/external/eigen/doc/snippets/ |
Cwise_abs2.cpp | 2 cout << v.abs2() << endl;
|
/external/eigen/unsupported/Eigen/src/NonLinearOptimization/ |
dogleg.h | 92 temp = temp - delta / qnorm * abs2(sgnorm / delta) + sqrt(abs2(temp - delta / qnorm) + (1.-abs2(delta / qnorm)) * (1.-abs2(sgnorm / delta))); 93 alpha = delta / qnorm * (1. - abs2(sgnorm / delta)) / temp;
|
HybridNonLinearSolver.h | 255 actred = 1. - internal::abs2(fnorm1 / fnorm); 262 prered = 1. - internal::abs2(temp / fnorm); 495 actred = 1. - internal::abs2(fnorm1 / fnorm); 502 prered = 1. - internal::abs2(temp / fnorm);
|
LevenbergMarquardt.h | 285 actred = 1. - internal::abs2(fnorm1 / fnorm); 290 temp1 = internal::abs2(wa3.stableNorm() / fnorm); 291 temp2 = internal::abs2(internal::sqrt(par) * pnorm / fnorm); 532 actred = 1. - internal::abs2(fnorm1 / fnorm); 537 temp1 = internal::abs2(wa3.stableNorm() / fnorm); 538 temp2 = internal::abs2(internal::sqrt(par) * pnorm / fnorm);
|
/external/eigen/unsupported/test/ |
mpreal_support.cpp | 31 VERIFY(Eigen::internal::isApprox(A.array().abs2().sum(), A.squaredNorm())); 33 VERIFY_IS_APPROX(A.array().abs2().sqrt(), A.array().abs());
|
/external/eigen/unsupported/Eigen/src/Polynomials/ |
PolynomialSolver.h | 85 RealScalar norm2 = internal::abs2( m_roots[0] ); 88 const RealScalar currNorm2 = internal::abs2( m_roots[i] ); 123 RealScalar abs2(0); 133 abs2 = m_roots[i].real() * m_roots[i].real(); 138 if( pred( currAbs2, abs2 ) ) 140 abs2 = currAbs2;
|
PolynomialUtils.h | 50 if( internal::abs2( x ) <= Real(1) ){
|
/external/eigen/Eigen/src/Core/ |
StableNorm.h | 22 ssq = ssq * abs2(scale/max); 125 if(ax > ab2) abig += internal::abs2(ax*s2m); 126 else if(ax < b1) asml += internal::abs2(ax*s1m); 127 else amed += internal::abs2(ax); 162 return abig * internal::sqrt(RealScalar(1) + internal::abs2(asml/abig));
|
Fuzzy.h | 45 return x.cwiseAbs2().sum() <= abs2(prec) * y.cwiseAbs2().sum(); 63 return x.cwiseAbs2().sum() <= abs2(prec * y);
|
MathFunctions.h | 281 * Implementation of abs2 * 310 inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x) function in namespace:Eigen::internal 312 return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x); 760 return abs2(x) <= abs2(y) * prec * prec; 765 return abs2(x - y) <= (min)(abs2(x), abs2(y)) * prec * prec;
|
GlobalFunctions.h | 96 EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(abs2,scalar_abs2_op)
|
Dot.h | 230 return internal::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
|
/external/eigen/Eigen/src/Jacobi/ |
Jacobi.h | 94 RealScalar w = internal::sqrt(internal::abs2(tau) + RealScalar(1)); 105 RealScalar n = RealScalar(1) / internal::sqrt(internal::abs2(t)+RealScalar(1)); 174 RealScalar p2 = internal::abs2(ps); 176 RealScalar q2 = internal::abs2(qs); 189 RealScalar p2 = internal::abs2(ps); 191 RealScalar q2 = internal::abs2(qs); 226 Scalar u = internal::sqrt(Scalar(1) + internal::abs2(t)); 236 Scalar u = internal::sqrt(Scalar(1) + internal::abs2(t));
|
/external/eigen/Eigen/src/plugins/ |
ArrayCwiseUnaryOps.h | 8 * \sa abs2() 24 abs2() const function 168 * \sa operator/(), operator*(), abs2()
|
/external/eigen/test/eigen2/ |
product.h | 17 return !((m1-m2).cwise().abs2().maxCoeff() < epsilon * epsilon 18 * std::max(m1.cwise().abs2().maxCoeff(), m2.cwise().abs2().maxCoeff()));
|
/external/eigen/test/ |
array.cpp | 182 VERIFY_IS_APPROX(m1.abs(), internal::sqrt(internal::abs2(m1))); 184 VERIFY_IS_APPROX(internal::abs2(internal::real(m1)) + internal::abs2(internal::imag(m1)), internal::abs2(m1)); 185 VERIFY_IS_APPROX(internal::abs2(std::real(m1)) + internal::abs2(std::imag(m1)), internal::abs2(m1));
|
eigen2support.cpp | 49 VERIFY_IS_EQUAL(ei_abs2(s1), abs2(s1));
|
/external/eigen/Eigen/src/Eigen2Support/ |
MathFunctions.h | 19 template<typename T> inline typename NumTraits<T>::Real ei_abs2(const T& x) { return internal::abs2(x); }
|
Cwise.h | 85 const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_abs2_op) abs2() const;
|
/external/eigen/Eigen/src/Householder/ |
Householder.h | 84 beta = internal::sqrt(internal::abs2(c0) + tailSqNorm);
|
/external/eigen/blas/ |
level1_impl.h | 120 norm = scale*internal::sqrt((internal::abs2(a/scale))+ (internal::abs2(b/scale)));
|
/external/eigen/bench/ |
bench_norm.cpp | 38 ssq += internal::abs2(ax/scale); 42 ssq = Scalar(1) + ssq * internal::abs2(scale/ax); 211 return abig * internal::sqrt(Scalar(1) + internal::abs2(asml/abig));
|
/external/eigen/Eigen/src/Eigenvalues/ |
SelfAdjointEigenSolver.h | 670 const Scalar t0 = Scalar(0.5) * sqrt( abs2(m(0,0)-m(1,1)) + Scalar(4)*m(1,0)*m(1,0)); 699 Scalar a2 = abs2(scaledMat(0,0)); 700 Scalar c2 = abs2(scaledMat(1,1)); 701 Scalar b2 = abs2(scaledMat(1,0)); 743 // RealScalar e2 = abs2(subdiag[end-1]);
|
Tridiagonalization.h | 471 RealScalar v1norm2 = abs2(mat(2,0)); 483 RealScalar beta = sqrt(abs2(mat(1,0)) + v1norm2);
|
/external/eigen/unsupported/Eigen/src/AutoDiff/ |
AutoDiffScalar.h | 51 * - internal::conj, internal::real, internal::imag, internal::abs2. 541 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2, 542 using internal::abs2; 543 return ReturnType(abs2(x.value()), x.derivatives() * (Scalar(2)*x.value()));) 605 return ReturnType(tan(x.value()),x.derivatives() * (Scalar(1)/internal::abs2(cos(x.value()))));) 610 return ReturnType(asin(x.value()),x.derivatives() * (Scalar(1)/sqrt(1-internal::abs2(x.value()))));) 615 return ReturnType(acos(x.value()),x.derivatives() * (Scalar(-1)/sqrt(1-internal::abs2(x.value()))));)
|