HomeSort by relevance Sort by last modified time
    Searched refs:SelfAdjoint (Results 1 - 12 of 12) sorted by null

  /external/eigen/Eigen/src/Core/
SelfAdjointView.h 19 * \brief Expression of a selfadjoint matrix from a triangular part of a dense matrix
40 Mode = UpLo | SelfAdjoint,
124 /** Perform a symmetric rank 2 update of the selfadjoint matrix \c *this:
137 /** Perform a symmetric rank K update of the selfadjoint matrix \c *this:
200 // selfadjoint to dense matrix
205 struct triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount, ClearOpposite>
214 triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Upper), UnrollCount-1, ClearOpposite>::run(dst, src);
224 struct triangular_assignment_selector<Derived1, Derived2, SelfAdjoint|Upper, 0, ClearOpposite>
230 struct triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount, ClearOpposite>
239 triangular_assignment_selector<Derived1, Derived2, (SelfAdjoint|Lower), UnrollCount-1, ClearOpposite>::run(dst, src)
    [all...]
BandMatrix.h 93 ReturnOpposite = (Options&SelfAdjoint) && (((Index)>0 && Supers==0) || ((Index)<0 && Subs==0)),
169 * \param _Options A combination of either \b #RowMajor or \b #ColMajor, and of \b #SelfAdjoint
171 * column-major. The latter controls whether the matrix represents a selfadjoint
307 * \param _Options Can be 0 or \b SelfAdjoint
312 class TridiagonalMatrix : public BandMatrix<Scalar,Size,Size,Options&SelfAdjoint?0:1,1,Options|RowMajor>
314 typedef BandMatrix<Scalar,Size,Size,Options&SelfAdjoint?0:1,1,Options|RowMajor> Base;
317 TridiagonalMatrix(Index size = Size) : Base(size,size,Options&SelfAdjoint?0:1,1) {}
TriangularMatrix.h 100 const int mode = int(Mode) & ~SelfAdjoint;
667 /** Assigns a triangular or selfadjoint matrix to a dense matrix.
683 /** Assigns a triangular or selfadjoint matrix to a dense matrix.
714 // implementation of part<>(), including the SelfAdjoint case.
724 struct eigen2_part_return_type<MatrixType, SelfAdjoint>
  /external/eigen/Eigen/src/Eigen2Support/
TriangularSolver.h 16 const unsigned int SelfAdjointBit = SelfAdjoint;
  /external/eigen/test/eigen2/
eigen2_triangular.cpp 112 void selfadjoint() function
119 m1.part<SelfAdjoint>() = m;
126 m2.part<SelfAdjoint>() = m.part<UpperTriangular>();
133 m3.part<SelfAdjoint>() = m.part<LowerTriangular>();
141 Matrix2i::Map(array).part<SelfAdjoint>() = Matrix2i::Random().part<LowerTriangular>();
148 CALL_SUBTEST_8( selfadjoint() );
eigen2_sparse_product.cpp 99 VERIFY_IS_APPROX(x=mUp.template marked<UpperTriangular|SelfAdjoint>()*b, refX=refS*b);
100 VERIFY_IS_APPROX(x=mLo.template marked<LowerTriangular|SelfAdjoint>()*b, refX=refS*b);
101 VERIFY_IS_APPROX(x=mS.template marked<SelfAdjoint>()*b, refX=refS*b);
eigen2_sparse_solvers.cpp 84 typedef SparseMatrix<Scalar,LowerTriangular|SelfAdjoint> SparseSelfAdjointMatrix;
128 typedef SparseMatrix<Scalar,UpperTriangular|SelfAdjoint> SparseSelfAdjointMatrix;
  /external/eigen/Eigen/src/Core/util/
Constants.h 178 SelfAdjoint=0x10,
179 /** Used to support symmetric, non-selfadjoint, complex matrices. */
  /external/eigen/Eigen/src/Core/products/
SelfadjointMatrixMatrix.h 17 // pack a selfadjoint block diagonal for use with the gebp_kernel
194 /* Optimized selfadjoint matrix * matrix (_SYMM) product built on top of
306 // matrix * selfadjoint product
381 LhsIsSelfAdjoint = (LhsMode&SelfAdjoint)==SelfAdjoint,
383 RhsIsSelfAdjoint = (RhsMode&SelfAdjoint)==SelfAdjoint
  /external/eigen/unsupported/Eigen/src/SparseExtra/
MarketIO.h 73 else if (sym == SelfAdjoint) header += " Hermitian";
127 else if (substr[4].compare("Hermitian") == 0) sym = SelfAdjoint;
  /external/eigen/bench/
sparse_cholesky.cpp 42 typedef SparseMatrix<Scalar,SelfAdjoint|LowerTriangular> EigenSparseSelfAdjointMatrix;
  /external/eigen/Eigen/src/SuperLUSupport/
SuperLUSupport.h 199 eigen_assert(((MatrixType::Flags & SelfAdjoint)==0) && "SelfAdjoint matrix shape not supported by SuperLU");
258 eigen_assert(((MatrixType::Flags & SelfAdjoint)==0) && "SelfAdjoint matrix shape not supported by SuperLU");

Completed in 230 milliseconds