffffffffffff,  // BLOCK_64X64
    151 };
    152 
    153 // These are used for masking the left and above borders.
    154 static const uint64_t left_border =  0x1111111111111111;
    155 static const uint64_t above_border = 0x000000ff000000ff;
    156 
    157 // 16 bit masks for uv transform sizes.
    158 static const uint16_t left_64x64_txform_mask_uv[TX_SIZES]= {
    159     0xffff,  // TX_4X4
    160     0xffff,  // TX_8x8
    161     0x5555,  // TX_16x16
    162     0x1111,  // TX_32x32
    163 };
    164 
    165 static const uint16_t above_64x64_txform_mask_uv[TX_SIZES]= {
    166     0xffff,  // TX_4X4
    167     0xffff,  // TX_8x8
    168     0x0f0f,  // TX_16x16
    169     0x000f,  // TX_32x32
    170 };
    171 
    172 // 16 bit left mask to shift and set for each uv prediction size.
    173 static const uint16_t left_prediction_mask_uv[BLOCK_SIZES] = {
    174     0x0001,  // BLOCK_4X4,
    175     0x0001,  // BLOCK_4X8,
    176     0x0001,  // BLOCK_8X4,
    177     0x0001,  // BLOCK_8X8,
    178     0x0001,  // BLOCK_8X16,
    179     0x0001,  // BLOCK_16X8,
    180     0x0001,  // BLOCK_16X16,
    181     0x0011,  // BLOCK_16X32,
    182     0x0001,  // BLOCK_32X16,
    183     0x0011,  // BLOCK_32X32,
    184     0x1111,  // BLOCK_32X64
    185     0x0011,  // BLOCK_64X32,
    186     0x1111,  // BLOCK_64X64
    187 };
    188 // 16 bit above mask to shift and set for uv each prediction size.
    189 static const uint16_t above_prediction_mask_uv[BLOCK_SIZES] = {
    190     0x0001,  // BLOCK_4X4
    191     0x0001,  // BLOCK_4X8
    192     0x0001,  // BLOCK_8X4
    193     0x0001,  // BLOCK_8X8
    194     0x0001,  // BLOCK_8X16,
    195     0x0001,  // BLOCK_16X8
    196     0x0001,  // BLOCK_16X16
    197     0x0001,  // BLOCK_16X32,
    198     0x0003,  // BLOCK_32X16,
    199     0x0003,  // BLOCK_32X32,
    200     0x0003,  // BLOCK_32X64,
    201     0x000f,  // BLOCK_64X32,
    202     0x000f,  // BLOCK_64X64
    203 };
    204 
    205 // 64 bit mask to shift and set for each uv prediction size
    206 static const uint16_t size_mask_uv[BLOCK_SIZES] = {
    207     0x0001,  // BLOCK_4X4
    208     0x0001,  // BLOCK_4X8
    209     0x0001,  // BLOCK_8X4
    210     0x0001,  // BLOCK_8X8
    211     0x0001,  // BLOCK_8X16,
    212     0x0001,  // BLOCK_16X8
    213     0x0001,  // BLOCK_16X16
    214     0x0011,  // BLOCK_16X32,
    215     0x0003,  // BLOCK_32X16,
    216     0x0033,  // BLOCK_32X32,
    217     0x3333,  // BLOCK_32X64,
    218     0x00ff,  // BLOCK_64X32,
    219     0xffff,  // BLOCK_64X64
    220 };
    221 static const uint16_t left_border_uv =  0x1111;
    222 static const uint16_t above_border_uv = 0x000f;
    223 
    224 
    225 static void lf_init_lut(loop_filter_info_n *lfi) {
    226   lfi->mode_lf_lut[DC_PRED] = 0;
    227   lfi->mode_lf_lut[D45_PRED] = 0;
    228   lfi->mode_lf_lut[D135_PRED] = 0;
    229   lfi->mode_lf_lut[D117_PRED] = 0;
    230   lfi->mode_lf_lut[D153_PRED] = 0;
    231   lfi->mode_lf_lut[D207_PRED] = 0;
    232   lfi->mode_lf_lut[D63_PRED] = 0;
    233   lfi->mode_lf_lut[V_PRED] = 0;
    234   lfi->mode_lf_lut[H_PRED] = 0;
    235   lfi->mode_lf_lut[TM_PRED] = 0;
    236   lfi->mode_lf_lut[ZEROMV]  = 0;
    237   lfi->mode_lf_lut[NEARESTMV] = 1;
    238   lfi->mode_lf_lut[NEARMV] = 1;
    239   lfi->mode_lf_lut[NEWMV] = 1;
    240 }
    241 
    242 static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) {
    243   int lvl;
    244 
    245   // For each possible value for the loop filter fill out limits
    246   for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) {
    247     // Set loop filter paramaeters that control sharpness.
