HomeSort by relevance Sort by last modified time
    Searched refs:abs2 (Results 1 - 25 of 37) sorted by null

1 2

  /external/eigen/doc/snippets/
Cwise_abs2.cpp 2 cout << v.abs2() << endl;
  /external/eigen/unsupported/Eigen/src/NonLinearOptimization/
dogleg.h 92 temp = temp - delta / qnorm * abs2(sgnorm / delta) + sqrt(abs2(temp - delta / qnorm) + (1.-abs2(delta / qnorm)) * (1.-abs2(sgnorm / delta)));
93 alpha = delta / qnorm * (1. - abs2(sgnorm / delta)) / temp;
HybridNonLinearSolver.h 255 actred = 1. - internal::abs2(fnorm1 / fnorm);
262 prered = 1. - internal::abs2(temp / fnorm);
495 actred = 1. - internal::abs2(fnorm1 / fnorm);
502 prered = 1. - internal::abs2(temp / fnorm);
LevenbergMarquardt.h 285 actred = 1. - internal::abs2(fnorm1 / fnorm);
290 temp1 = internal::abs2(wa3.stableNorm() / fnorm);
291 temp2 = internal::abs2(internal::sqrt(par) * pnorm / fnorm);
532 actred = 1. - internal::abs2(fnorm1 / fnorm);
537 temp1 = internal::abs2(wa3.stableNorm() / fnorm);
538 temp2 = internal::abs2(internal::sqrt(par) * pnorm / fnorm);
  /external/eigen/unsupported/test/
mpreal_support.cpp 31 VERIFY(Eigen::internal::isApprox(A.array().abs2().sum(), A.squaredNorm()));
33 VERIFY_IS_APPROX(A.array().abs2().sqrt(), A.array().abs());
  /external/eigen/unsupported/Eigen/src/Polynomials/
PolynomialSolver.h 85 RealScalar norm2 = internal::abs2( m_roots[0] );
88 const RealScalar currNorm2 = internal::abs2( m_roots[i] );
123 RealScalar abs2(0);
133 abs2 = m_roots[i].real() * m_roots[i].real();
138 if( pred( currAbs2, abs2 ) )
140 abs2 = currAbs2;
PolynomialUtils.h 50 if( internal::abs2( x ) <= Real(1) ){
  /external/eigen/Eigen/src/Core/
StableNorm.h 22 ssq = ssq * abs2(scale/max);
125 if(ax > ab2) abig += internal::abs2(ax*s2m);
126 else if(ax < b1) asml += internal::abs2(ax*s1m);
127 else amed += internal::abs2(ax);
162 return abig * internal::sqrt(RealScalar(1) + internal::abs2(asml/abig));
Fuzzy.h 45 return x.cwiseAbs2().sum() <= abs2(prec) * y.cwiseAbs2().sum();
63 return x.cwiseAbs2().sum() <= abs2(prec * y);
MathFunctions.h 281 * Implementation of abs2 *
310 inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x) function in namespace:Eigen::internal
312 return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
760 return abs2(x) <= abs2(y) * prec * prec;
765 return abs2(x - y) <= (min)(abs2(x), abs2(y)) * prec * prec;
GlobalFunctions.h 96 EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(abs2,scalar_abs2_op)
Dot.h 230 return internal::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm();
  /external/eigen/Eigen/src/Jacobi/
Jacobi.h 94 RealScalar w = internal::sqrt(internal::abs2(tau) + RealScalar(1));
105 RealScalar n = RealScalar(1) / internal::sqrt(internal::abs2(t)+RealScalar(1));
174 RealScalar p2 = internal::abs2(ps);
176 RealScalar q2 = internal::abs2(qs);
189 RealScalar p2 = internal::abs2(ps);
191 RealScalar q2 = internal::abs2(qs);
226 Scalar u = internal::sqrt(Scalar(1) + internal::abs2(t));
236 Scalar u = internal::sqrt(Scalar(1) + internal::abs2(t));
  /external/eigen/Eigen/src/plugins/
ArrayCwiseUnaryOps.h 8 * \sa abs2()
24 abs2() const function
168 * \sa operator/(), operator*(), abs2()
  /external/eigen/test/eigen2/
product.h 17 return !((m1-m2).cwise().abs2().maxCoeff() < epsilon * epsilon
18 * std::max(m1.cwise().abs2().maxCoeff(), m2.cwise().abs2().maxCoeff()));
  /external/eigen/test/
array.cpp 182 VERIFY_IS_APPROX(m1.abs(), internal::sqrt(internal::abs2(m1)));
184 VERIFY_IS_APPROX(internal::abs2(internal::real(m1)) + internal::abs2(internal::imag(m1)), internal::abs2(m1));
185 VERIFY_IS_APPROX(internal::abs2(std::real(m1)) + internal::abs2(std::imag(m1)), internal::abs2(m1));
eigen2support.cpp 49 VERIFY_IS_EQUAL(ei_abs2(s1), abs2(s1));
  /external/eigen/Eigen/src/Eigen2Support/
MathFunctions.h 19 template<typename T> inline typename NumTraits<T>::Real ei_abs2(const T& x) { return internal::abs2(x); }
Cwise.h 85 const EIGEN_CWISE_UNOP_RETURN_TYPE(internal::scalar_abs2_op) abs2() const;
  /external/eigen/Eigen/src/Householder/
Householder.h 84 beta = internal::sqrt(internal::abs2(c0) + tailSqNorm);
  /external/eigen/blas/
level1_impl.h 120 norm = scale*internal::sqrt((internal::abs2(a/scale))+ (internal::abs2(b/scale)));
  /external/eigen/bench/
bench_norm.cpp 38 ssq += internal::abs2(ax/scale);
42 ssq = Scalar(1) + ssq * internal::abs2(scale/ax);
211 return abig * internal::sqrt(Scalar(1) + internal::abs2(asml/abig));
  /external/eigen/Eigen/src/Eigenvalues/
SelfAdjointEigenSolver.h 670 const Scalar t0 = Scalar(0.5) * sqrt( abs2(m(0,0)-m(1,1)) + Scalar(4)*m(1,0)*m(1,0));
699 Scalar a2 = abs2(scaledMat(0,0));
700 Scalar c2 = abs2(scaledMat(1,1));
701 Scalar b2 = abs2(scaledMat(1,0));
743 // RealScalar e2 = abs2(subdiag[end-1]);
Tridiagonalization.h 471 RealScalar v1norm2 = abs2(mat(2,0));
483 RealScalar beta = sqrt(abs2(mat(1,0)) + v1norm2);
  /external/eigen/unsupported/Eigen/src/AutoDiff/
AutoDiffScalar.h 51 * - internal::conj, internal::real, internal::imag, internal::abs2.
541 EIGEN_AUTODIFF_DECLARE_GLOBAL_UNARY(abs2,
542 using internal::abs2;
543 return ReturnType(abs2(x.value()), x.derivatives() * (Scalar(2)*x.value()));)
605 return ReturnType(tan(x.value()),x.derivatives() * (Scalar(1)/internal::abs2(cos(x.value()))));)
610 return ReturnType(asin(x.value()),x.derivatives() * (Scalar(1)/sqrt(1-internal::abs2(x.value()))));)
615 return ReturnType(acos(x.value()),x.derivatives() * (Scalar(-1)/sqrt(1-internal::abs2(x.value()))));)

Completed in 174 milliseconds

1 2