/external/ceres-solver/internal/ceres/ |
local_parameterization.cc | 53 double* jacobian) const { 54 MatrixRef(jacobian, size_, size_) = Matrix::Identity(size_, size_); 100 double* jacobian) const { 101 MatrixRef m(jacobian, constancy_mask_.size(), local_size_); 133 double* jacobian) const { 134 jacobian[0] = -x[1]; jacobian[1] = -x[2]; jacobian[2] = -x[3]; // NOLINT 135 jacobian[3] = x[0]; jacobian[4] = x[3]; jacobian[5] = -x[2]; // NOLIN [all...] |
block_evaluate_preparer.cc | 49 // Point the jacobian blocks directly into the block sparse matrix. 52 SparseMatrix* jacobian, 54 // If the overall jacobian is not available, use the scratch space. 55 if (jacobian == NULL) { 58 jacobian, 64 down_cast<BlockSparseMatrix*>(jacobian)->mutable_values();
|
trust_region_minimizer.h | 54 void EstimateScale(const SparseMatrix& jacobian, double* scale) const; 56 const SparseMatrix* jacobian,
|
block_evaluate_preparer.h | 31 // A evaluate preparer which puts jacobian the evaluated jacobian blocks 33 // The evaluator takes care to avoid evaluating the jacobian for fixed 57 // Point the jacobian blocks directly into the block sparse matrix, if 58 // jacobian is non-null. Otherwise, uses an internal per-thread buffer to 62 SparseMatrix* jacobian, 68 // For the case that the overall jacobian is not available, but the
|
corrector.h | 42 // to the residual and jacobian of a least squares problem based on a 47 // corresponding corrections to the residual and jacobian. For the 64 // CorrectResidual, because the jacobian correction depends on the 71 // jacobian = sqrt(rho[1]) * jacobian - 72 // sqrt(rho[1]) * alpha / sq_norm * residuals residuals' * jacobian. 74 // The method assumes that the jacobian has row-major storage. It is 76 // jacobian is not null. 80 double* jacobian);
|
evaluator_test_utils.h | 44 const double jacobian[200]; member in struct:ceres::internal::ExpectedEvaluation
|
dynamic_autodiff_cost_function_test.cc | 119 // Prepare the jacobian. 123 vector<double*> jacobian; local 124 jacobian.push_back(jacobian_vect[0].data()); 125 jacobian.push_back(jacobian_vect[1].data()); 127 // Test jacobian computation. 130 jacobian.data())); 138 // Check "A" Jacobian. 140 // Check "B" Jacobian. 146 // Check "C" Jacobian for first parameter block. 155 // Check "C" Jacobian for second parameter block 190 vector<double*> jacobian; local 240 vector<double*> jacobian; local 443 vector<double*> jacobian; local 473 vector<double*> jacobian; local 495 vector<double*> jacobian; local 687 vector<double*> jacobian; local 713 vector<double*> jacobian; local 744 vector<double*> jacobian; local [all...] |
corrector.cc | 46 // and the jacobian are scaled by the squareroot of the derivative 115 double* jacobian) { 117 DCHECK(jacobian != NULL); 133 r_transpose_j += jacobian[r * num_cols + c] * residuals[r]; 137 jacobian[r * num_cols + c] = sqrt_rho1_ * 138 (jacobian[r * num_cols + c] -
|
corrector_test.cc | 60 double jacobian = 10.0; local 74 // The jacobian in this case will be 75 // sqrt(kRho[1]) * (1 - kAlpha) * jacobian. 76 const double kExpectedJacobian = sqrt(kRho[1]) * (1 - kAlpha) * jacobian; 79 c.CorrectJacobian(1.0, 1.0, &residuals, &jacobian); 83 ASSERT_NEAR(kExpectedJacobian, jacobian, 1e-6); 88 double jacobian = 10.0; local 102 // The jacobian in this case will be 103 // sqrt(kRho[1]) * jacobian. 104 const double kExpectedJacobian = sqrt(kRho[1]) * jacobian; 116 double jacobian = 10.0; local 147 double jacobian[2 * 3]; local 215 double jacobian[2 * 3]; local [all...] |