    248     int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4));
    249 
    250     if (sharpness_lvl > 0) {
    251       if (block_inside_limit > (9 - sharpness_lvl))
    252         block_inside_limit = (9 - sharpness_lvl);
    253     }
    254 
    255     if (block_inside_limit < 1)
    256       block_inside_limit = 1;
    257 
    258     vpx_memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH);
    259     vpx_memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit),
    260                SIMD_WIDTH);
    261   }
    262 }
    263 
    264 void vp9_loop_filter_init(VP9_COMMON *cm) {
    265   loop_filter_info_n *lfi = &cm->lf_info;
    266   struct loopfilter *lf = &cm->lf;
    267   int lvl;
    268 
    269   // init limits for given sharpness
    270   update_sharpness(lfi, lf->sharpness_level);
    271   lf->last_sharpness_level = lf->sharpness_level;
    272 
    273   // init LUT for lvl  and hev thr picking
    274   lf_init_lut(lfi);
    275 
    276   // init hev threshold const vectors
    277   for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++)
    278     vpx_memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH);
    279 }
    280 
    281 void vp9_loop_filter_frame_init(VP9_COMMON *cm, int default_filt_lvl) {
    282   int seg_id;
    283   // n_shift is the a multiplier for lf_deltas
    284   // the multiplier is 1 for when filter_lvl is between 0 and 31;
    285   // 2 when filter_lvl is between 32 and 63
    286   const int n_shift = default_filt_lvl >> 5;
    287   loop_filter_info_n *const lfi = &cm->lf_info;
    288   struct loopfilter *const lf = &cm->lf;
    289   struct segmentation *const seg = &cm->seg;
    290 
    291   // update limits if sharpness has changed
    292   if (lf->last_sharpness_level != lf->sharpness_level) {
    293     update_sharpness(lfi, lf->sharpness_level);
    294     lf->last_sharpness_level = lf->sharpness_level;
    295   }
    296 
    297   for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) {
    298     int lvl_seg = default_filt_lvl, ref, mode, intra_lvl;
    299 
    300     // Set the baseline filter values for each segment
    301     if (vp9_segfeature_active(seg, seg_id, SEG_LVL_ALT_LF)) {
    302       const int data = vp9_get_segdata(seg, seg_id, SEG_LVL_ALT_LF);
    303       lvl_seg = seg->abs_delta == SEGMENT_ABSDATA
    304                   ? data
    305                   : clamp(default_filt_lvl + data, 0, MAX_LOOP_FILTER);
    306     }
    307 
    308     if (!lf->mode_ref_delta_enabled) {
    309       // we could get rid of this if we assume that deltas are set to
    310       // zero when not in use; encoder always uses deltas
    311       vpx_memset(lfi->lvl[seg_id], lvl_seg, sizeof(lfi->lvl[seg_id]));
    312       continue;
    313     }
    314 
    315     intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * (1 << n_shift);
    316     lfi->lvl[seg_id][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER);
    317 
    318     for (ref = LAST_FRAME; ref < MAX_REF_FRAMES; ++ref)
    319       for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
    320         const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * (1 << n_shift)
    321                                       + lf->mode_deltas[mode] * (1 << n_shift);
    322         lfi->lvl[seg_id][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER);
    323       }
    324   }
    325 }
    326 
    327 static uint8_t build_lfi(const loop_filter_info_n *lfi_n,
    328                      const MB_MODE_INFO *mbmi) {
    329   const int seg = mbmi->segment_id;
    330   const int ref = mbmi->ref_frame[0];
    331   const int mode = lfi_n->mode_lf_lut[mbmi->mode];
    332   const int filter_level = lfi_n->lvl[seg][ref][mode];
    333 
    334   return filter_level;
    335 }
    336 
    337 static void filter_selectively_vert(uint8_t *s, int pitch,
    338                                     unsigned int mask_16x16,
    339                                     unsigned int mask_8x8,
    340                                     unsigned int mask_4x4,
    341                                     unsigned int mask_4x4_int,
    342                                     const loop_filter_info_n *lfi_n,
    343                                     const uint8_t *lfl) {
    344   unsigned int mask;
    345 
    346   for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int;
    347        mask; mask >>= 1) {
    348     const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
    349 
    350     if (mask & 1) {
    351       if (mask_16x16 & 1) {
    352         vp9_mb_lpf_vertical_edge_w(s, pitch, lfi->mblim, lfi->lim,
    353                                    lfi->hev_thr);
    354         assert(!(mask_8x8 & 1));
    355         assert(!(mask_4x4 & 1));
    356         assert(!(mask_4x4_int & 1));
    357       } else if (mask_8x8 & 1) {
    358         vp9_mbloop_filter_vertical_edge(s, pitch, lfi->mblim, lfi->lim,
    359                                         lfi->hev_thr, 1);
    360         assert(!(mask_16x16 & 1));
    361         assert(!(mask_4x4 & 1));
    362       } else if (mask_4x4 & 1) {
    363         vp9_loop_filter_vertical_edge(s, pitch, lfi->mblim, lfi->lim,
    364                                       lfi->hev_thr, 1);
    365         assert(!(mask_16x16 & 1));
    366         assert(!(mask_8x8 & 1));
    367       }
    368     }
    369     if (mask_4x4_int & 1)
    370       vp9_loop_filter_vertical_edge(s + 4, pitch, lfi->mblim, lfi->lim,
    371                                     lfi->hev_thr, 1);
    372     s += 8;
    373     lfl += 1;
    374     mask_16x16 >>= 1;
    375     mask_8x8 >>= 1;
    376     mask_4x4 >>= 1;
    377     mask_4x4_int >>= 1;
    378   }
    379 }
    380 
    381 static void filter_selectively_horiz(uint8_t *s, int pitch,
    382                                      unsigned int mask_16x16,
    383                                      unsigned int mask_8x8,
    384                                      unsigned int mask_4x4,
    385                                      unsigned int mask_4x4_int,
    386                                      const loop_filter_info_n *lfi_n,
    387                                      const uint8_t *lfl) {
    388   unsigned int mask;
    389   int count;
    390 
    391   for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int;
    392        mask; mask >>= count) {
    393     const loop_filter_thresh *lfi = lfi_n->lfthr + *lfl;
    394 
    395     count = 1;
    396     if (mask & 1) {
    397       if (mask_16x16 & 1) {
    398         if ((mask_16x16 & 3) == 3) {
    399           vp9_mb_lpf_horizontal_edge_w(s, pitch, lfi->mblim, lfi->lim,
    400                                        lfi->hev_thr, 2);
    401           count = 2;
    402         } else {
    403           vp9_mb_lpf_horizontal_edge_w(s, pitch, lfi->mblim, lfi->lim,
    404                                        lfi->hev_thr, 1);
    405         }
    406         assert(!(mask_8x8 & 1));
    407         assert(!(mask_4x4 & 1));
    408         assert(!(mask_4x4_int & 1));
    409       } else if (mask_8x8 & 1) {
    410         if ((mask_8x8 & 3) == 3) {
    411           // Next block's thresholds
    412           const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1);
    413 
    414           // TODO(yunqingwang): Combine next 2 calls as 1 wide filtering.
    415           vp9_mbloop_filter_horizontal_edge(s, pitch, lfi->mblim, lfi->lim,
    416                                             lfi->hev_thr, 1);
    417           vp9_mbloop_filter_horizontal_edge(s + 8, pitch, lfin->mblim,
    418                                             lfin->lim, lfin->hev_thr, 1);
    419 
    420           if ((mask_4x4_int & 3) == 3) {
    421             // TODO(yunqingwang): Combine next 2 calls as 1 wide filtering.
