HomeSort by relevance Sort by last modified time
    Searched refs:SVD (Results 1 - 16 of 16) sorted by null

  /external/eigen/test/eigen2/
eigen2_svd.cpp 11 #include <Eigen/SVD>
13 template<typename MatrixType> void svd(const MatrixType& m) function
16 SVD.h
33 SVD<MatrixType> svd(a);
36 sigma.block(0,0,cols,cols) = svd.singularValues().asDiagonal();
37 matU.block(0,0,rows,cols) = svd.matrixU();
38 VERIFY_IS_APPROX(a, matU * sigma * svd.matrixV().transpose());
49 SVD<MatrixType> svd(a)
    [all...]
eigen2_geometry.cpp 13 #include <Eigen/SVD>
eigen2_geometry_with_eigen2_prefix.cpp 15 #include <Eigen/SVD>
  /external/eigen/test/
upperbidiagonalization.cpp 11 #include <Eigen/SVD>
geo_eulerangles.cpp 13 #include <Eigen/SVD>
jacobi.cpp 12 #include <Eigen/SVD>
geo_orthomethods.cpp 13 #include <Eigen/SVD>
umeyama.cpp 16 #include <Eigen/SVD> // required for SVD
nomalloc.cpp 25 #include <Eigen/SVD>
159 // SVD module
geo_quaternion.cpp 14 #include <Eigen/SVD>
jacobisvd.cpp 15 #include <Eigen/SVD>
18 void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd)
37 sigma.diagonal() = svd.singularValues().template cast<Scalar>();
38 MatrixUType u = svd.matrixU();
39 MatrixVType v = svd.matrixV();
56 JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);
58 VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
60 VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
62 VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
64 VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV())
155 JacobiSVD<MatrixType> svd; local
219 JacobiSVD<MatrixType> svd; local
253 JacobiSVD<Matrix2d> svd; local
264 JacobiSVD<MatrixXf> svd; local
    [all...]
geo_transformations.cpp 13 #include <Eigen/SVD>
  /external/eigen/Eigen/src/Eigen2Support/
SVD.h 18 * \class SVD
20 * \brief Standard SVD decomposition of a matrix and associated features
22 * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
24 * This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N
28 * \sa MatrixBase::SVD()
30 template<typename MatrixType> class SVD
51 SVD() {} // a user who relied on compiler-generated default compiler reported problems with MSVC in 2.0.7
53 SVD(const MatrixType& matrix)
69 SVD& sort();
89 /** Computes / recomputes the SVD decomposition A = U S V^* of \a matri
    [all...]
  /external/eigen/Eigen/src/SVD/
JacobiSVD.h 22 /*** QR preconditioners (R-SVD)
24 *** Their role is to reduce the problem of computing the SVD to the case of a square matrix.
25 *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for
77 void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd)
79 if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols())
81 m_qr = FullPivHouseholderQR<MatrixType>(svd.rows(), svd.cols());
83 if (svd.m_computeFullU) m_workspace.resize(svd.rows())
    [all...]
  /external/eigen/Eigen/src/Core/util/
ForwardDeclarations.h 290 template<typename MatrixType> class SVD;
  /external/eigen/Eigen/src/Core/
MatrixBase.h 380 /////////// SVD module ///////////
385 SVD<PlainObject> svd() const;

Completed in 220 milliseconds