dogleg_strategy.h | 48 // because the Jacobian is often rank-deficient and in such cases 62 SparseMatrix* jacobian, 84 SparseMatrix* jacobian, 86 void ComputeCauchyPoint(SparseMatrix* jacobian); 87 void ComputeGradient(SparseMatrix* jacobian, const double* residuals); 89 bool ComputeSubspaceModel(SparseMatrix* jacobian); 134 // user has recomputed the Jacobian matrix and new Gauss-Newton
|
evaluator_test.cc | 69 // evaluator into the "local" jacobian. In the tests, the "subset 71 // from these jacobians. Put values in the jacobian that make this 81 MatrixRef jacobian(jacobians[k], 85 jacobian.col(j).setConstant(kFactor * (j + 1)); 130 scoped_ptr<SparseMatrix> jacobian(evaluator->CreateJacobian()); 134 ASSERT_EQ(expected_num_rows, jacobian->num_rows()); 135 ASSERT_EQ(expected_num_cols, jacobian->num_cols()); 144 expected_jacobian != NULL ? jacobian.get() : NULL)); 148 jacobian->ToDenseMatrix(&actual_jacobian); 172 (i & 4) ? expected.jacobian : NULL) 551 double* jacobian = jacobians[0]; local [all...] |
evaluator.h | 54 // squares objective. This insulates the optimizer from issues like Jacobian 75 // This is used for computing the cost, residual and Jacobian for 80 // The residual, gradients and jacobian pointers can be NULL, in 98 CRSMatrix* jacobian); 100 // Build and return a sparse matrix for storing and working with the Jacobian 101 // of the objective function. The jacobian has dimensions 103 // sparse. Since the sparsity pattern of the Jacobian remains constant over 113 // the jacobian for use with CHOLMOD, where as BlockOptimizationProblem 114 // creates a BlockSparseMatrix representation of the jacobian for use in the 131 // residuals, and jacobian in the corresponding arguments. Both residuals an [all...] |
scratch_evaluate_preparer.h | 33 // care to avoid evaluating the jacobian for fixed parameters. 57 SparseMatrix* jacobian, 61 // Scratch space for the jacobians; each jacobian is packed one after another.
|
levenberg_marquardt_strategy_test.cc | 114 Matrix jacobian(2, 3); 115 jacobian.setZero(); 116 jacobian(0, 0) = 0.0; 117 jacobian(0, 1) = 1.0; 118 jacobian(1, 1) = 1.0; 119 jacobian(0, 2) = 100.0; 123 DenseSparseMatrix dsm(jacobian);
|
compressed_row_jacobian_writer.cc | 50 // Count the number of jacobian nonzeros. 64 // Allocate storage for the jacobian with some extra space at the end. 65 // Allocate more space than needed to store the jacobian so that when the LM 68 CompressedRowSparseMatrix* jacobian = local 76 int* rows = jacobian->mutable_rows(); 77 int* cols = jacobian->mutable_cols(); 112 // parameter vector. This code mirrors that in Write(), where jacobian 121 // This is the position in the values array of the jacobian where this 122 // row of the jacobian block should go. 140 vector<int>& col_blocks = *(jacobian->mutable_col_blocks()) 159 CompressedRowSparseMatrix* jacobian = local [all...] |
levenberg_marquardt_strategy.cc | 67 SparseMatrix* jacobian, 70 CHECK_NOTNULL(jacobian); 74 const int num_parameters = jacobian->num_cols(); 80 jacobian->SquaredColumnNorm(diagonal_.data()); 104 // Then x can be found as x = -y, but the inputs jacobian and residuals 107 linear_solver_->Solve(jacobian, residuals, solve_options, step); 122 jacobian,