    422             vp9_loop_filter_horizontal_edge(s + 4 * pitch, pitch, lfi->mblim,
    423                                             lfi->lim, lfi->hev_thr, 1);
    424             vp9_loop_filter_horizontal_edge(s + 8 + 4 * pitch, pitch,
    425                                             lfin->mblim, lfin->lim,
    426                                             lfin->hev_thr, 1);
    427           } else {
    428             if (mask_4x4_int & 1)
    429               vp9_loop_filter_horizontal_edge(s + 4 * pitch, pitch, lfi->mblim,
    430                                               lfi->lim, lfi->hev_thr, 1);
    431             else if (mask_4x4_int & 2)
    432               vp9_loop_filter_horizontal_edge(s + 8 + 4 * pitch, pitch,
    433                                               lfin->mblim, lfin->lim,
    434                                               lfin->hev_thr, 1);
    435           }
    436           count = 2;
    437         } else {
    438           vp9_mbloop_filter_horizontal_edge(s, pitch, lfi->mblim, lfi->lim,
    439                                             lfi->hev_thr, 1);
    440 
    441           if (mask_4x4_int & 1)
    442             vp9_loop_filter_horizontal_edge(s + 4 * pitch, pitch, lfi->mblim,
    443                                             lfi->lim, lfi->hev_thr, 1);
    444         }
    445         assert(!(mask_16x16 & 1));
    446         assert(!(mask_4x4 & 1));
    447       } else if (mask_4x4 & 1) {
    448         if ((mask_4x4 & 3) == 3) {
    449           // Next block's thresholds
    450           const loop_filter_thresh *lfin = lfi_n->lfthr + *(lfl + 1);
    451 
    452           // TODO(yunqingwang): Combine next 2 calls as 1 wide filtering.
    453           vp9_loop_filter_horizontal_edge(s, pitch, lfi->mblim, lfi->lim,
    454                                             lfi->hev_thr, 1);
    455           vp9_loop_filter_horizontal_edge(s + 8, pitch, lfin->mblim, lfin->lim,
    456                                             lfin->hev_thr, 1);
    457 
    458           if ((mask_4x4_int & 3) == 3) {
    459             // TODO(yunqingwang): Combine next 2 calls as 1 wide filtering.
    460             vp9_loop_filter_horizontal_edge(s + 4 * pitch, pitch, lfi->mblim,
    461                                             lfi->lim, lfi->hev_thr, 1);
    462             vp9_loop_filter_horizontal_edge(s + 8 + 4 * pitch, pitch,
    463                                             lfin->mblim, lfin->lim,
    464                                             lfin->hev_thr, 1);
    465           } else {
    466             if (mask_4x4_int & 1)
    467               vp9_loop_filter_horizontal_edge(s + 4 * pitch, pitch, lfi->mblim,
    468                                               lfi->lim, lfi->hev_thr, 1);
    469             else if (mask_4x4_int & 2)
    470               vp9_loop_filter_horizontal_edge(s + 8 + 4 * pitch, pitch,
    471                                               lfin->mblim, lfin->lim,
    472                                               lfin->hev_thr, 1);
    473           }
    474           count = 2;
    475         } else {
    476         vp9_loop_filter_horizontal_edge(s, pitch, lfi->mblim, lfi->lim,
    477                                         lfi->hev_thr, 1);
    478 
    479         if (mask_4x4_int & 1)
    480           vp9_loop_filter_horizontal_edge(s + 4 * pitch, pitch, lfi->mblim,
    481                                           lfi->lim, lfi->hev_thr, 1);
    482         }
    483         assert(!(mask_16x16 & 1));
    484         assert(!(mask_8x8 & 1));
    485       } else if (mask_4x4_int & 1) {
    486         vp9_loop_filter_horizontal_edge(s + 4 * pitch, pitch, lfi->mblim,
    487                                         lfi->lim, lfi->hev_thr, 1);
    488       }
    489     }
    490     s += 8 * count;
    491     lfl += count;
    492     mask_16x16 >>= count;
    493     mask_8x8 >>= count;
    494     mask_4x4 >>= count;
    495     mask_4x4_int >>= count;
    496   }
    497 }
    498 
    499 // This function ors into the current lfm structure, where to do loop
    500 // filters for the specific mi we are looking at.   It uses information
    501 // including the block_size_type (32x16, 32x32, etc),  the transform size,
    502 // whether there were any coefficients encoded, and the loop filter strength
    503 // block we are currently looking at. Shift is used to position the
    504 // 1's we produce.
    505 // TODO(JBB) Need another function for different resolution color..
    506 static void build_masks(const loop_filter_info_n *const lfi_n,
    507                         const MODE_INFO *mi, const int shift_y,
    508                         const int shift_uv,
    509                         LOOP_FILTER_MASK *lfm) {
    510   const BLOCK_SIZE block_size = mi->mbmi.sb_type;
    511   const TX_SIZE tx_size_y = mi->mbmi.tx_size;
    512   const TX_SIZE tx_size_uv = get_uv_tx_size(&mi->mbmi);
    513   const int skip = mi->mbmi.skip_coeff;
    514   const int seg = mi->mbmi.segment_id;
    515   const int ref = mi->mbmi.ref_frame[0];
    516   const int mode = lfi_n->mode_lf_lut[mi->mbmi.mode];
    517   const int filter_level = lfi_n->lvl[seg][ref][mode];
    518   uint64_t *left_y = &lfm->left_y[tx_size_y];
    519   uint64_t *above_y = &lfm->above_y[tx_size_y];
    520   uint64_t *int_4x4_y = &lfm->int_4x4_y;
    521   uint16_t *left_uv = &lfm->left_uv[tx_size_uv];
    522   uint16_t *above_uv = &lfm->above_uv[tx_size_uv];
    523   uint16_t *int_4x4_uv = &lfm->int_4x4_uv;
    524   int i;
    525   int w = num_8x8_blocks_wide_lookup[block_size];
    526   int h = num_8x8_blocks_high_lookup[block_size];
    527 
    528   // If filter level is 0 we don't loop filter.
