/external/eigen/test/eigen2/ |
eigen2_svd.cpp | 11 #include <Eigen/SVD> 13 template<typename MatrixType> void svd(const MatrixType& m) function 16 SVD.h 33 SVD<MatrixType> svd(a); 36 sigma.block(0,0,cols,cols) = svd.singularValues().asDiagonal(); 37 matU.block(0,0,rows,cols) = svd.matrixU(); 38 VERIFY_IS_APPROX(a, matU * sigma * svd.matrixV().transpose()); 49 SVD<MatrixType> svd(a) [all...] |
eigen2_geometry.cpp | 13 #include <Eigen/SVD>
|
eigen2_geometry_with_eigen2_prefix.cpp | 15 #include <Eigen/SVD>
|
/external/eigen/test/ |
upperbidiagonalization.cpp | 11 #include <Eigen/SVD>
|
geo_eulerangles.cpp | 13 #include <Eigen/SVD>
|
jacobi.cpp | 12 #include <Eigen/SVD>
|
geo_orthomethods.cpp | 13 #include <Eigen/SVD>
|
umeyama.cpp | 16 #include <Eigen/SVD> // required for SVD
|
nomalloc.cpp | 25 #include <Eigen/SVD> 159 // SVD module
|
geo_quaternion.cpp | 14 #include <Eigen/SVD>
|
jacobisvd.cpp | 15 #include <Eigen/SVD> 18 void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd) 37 sigma.diagonal() = svd.singularValues().template cast<Scalar>(); 38 MatrixUType u = svd.matrixU(); 39 MatrixVType v = svd.matrixV(); 56 JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions); 58 VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues()); 60 VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU()); 62 VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize)); 64 VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV()) 155 JacobiSVD<MatrixType> svd; local 219 JacobiSVD<MatrixType> svd; local 253 JacobiSVD<Matrix2d> svd; local 264 JacobiSVD<MatrixXf> svd; local [all...] |
geo_transformations.cpp | 13 #include <Eigen/SVD>
|
/external/eigen/Eigen/src/Eigen2Support/ |
SVD.h | 18 * \class SVD 20 * \brief Standard SVD decomposition of a matrix and associated features 22 * \param MatrixType the type of the matrix of which we are computing the SVD decomposition 24 * This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N 28 * \sa MatrixBase::SVD() 30 template<typename MatrixType> class SVD 51 SVD() {} // a user who relied on compiler-generated default compiler reported problems with MSVC in 2.0.7 53 SVD(const MatrixType& matrix) 69 SVD& sort(); 89 /** Computes / recomputes the SVD decomposition A = U S V^* of \a matri [all...] |
/external/eigen/Eigen/src/SVD/ |
JacobiSVD.h | 22 /*** QR preconditioners (R-SVD) 24 *** Their role is to reduce the problem of computing the SVD to the case of a square matrix. 25 *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for 77 void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) 79 if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) 81 m_qr = FullPivHouseholderQR<MatrixType>(svd.rows(), svd.cols()); 83 if (svd.m_computeFullU) m_workspace.resize(svd.rows()) [all...] |
/external/eigen/Eigen/src/Core/util/ |
ForwardDeclarations.h | 290 template<typename MatrixType> class SVD;
|
/external/eigen/Eigen/src/Core/ |
MatrixBase.h | 380 /////////// SVD module /////////// 385 SVD<PlainObject> svd() const;
|