|
dogleg_strategy.cc | 79 SparseMatrix* jacobian, 82 CHECK_NOTNULL(jacobian); 86 const int n = jacobian->num_cols(); 121 jacobian->SquaredColumnNorm(diagonal_.data()); 127 ComputeGradient(jacobian, residuals); 128 ComputeCauchyPoint(jacobian); 131 ComputeGaussNewtonStep(per_solve_options, jacobian, residuals); 148 if (!ComputeSubspaceModel(jacobian)) { 165 // and all calculations involving the Jacobian have to 168 SparseMatrix* jacobian, [all...] |
autodiff_local_parameterization_test.cc | 65 double jacobian[9]; local 66 parameterization.ComputeJacobian(x, jacobian); 70 EXPECT_EQ(jacobian[k], (i == j) ? 1.0 : 0.0); 117 double jacobian[12]; local 120 parameterization.ComputeJacobian(x, jacobian); 135 EXPECT_TRUE(IsFinite(jacobian[i])); 136 EXPECT_NEAR(jacobian[i], jacobian_ref[i], kTolerance) 137 << "Jacobian mismatch: i = " << i 139 << "\n Actual \n" << ConstMatrixRef(jacobian, 4, 3);
|
levenberg_marquardt_strategy.h | 54 SparseMatrix* jacobian,
|
parameter_block_test.cc | 71 // Ensure the local parameterization jacobian result is correctly computed. 102 double* jacobian) const { 103 jacobian[0] = *x * 2; 134 // Stops computing the jacobian after the first time. 149 virtual bool ComputeJacobian(const double* x, double* jacobian) const { 151 jacobian[0] = 0;
|
dense_jacobian_writer.h | 31 // A jacobian writer that writes to dense Eigen matrices. 58 // them over to the larger jacobian later. 72 SparseMatrix* jacobian) { 74 if (jacobian != NULL) { 75 dense_jacobian = down_cast<DenseSparseMatrix*>(jacobian); 82 // Now copy the jacobians for each parameter into the dense jacobian matrix.
|
local_parameterization_test.cc | 55 double jacobian[9]; local 56 parameterization.ComputeJacobian(x, jacobian); 60 EXPECT_EQ(jacobian[k], (i == j) ? 1.0 : 0.0); 106 double jacobian[4 * 3]; local 107 parameterization.ComputeJacobian(x, jacobian); 113 EXPECT_EQ(jacobian[jacobian_cursor], delta_cursor == k ? 1.0 : 0.0); 118 EXPECT_EQ(jacobian[jacobian_cursor], 0.0); 184 // Autodiff jacobian at delta_x = 0. 188 double jacobian[12]; local 189 param.ComputeJacobian(x, jacobian); [all...] |
/external/ceres-solver/include/ceres/ |
local_parameterization.h | 109 // Jacobian which is needed to compute the Jacobian of f w.r.t delta. 123 // The jacobian of Plus(x, delta) w.r.t delta at delta = 0. 124 virtual bool ComputeJacobian(const double* x, double* jacobian) const = 0; 144 double* jacobian) const; 162 double* jacobian) const; 182 double* jacobian) const;
|
autodiff_local_parameterization.h | 117 virtual bool ComputeJacobian(const double* x, double* jacobian) const { 129 double* jacobian_ptrs[2] = { NULL, jacobian };
|
/external/eigen/unsupported/Eigen/src/AutoDiff/ |
AutoDiffVector.h | 73 : m_values(other.values()), m_jacobian(other.jacobian()) 77 : m_values(other.values()), m_jacobian(other.jacobian()) 84 m_jacobian = other.jacobian(); 91 m_jacobian = other.jacobian(); 98 inline const JacobianType& jacobian() const { return m_jacobian; } function in class:Eigen::AutoDiffVector 99 inline JacobianType& jacobian() { return m_jacobian; } function in class:Eigen::AutoDiffVector 111 m_jacobian + other.jacobian()); 119 m_jacobian += other.jacobian(); 133 m_jacobian - other.jacobian()); 141 m_jacobian -= other.jacobian(); [all...] |