    529   if (!filter_level) {
    530     return;
    531   } else {
    532     int index = shift_y;
    533     for (i = 0; i < h; i++) {
    534       vpx_memset(&lfm->lfl_y[index], filter_level, w);
    535       index += 8;
    536     }
    537   }
    538 
    539   // These set 1 in the current block size for the block size edges.
    540   // For instance if the block size is 32x16,   we'll set :
    541   //    above =   1111
    542   //              0000
    543   //    and
    544   //    left  =   1000
    545   //          =   1000
    546   // NOTE : In this example the low bit is left most ( 1000 ) is stored as
    547   //        1,  not 8...
    548   //
    549   // U and v set things on a 16 bit scale.
    550   //
    551   *above_y |= above_prediction_mask[block_size] << shift_y;
    552   *above_uv |= above_prediction_mask_uv[block_size] << shift_uv;
    553   *left_y |= left_prediction_mask[block_size] << shift_y;
    554   *left_uv |= left_prediction_mask_uv[block_size] << shift_uv;
    555 
    556   // If the block has no coefficients and is not intra we skip applying
    557   // the loop filter on block edges.
    558   if (skip && ref > INTRA_FRAME)
    559     return;
    560 
    561   // Here we are adding a mask for the transform size.  The transform
    562   // size mask is set to be correct for a 64x64 prediction block size. We
    563   // mask to match the size of the block we are working on and then shift it
    564   // into place..
    565   *above_y |= (size_mask[block_size] &
    566                above_64x64_txform_mask[tx_size_y]) << shift_y;
    567   *above_uv |= (size_mask_uv[block_size] &
    568                 above_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
    569 
    570   *left_y |= (size_mask[block_size] &
    571               left_64x64_txform_mask[tx_size_y]) << shift_y;
    572   *left_uv |= (size_mask_uv[block_size] &
    573                left_64x64_txform_mask_uv[tx_size_uv]) << shift_uv;
    574 
    575   // Here we are trying to determine what to do with the internal 4x4 block
    576   // boundaries.  These differ from the 4x4 boundaries on the outside edge of
    577   // an 8x8 in that the internal ones can be skipped and don't depend on
    578   // the prediction block size.
    579   if (tx_size_y == TX_4X4) {
    580     *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
    581   }
    582   if (tx_size_uv == TX_4X4) {
    583     *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv;
    584   }
    585 }
    586 
    587 // This function does the same thing as the one above with the exception that
    588 // it only affects the y masks.   It exists because for blocks < 16x16 in size,
    589 // we only update u and v masks on the first block.
    590 static void build_y_mask(const loop_filter_info_n *const lfi_n,
    591                          const MODE_INFO *mi, const int shift_y,
    592                          LOOP_FILTER_MASK *lfm) {
    593   const BLOCK_SIZE block_size = mi->mbmi.sb_type;
    594   const TX_SIZE tx_size_y = mi->mbmi.tx_size;
    595   const int skip = mi->mbmi.skip_coeff;
    596   const int seg = mi->mbmi.segment_id;
    597   const int ref = mi->mbmi.ref_frame[0];
    598   const int mode = lfi_n->mode_lf_lut[mi->mbmi.mode];
    599   const int filter_level = lfi_n->lvl[seg][ref][mode];
    600   uint64_t *left_y = &lfm->left_y[tx_size_y];
    601   uint64_t *above_y = &lfm->above_y[tx_size_y];
    602   uint64_t *int_4x4_y = &lfm->int_4x4_y;
    603   int i;
    604   int w = num_8x8_blocks_wide_lookup[block_size];
    605   int h = num_8x8_blocks_high_lookup[block_size];
    606 
    607   if (!filter_level) {
    608     return;
    609   } else {
    610     int index = shift_y;
    611     for (i = 0; i < h; i++) {
    612       vpx_memset(&lfm->lfl_y[index], filter_level, w);
    613       index += 8;
    614     }
    615   }
    616 
    617   *above_y |= above_prediction_mask[block_size] << shift_y;
    618   *left_y |= left_prediction_mask[block_size] << shift_y;
    619 
    620   if (skip && ref > INTRA_FRAME)
    621     return;
    622 
    623   *above_y |= (size_mask[block_size] &
    624                above_64x64_txform_mask[tx_size_y]) << shift_y;
    625 
    626   *left_y |= (size_mask[block_size] &
    627               left_64x64_txform_mask[tx_size_y]) << shift_y;
    628 
    629   if (tx_size_y == TX_4X4) {
    630     *int_4x4_y |= (size_mask[block_size] & 0xffffffffffffffff) << shift_y;
    631   }
    632 }
    633 
    634 // This function sets up the bit masks for the entire 64x64 region represented
    635 // by mi_row, mi_col.
    636 // TODO(JBB): This function only works for yv12.
    637 static void setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col,
    638                        MODE_INFO **mi_8x8, const int mode_info_stride,
    639                        LOOP_FILTER_MASK *lfm) {
    640   int idx_32, idx_16, idx_8;
    641   const loop_filter_info_n *const lfi_n = &cm->lf_info;
    642   MODE_INFO **mip = mi_8x8;
    643   MODE_INFO **mip2 = mi_8x8;
    644 
    645   // These are offsets to the next mi in the 64x64 block. It is what gets
    646   // added to the mi ptr as we go through each loop.  It helps us to avoids
    647   // setting up special row and column counters for each index.  The last step
    648   // brings us out back to the starting position.
    649   const int offset_32[] = {4, (mode_info_stride << 2) - 4, 4,
    650                            -(mode_info_stride << 2) - 4};
    651   const int offset_16[] = {2, (mode_info_stride << 1) - 2, 2,
    652                            -(mode_info_stride << 1) - 2};
    653   const int offset[] = {1, mode_info_stride - 1, 1, -mode_info_stride - 1};
    654 
    655   // Following variables represent shifts to position the current block
    656   // mask over the appropriate block.   A shift of 36 to the left will move
    657   // the bits for the final 32 by 32 block in the 64x64 up 4 rows and left
    658   // 4 rows to the appropriate spot.
