HomeSort by relevance Sort by last modified time
    Searched refs:matrixT (Results 1 - 19 of 19) sorted by null

  /external/eigen/doc/snippets/
ComplexSchur_compute.cpp 4 cout << "The matrix T in the decomposition of A is:" << endl << schur.matrixT() << endl;
6 cout << "The matrix T in the decomposition of A^(-1) is:" << endl << schur.matrixT() << endl;
RealSchur_compute.cpp 4 cout << "The matrix T in the decomposition of A is:" << endl << schur.matrixT() << endl;
6 cout << "The matrix T in the decomposition of A^(-1) is:" << endl << schur.matrixT() << endl;
Tridiagonalization_compute.cpp 6 cout << tri.matrixT() << endl;
9 cout << tri.matrixT() << endl;
ComplexSchur_matrixT.cpp 4 cout << "The triangular matrix T is:" << endl << schurOfA.matrixT() << endl;
RealSchur_RealSchur_MatrixType.cpp 6 cout << "The quasi-triangular matrix T is:" << endl << schur.matrixT() << endl << endl;
9 MatrixXd T = schur.matrixT();
Tridiagonalization_packedMatrix.cpp 8 << endl << triOfA.matrixT() << endl;
Tridiagonalization_Tridiagonalization_MatrixType.cpp 7 MatrixXd T = triOfA.matrixT();
Tridiagonalization_diagonal.cpp 6 MatrixXd T = triOfA.matrixT();
  /external/eigen/test/
schur_complex.cpp 25 ComplexMatrixType T = schurOfA.matrixT();
36 VERIFY_RAISES_ASSERT(csUninitialized.matrixT());
47 VERIFY_IS_EQUAL(cs1.matrixT(), cs2.matrixT());
53 VERIFY_IS_EQUAL(cs1.matrixT(), csOnlyT.matrixT());
schur_real.cpp 48 MatrixType T = schurOfA.matrixT();
55 VERIFY_RAISES_ASSERT(rsUninitialized.matrixT());
66 VERIFY_IS_EQUAL(rs1.matrixT(), rs2.matrixT());
72 VERIFY_IS_EQUAL(rs1.matrixT(), rsOnlyT.matrixT());
eigensolver_selfadjoint.cpp 103 VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.matrixT().eval() * MatrixType(tridiag.matrixQ()).adjoint());
  /external/eigen/Eigen/src/Eigenvalues/
ComplexEigenSolver.h 249 m_eivalues = m_schur.matrixT().diagonal();
275 m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k);
277 m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value();
278 ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
ComplexSchur.h 44 * decomposition is computed, you can use the matrixU() and matrixT()
109 * \sa matrixT() and matrixU() for examples.
154 * \code schur.matrixT().triangularView<Upper>() \endcode
159 const ComplexMatrixType& matrixT() const
Tridiagonalization.h 53 * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the
236 * matrixT(), class HouseholderSequence
263 MatrixTReturnType matrixT() const
280 * \sa matrixT(), subDiagonal()
292 * \sa diagonal() for an example, matrixT()
522 * \brief Expression type for return value of Tridiagonalization::matrixT()
RealSchur.h 43 * matrixT() functions to retrieve the matrices U and T in the decomposition.
141 const MatrixType& matrixT() const
EigenSolver.h 359 m_matT = m_realSchur.matrixT();
  /external/eigen/test/eigen2/
eigen2_qr.cpp 35 VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.matrixT() * tridiag.matrixQ().adjoint());
40 VERIFY_IS_APPROX(tridiag.matrixT(), hess.matrixH());
  /external/eigen/unsupported/Eigen/src/MatrixFunctions/
MatrixSquareRoot.h 84 const MatrixType& T = schurOfA.matrixT();
294 const MatrixType& T = schurOfA.matrixT();
370 const MatrixType& T = schurOfA.matrixT();
404 const MatrixType& T = schurOfA.matrixT();
MatrixFunction.h 220 m_T = schurOfA.matrixT();

Completed in 249 milliseconds