    659   const int shift_32_y[] = {0, 4, 32, 36};
    660   const int shift_16_y[] = {0, 2, 16, 18};
    661   const int shift_8_y[] = {0, 1, 8, 9};
    662   const int shift_32_uv[] = {0, 2, 8, 10};
    663   const int shift_16_uv[] = {0, 1, 4, 5};
    664   int i;
    665   const int max_rows = (mi_row + MI_BLOCK_SIZE > cm->mi_rows ?
    666                         cm->mi_rows - mi_row : MI_BLOCK_SIZE);
    667   const int max_cols = (mi_col + MI_BLOCK_SIZE > cm->mi_cols ?
    668                         cm->mi_cols - mi_col : MI_BLOCK_SIZE);
    669 
    670   vp9_zero(*lfm);
    671 
    672   // TODO(jimbankoski): Try moving most of the following code into decode
    673   // loop and storing lfm in the mbmi structure so that we don't have to go
    674   // through the recursive loop structure multiple times.
    675   switch (mip[0]->mbmi.sb_type) {
    676     case BLOCK_64X64:
    677       build_masks(lfi_n, mip[0] , 0, 0, lfm);
    678       break;
    679     case BLOCK_64X32:
    680       build_masks(lfi_n, mip[0], 0, 0, lfm);
    681       mip2 = mip + mode_info_stride * 4;
    682       if (4 >= max_rows)
    683         break;
    684       build_masks(lfi_n, mip2[0], 32, 8, lfm);
    685       break;
    686     case BLOCK_32X64:
    687       build_masks(lfi_n, mip[0], 0, 0, lfm);
    688       mip2 = mip + 4;
    689       if (4 >= max_cols)
    690         break;
    691       build_masks(lfi_n, mip2[0], 4, 2, lfm);
    692       break;
    693     default:
    694       for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) {
    695         const int shift_y = shift_32_y[idx_32];
    696         const int shift_uv = shift_32_uv[idx_32];
    697         const int mi_32_col_offset = ((idx_32 & 1) << 2);
    698         const int mi_32_row_offset = ((idx_32 >> 1) << 2);
    699         if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows)
    700           continue;
    701         switch (mip[0]->mbmi.sb_type) {
    702           case BLOCK_32X32:
    703             build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
    704             break;
    705           case BLOCK_32X16:
    706             build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
    707             if (mi_32_row_offset + 2 >= max_rows)
    708               continue;
    709             mip2 = mip + mode_info_stride * 2;
    710             build_masks(lfi_n, mip2[0], shift_y + 16, shift_uv + 4, lfm);
    711             break;
    712           case BLOCK_16X32:
    713             build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
    714             if (mi_32_col_offset + 2 >= max_cols)
    715               continue;
    716             mip2 = mip + 2;
    717             build_masks(lfi_n, mip2[0], shift_y + 2, shift_uv + 1, lfm);
    718             break;
    719           default:
    720             for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) {
    721               const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16];
    722               const int shift_uv = shift_32_uv[idx_32] + shift_16_uv[idx_16];
    723               const int mi_16_col_offset = mi_32_col_offset +
    724                   ((idx_16 & 1) << 1);
    725               const int mi_16_row_offset = mi_32_row_offset +
    726                   ((idx_16 >> 1) << 1);
    727 
    728               if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows)
    729                 continue;
    730 
    731               switch (mip[0]->mbmi.sb_type) {
    732                 case BLOCK_16X16:
    733                   build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
    734                   break;
    735                 case BLOCK_16X8:
    736                   build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
    737                   if (mi_16_row_offset + 1 >= max_rows)
    738                     continue;
    739                   mip2 = mip + mode_info_stride;
    740                   build_y_mask(lfi_n, mip2[0], shift_y+8, lfm);
    741                   break;
    742                 case BLOCK_8X16:
    743                   build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
    744                   if (mi_16_col_offset +1 >= max_cols)
    745                     continue;
    746                   mip2 = mip + 1;
    747                   build_y_mask(lfi_n, mip2[0], shift_y+1, lfm);
    748                   break;
    749                 default: {
    750                   const int shift_y = shift_32_y[idx_32] +
    751                                       shift_16_y[idx_16] +
    752                                       shift_8_y[0];
    753                   build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm);
    754                   mip += offset[0];
    755                   for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) {
    756                     const int shift_y = shift_32_y[idx_32] +
    757                                         shift_16_y[idx_16] +
    758                                         shift_8_y[idx_8];
    759                     const int mi_8_col_offset = mi_16_col_offset +
    760                         ((idx_8 & 1));
    761                     const int mi_8_row_offset = mi_16_row_offset +
    762                         ((idx_8 >> 1));
    763 
    764                     if (mi_8_col_offset >= max_cols ||
    765                         mi_8_row_offset >= max_rows)
    766                       continue;
    767                     build_y_mask(lfi_n, mip[0], shift_y, lfm);
    768                   }
    769                   break;
    770                 }
    771               }
    772             }
    773             break;
    774         }
    775       }
    776       break;
    777   }
    778   // The largest loopfilter we have is 16x16 so we use the 16x16 mask
    779   // for 32x32 transforms also also.
    780   lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32];
    781   lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32];
    782   lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32];
    783   lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32];
    784 
    785   // We do at least 8 tap filter on every 32x32 even if the transform size
    786   // is 4x4.  So if the 4x4 is set on a border pixel add it to the 8x8 and
    787   // remove it from the 4x4.
    788   lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border;
    789   lfm->left_y[TX_4X4] &= ~left_border;
    790   lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border;
    791   lfm->above_y[TX_4X4] &= ~above_border;
    792   lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv;
    793   lfm->left_uv[TX_4X4] &= ~left_border_uv;
    794   lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv;
    795   lfm->above_uv[TX_4X4] &= ~above_border_uv;
    796 
    797   // We do some special edge handling.
    798   if (mi_row + MI_BLOCK_SIZE > cm->mi_rows) {
    799     const uint64_t rows = cm->mi_rows - mi_row;
    800 
    801     // Each pixel inside the border gets a 1,
    802     const uint64_t mask_y = (((uint64_t) 1 << (rows << 3)) - 1);
    803     const uint16_t mask_uv = (((uint16_t) 1 << (((rows + 1) >> 1) << 2)) - 1);
    804 
    805     // Remove values completely outside our border.
    806     for (i = 0; i < TX_32X32; i++) {
    807       lfm->left_y[i] &= mask_y;
    808       lfm->above_y[i] &= mask_y;
    809       lfm->left_uv[i] &= mask_uv;
    810       lfm->above_uv[i] &= mask_uv;
    811     }
    812     lfm->int_4x4_y &= mask_y;
    813     lfm->int_4x4_uv &= mask_uv;
    814 
    815     // We don't apply a wide loop filter on the last uv block row.  If set
    816     // apply the shorter one instead.
    817     if (rows == 1) {
    818       lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16];
    819       lfm->above_uv[TX_16X16] = 0;
    820     }
    821     if (rows == 5) {
    822       lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00;
    823       lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00);
    824     }
    825   }
    826 
    827   if (mi_col + MI_BLOCK_SIZE > cm->mi_cols) {
    828     const uint64_t columns = cm->mi_cols - mi_col;
    829 
    830     // Each pixel inside the border gets a 1, the multiply copies the border
    831     // to where we need it.
    832     const uint64_t mask_y  = (((1 << columns) - 1)) * 0x0101010101010101;
    833     const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111;
    834 
    835     // Internal edges are not applied on the last column of the image so
    836     // we mask 1 more for the internal edges
    837     const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111;
    838 
    839     // Remove the bits outside the image edge.
    840     for (i = 0; i < TX_32X32; i++) {
    841       lfm->left_y[i] &= mask_y;
    842       lfm->above_y[i] &= mask_y;
    843       lfm->left_uv[i] &= mask_uv;
    844       lfm->above_uv[i] &= mask_uv;
    845     }
    846     lfm->int_4x4_y &= mask_y;
    847     lfm->int_4x4_uv &= mask_uv_int;
    848 
    849     // We don't apply a wide loop filter on the last uv column.  If set
    850     // apply the shorter one instead.
    851     if (columns == 1) {
    852       lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16];
    853       lfm->left_uv[TX_16X16] = 0;
    854     }
    855     if (columns == 5) {
    856       lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc);
    857       lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc);
    858     }
    859   }
    860   // We don't a loop filter on the first column in the image.  Mask that out.
    861   if (mi_col == 0) {
    862     for (i = 0; i < TX_32X32; i++) {
    863       lfm->left_y[i] &= 0xfefefefefefefefe;
    864       lfm->left_uv[i] &= 0xeeee;
    865     }
    866   }
    867 }
    868 
    869 #if CONFIG_NON420
    870 static void filter_block_plane_non420(VP9_COMMON *cm,
    871                                       struct macroblockd_plane *plane,
    872                                       MODE_INFO **mi_8x8,
    873                                       int mi_row, int mi_col) {
    874   const int ss_x = plane->subsampling_x;
    875   const int ss_y = plane->subsampling_y;
    876   const int row_step = 1 << ss_x;
    877   const int col_step = 1 << ss_y;
    878   const int row_step_stride = cm->mode_info_stride * row_step;
    879   struct buf_2d *const dst = &plane->dst;
    880   uint8_t* const dst0 = dst->buf;
    881   unsigned int mask_16x16[MI_BLOCK_SIZE] = {0};
    882   unsigned int mask_8x8[MI_BLOCK_SIZE] = {0};
    883   unsigned int mask_4x4[MI_BLOCK_SIZE] = {0};
    884   unsigned int mask_4x4_int[MI_BLOCK_SIZE] = {0};
    885   uint8_t lfl[MI_BLOCK_SIZE * MI_BLOCK_SIZE];
    886   int r, c;
    887 
    888   for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
    889     unsigned int mask_16x16_c = 0;
    890     unsigned int mask_8x8_c = 0;
    891     unsigned int mask_4x4_c = 0;
    892     unsigned int border_mask;
    893 
    894     // Determine the vertical edges that need filtering
    895     for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) {
    896       const MODE_INFO *mi = mi_8x8[c];
    897       const int skip_this = mi[0].mbmi.skip_coeff
    898                             && is_inter_block(&mi[0].mbmi);
    899       // left edge of current unit is block/partition edge -> no skip
    900       const int block_edge_left = b_width_log2(mi[0].mbmi.sb_type) ?
    901           !(c & ((1 << (b_width_log2(mi[0].mbmi.sb_type)-1)) - 1)) : 1;
    902       const int skip_this_c = skip_this && !block_edge_left;
    903       // top edge of current unit is block/partition edge -> no skip
    904       const int block_edge_above = b_height_log2(mi[0].mbmi.sb_type) ?
    905           !(r & ((1 << (b_height_log2(mi[0].mbmi.sb_type)-1)) - 1)) : 1;
    906       const int skip_this_r = skip_this && !block_edge_above;
    907       const TX_SIZE tx_size = (plane->plane_type == PLANE_TYPE_UV)
    908                             ? get_uv_tx_size(&mi[0].mbmi)
    909                             : mi[0].mbmi.tx_size;
    910       const int skip_border_4x4_c = ss_x && mi_col + c == cm->mi_cols - 1;
    911       const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
    912 
    913       // Filter level can vary per MI
    914       if (!(lfl[(r << 3) + (c >> ss_x)] =
    915           build_lfi(&cm->lf_info, &mi[0].mbmi)))
    916         continue;
    917 
    918       // Build masks based on the transform size of each block
    919       if (tx_size == TX_32X32) {
    920         if (!skip_this_c && ((c >> ss_x) & 3) == 0) {
    921           if (!skip_border_4x4_c)
    922             mask_16x16_c |= 1 << (c >> ss_x);
    923           else
    924             mask_8x8_c |= 1 << (c >> ss_x);
    925         }
    926         if (!skip_this_r && ((r >> ss_y) & 3) == 0) {
    927           if (!skip_border_4x4_r)
    928             mask_16x16[r] |= 1 << (c >> ss_x);
    929           else
    930             mask_8x8[r] |= 1 << (c >> ss_x);
    931         }
    932       } else if (tx_size == TX_16X16) {
    933         if (!skip_this_c && ((c >> ss_x) & 1) == 0) {
    934           if (!skip_border_4x4_c)
    935             mask_16x16_c |= 1 << (c >> ss_x);
    936           else
    937             mask_8x8_c |= 1 << (c >> ss_x);
    938         }
    939         if (!skip_this_r && ((r >> ss_y) & 1) == 0) {
    940           if (!skip_border_4x4_r)
    941             mask_16x16[r] |= 1 << (c >> ss_x);
    942           else
    943             mask_8x8[r] |= 1 << (c >> ss_x);
    944         }
    945       } else {
    946         // force 8x8 filtering on 32x32 boundaries
    947         if (!skip_this_c) {
    948           if (tx_size == TX_8X8 || ((c >> ss_x) & 3) == 0)
    949             mask_8x8_c |= 1 << (c >> ss_x);
    950           else
    951             mask_4x4_c |= 1 << (c >> ss_x);
    952         }
    953 
    954         if (!skip_this_r) {
    955           if (tx_size == TX_8X8 || ((r >> ss_y) & 3) == 0)
    956             mask_8x8[r] |= 1 << (c >> ss_x);
    957           else
    958             mask_4x4[r] |= 1 << (c >> ss_x);
    959         }
    960 
    961         if (!skip_this && tx_size < TX_8X8 && !skip_border_4x4_c)
    962           mask_4x4_int[r] |= 1 << (c >> ss_x);
    963       }
    964     }
    965 
    966     // Disable filtering on the leftmost column
    967     border_mask = ~(mi_col == 0);
    968     filter_selectively_vert(dst->buf, dst->stride,
    969                             mask_16x16_c & border_mask,
    970                             mask_8x8_c & border_mask,
    971                             mask_4x4_c & border_mask,
    972                             mask_4x4_int[r],
    973                             &cm->lf_info, &lfl[r << 3]);
    974     dst->buf += 8 * dst->stride;
    975     mi_8x8 += row_step_stride;
    976   }
    977 
    978   // Now do horizontal pass
    979   dst->buf = dst0;
    980   for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) {
    981     const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1;
    982     const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r];
    983 
    984     unsigned int mask_16x16_r;
    985     unsigned int mask_8x8_r;
    986     unsigned int mask_4x4_r;
    987 
    988     if (mi_row + r == 0) {
    989       mask_16x16_r = 0;
    990       mask_8x8_r = 0;
    991       mask_4x4_r = 0;
    992     } else {
    993       mask_16x16_r = mask_16x16[r];
    994       mask_8x8_r = mask_8x8[r];
    995       mask_4x4_r = mask_4x4[r];
    996     }
    997 
    998     filter_selectively_horiz(dst->buf, dst->stride,
    999                              mask_16x16_r,
   1000                              mask_8x8_r,
   1001                              mask_4x4_r,
   1002                              mask_4x4_int_r,
   1003                              &cm->lf_info, &lfl[r << 3]);
   1004     dst->buf += 8 * dst->stride;
   1005   }
   1006 }
   1007 #endif
   1008 
   1009 static void filter_block_plane(VP9_COMMON *const cm,
   1010                                struct macroblockd_plane *const plane,
   1011                                int mi_row,
   1012                                LOOP_FILTER_MASK *lfm) {
   1013   struct buf_2d *const dst = &plane->dst;
   1014   uint8_t* const dst0 = dst->buf;
   1015   unsigned int mask_4x4_int_row[MI_BLOCK_SIZE] = {0};
   1016   int r, c;
   1017 
   1018   if (!plane->plane_type) {
   1019     uint64_t mask_16x16 = lfm->left_y[TX_16X16];
   1020     uint64_t mask_8x8 = lfm->left_y[TX_8X8];
   1021     uint64_t mask_4x4 = lfm->left_y[TX_4X4];
   1022     uint64_t mask_4x4_int = lfm->int_4x4_y;
   1023 
   1024     // Vertical pass
   1025     for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r++) {
   1026       mask_4x4_int_row[r] = mask_4x4_int & 0xff;
   1027 
   1028       // Disable filtering on the leftmost column
   1029       filter_selectively_vert(dst->buf, dst->stride,
   1030                               mask_16x16 & 0xff,
   1031                               mask_8x8 & 0xff,
   1032                               mask_4x4 & 0xff,
   1033                               mask_4x4_int_row[r],
   1034                               &cm->lf_info, &lfm->lfl_y[r << 3]);
   1035 
   1036       dst->buf += 8 * dst->stride;
   1037       mask_16x16 >>= 8;
   1038       mask_8x8 >>= 8;
   1039       mask_4x4 >>= 8;
   1040       mask_4x4_int >>= 8;
   1041     }
   1042 
   1043     // Horizontal pass
   1044     dst->buf = dst0;
   1045     mask_16x16 = lfm->above_y[TX_16X16];
   1046     mask_8x8 = lfm->above_y[TX_8X8];
   1047     mask_4x4 = lfm->above_y[TX_4X4];
   1048 
   1049     for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r++) {
   1050       unsigned int mask_16x16_r;
   1051       unsigned int mask_8x8_r;
   1052       unsigned int mask_4x4_r;
   1053 
   1054       if (mi_row + r == 0) {
   1055         mask_16x16_r = 0;
   1056         mask_8x8_r = 0;
   1057         mask_4x4_r = 0;
   1058       } else {
   1059         mask_16x16_r = mask_16x16 & 0xff;
   1060         mask_8x8_r = mask_8x8 & 0xff;
   1061         mask_4x4_r = mask_4x4 & 0xff;
   1062       }
   1063 
   1064       filter_selectively_horiz(dst->buf, dst->stride,
   1065                                mask_16x16_r,
   1066                                mask_8x8_r,
   1067                                mask_4x4_r,
   1068                                mask_4x4_int_row[r],
   1069                                &cm->lf_info, &lfm->lfl_y[r << 3]);
   1070 
   1071       dst->buf += 8 * dst->stride;
   1072       mask_16x16 >>= 8;
   1073       mask_8x8 >>= 8;
   1074       mask_4x4 >>= 8;
   1075     }
   1076   } else {
   1077     uint16_t mask_16x16 = lfm->left_uv[TX_16X16];
   1078     uint16_t mask_8x8 = lfm->left_uv[TX_8X8];
   1079     uint16_t mask_4x4 = lfm->left_uv[TX_4X4];
   1080     uint16_t mask_4x4_int = lfm->int_4x4_uv;
   1081 
   1082     // Vertical pass
   1083     for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 2) {
   1084       if (plane->plane_type == 1) {
   1085         for (c = 0; c < (MI_BLOCK_SIZE >> 1); c++)
   1086           lfm->lfl_uv[(r << 1) + c] = lfm->lfl_y[(r << 3) + (c << 1)];
   1087       }
   1088 
   1089       mask_4x4_int_row[r] = mask_4x4_int & 0xf;
   1090       // Disable filtering on the leftmost column
   1091       filter_selectively_vert(dst->buf, dst->stride,
   1092                               mask_16x16 & 0xf,
   1093                               mask_8x8 & 0xf,
   1094                               mask_4x4 & 0xf,
   1095                               mask_4x4_int_row[r],
   1096                               &cm->lf_info, &lfm->lfl_uv[r << 1]);
   1097 
   1098       dst->buf += 8 * dst->stride;
   1099       mask_16x16 >>= 4;
   1100       mask_8x8 >>= 4;
   1101       mask_4x4 >>= 4;
   1102       mask_4x4_int >>= 4;
   1103     }
   1104 
   1105     // Horizontal pass
   1106     dst->buf = dst0;
   1107     mask_16x16 = lfm->above_uv[TX_16X16];
   1108     mask_8x8 = lfm->above_uv[TX_8X8];
   1109     mask_4x4 = lfm->above_uv[TX_4X4];
   1110 
   1111     for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 2) {
   1112       const int skip_border_4x4_r = mi_row + r == cm->mi_rows - 1;
   1113       const unsigned int mask_4x4_int_r = skip_border_4x4_r ?
   1114           0 : (mask_4x4_int_row[r]);
   1115       unsigned int mask_16x16_r;
   1116       unsigned int mask_8x8_r;
   1117       unsigned int mask_4x4_r;
   1118 
   1119       if (mi_row + r == 0) {
   1120         mask_16x16_r = 0;
   1121         mask_8x8_r = 0;
   1122         mask_4x4_r = 0;
   1123       } else {
   1124         mask_16x16_r = mask_16x16 & 0xf;
   1125         mask_8x8_r = mask_8x8 & 0xf;
   1126         mask_4x4_r = mask_4x4 & 0xf;
   1127       }
   1128 
   1129       filter_selectively_horiz(dst->buf, dst->stride,
   1130                                mask_16x16_r,
   1131                                mask_8x8_r,
   1132                                mask_4x4_r,
   1133                                mask_4x4_int_r,
   1134                                &cm->lf_info, &lfm->lfl_uv[r << 1]);
   1135 
   1136       dst->buf += 8 * dst->stride;
   1137       mask_16x16 >>= 4;
   1138       mask_8x8 >>= 4;
   1139       mask_4x4 >>= 4;
   1140     }
   1141   }
   1142 }
   1143 
   1144 void vp9_loop_filter_rows(const YV12_BUFFER_CONFIG *frame_buffer,
   1145                           VP9_COMMON *cm, MACROBLOCKD *xd,
   1146                           int start, int stop, int y_only) {
   1147   const int num_planes = y_only ? 1 : MAX_MB_PLANE;
   1148   int mi_row, mi_col;
   1149   LOOP_FILTER_MASK lfm;
   1150 #if CONFIG_NON420
   1151   int use_420 = y_only || (xd->plane[1].subsampling_y == 1 &&
   1152       xd->plane[1].subsampling_x == 1);
   1153 #endif
   1154 
   1155   for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) {
   1156     MODE_INFO **mi_8x8 = cm->mi_grid_visible + mi_row * cm->mode_info_stride;
   1157 
   1158     for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) {
   1159       int plane;
   1160 
   1161       setup_dst_planes(xd, frame_buffer, mi_row, mi_col);
   1162 
   1163       // TODO(JBB): Make setup_mask work for non 420.
   1164 #if CONFIG_NON420
   1165       if (use_420)
   1166 #endif
   1167         setup_mask(cm, mi_row, mi_col, mi_8x8 + mi_col, cm->mode_info_stride,
   1168                    &lfm);
   1169 
   1170       for (plane = 0; plane < num_planes; ++plane) {
   1171 #if CONFIG_NON420
   1172         if (use_420)
   1173 #endif
   1174           filter_block_plane(cm, &xd->plane[plane], mi_row, &lfm);
   1175 #if CONFIG_NON420
   1176         else
   1177           filter_block_plane_non420(cm, &xd->plane[plane], mi_8x8 + mi_col,
   1178                                     mi_row, mi_col);
   1179 #endif
   1180       }
   1181     }
   1182   }
   1183 }
   1184 
   1185 void vp9_loop_filter_frame(VP9_COMMON *cm, MACROBLOCKD *xd,
   1186                            int frame_filter_level,
   1187                            int y_only, int partial) {
   1188   int start_mi_row, end_mi_row, mi_rows_to_filter;
   1189   if (!frame_filter_level) return;
   1190   start_mi_row = 0;
   1191   mi_rows_to_filter = cm->mi_rows;
   1192   if (partial && cm->mi_rows > 8) {
   1193     start_mi_row = cm->mi_rows >> 1;
   1194     start_mi_row &= 0xfffffff8;
   1195     mi_rows_to_filter = MAX(cm->mi_rows / 8, 8);
   1196   }
   1197   end_mi_row = start_mi_row + mi_rows_to_filter;
   1198   vp9_loop_filter_frame_init(cm, frame_filter_level);
   1199   vp9_loop_filter_rows(cm->frame_to_show, cm, xd,
   1200                        start_mi_row, end_mi_row,
   1201                        y_only);
   1202 }
   1203 
   1204 int vp9_loop_filter_worker(void *arg1, void *arg2) {
   1205   LFWorkerData *const lf_data = (LFWorkerData*)arg1;
   1206   (void)arg2;
   1207   vp9_loop_filter_rows(lf_data->frame_buffer, lf_data->cm, &lf_data->xd,
   1208                        lf_data->start, lf_data->stop, lf_data->y_only);
   1209   return 1;
   1210 }
   1211