OpenGrok
Home
Sort by relevance
Sort by last modified time
Full Search
Definition
Symbol
File Path
History
|
|
Help
Searched
refs:matrixT
(Results
1 - 19
of
19
) sorted by null
/external/eigen/doc/snippets/
ComplexSchur_compute.cpp
4
cout << "The matrix T in the decomposition of A is:" << endl << schur.
matrixT
() << endl;
6
cout << "The matrix T in the decomposition of A^(-1) is:" << endl << schur.
matrixT
() << endl;
RealSchur_compute.cpp
4
cout << "The matrix T in the decomposition of A is:" << endl << schur.
matrixT
() << endl;
6
cout << "The matrix T in the decomposition of A^(-1) is:" << endl << schur.
matrixT
() << endl;
Tridiagonalization_compute.cpp
6
cout << tri.
matrixT
() << endl;
9
cout << tri.
matrixT
() << endl;
ComplexSchur_matrixT.cpp
4
cout << "The triangular matrix T is:" << endl << schurOfA.
matrixT
() << endl;
RealSchur_RealSchur_MatrixType.cpp
6
cout << "The quasi-triangular matrix T is:" << endl << schur.
matrixT
() << endl << endl;
9
MatrixXd T = schur.
matrixT
();
Tridiagonalization_packedMatrix.cpp
8
<< endl << triOfA.
matrixT
() << endl;
Tridiagonalization_Tridiagonalization_MatrixType.cpp
7
MatrixXd T = triOfA.
matrixT
();
Tridiagonalization_diagonal.cpp
6
MatrixXd T = triOfA.
matrixT
();
/external/eigen/test/
schur_complex.cpp
25
ComplexMatrixType T = schurOfA.
matrixT
();
36
VERIFY_RAISES_ASSERT(csUninitialized.
matrixT
());
47
VERIFY_IS_EQUAL(cs1.
matrixT
(), cs2.
matrixT
());
53
VERIFY_IS_EQUAL(cs1.
matrixT
(), csOnlyT.
matrixT
());
schur_real.cpp
48
MatrixType T = schurOfA.
matrixT
();
55
VERIFY_RAISES_ASSERT(rsUninitialized.
matrixT
());
66
VERIFY_IS_EQUAL(rs1.
matrixT
(), rs2.
matrixT
());
72
VERIFY_IS_EQUAL(rs1.
matrixT
(), rsOnlyT.
matrixT
());
eigensolver_selfadjoint.cpp
103
VERIFY_IS_APPROX(MatrixType(symmA.template selfadjointView<Lower>()), tridiag.matrixQ() * tridiag.
matrixT
().eval() * MatrixType(tridiag.matrixQ()).adjoint());
/external/eigen/Eigen/src/Eigenvalues/
ComplexEigenSolver.h
249
m_eivalues = m_schur.
matrixT
().diagonal();
275
m_matX.coeffRef(i,k) = -m_schur.
matrixT
().coeff(i,k);
277
m_matX.coeffRef(i,k) -= (m_schur.
matrixT
().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value();
278
ComplexScalar z = m_schur.
matrixT
().coeff(i,i) - m_schur.
matrixT
().coeff(k,k);
ComplexSchur.h
44
* decomposition is computed, you can use the matrixU() and
matrixT
()
109
* \sa
matrixT
() and matrixU() for examples.
154
* \code schur.
matrixT
().triangularView<Upper>() \endcode
159
const ComplexMatrixType&
matrixT
() const
Tridiagonalization.h
53
* matrixQ() and
matrixT
() functions to retrieve the matrices Q and T in the
236
*
matrixT
(), class HouseholderSequence
263
MatrixTReturnType
matrixT
() const
280
* \sa
matrixT
(), subDiagonal()
292
* \sa diagonal() for an example,
matrixT
()
522
* \brief Expression type for return value of Tridiagonalization::
matrixT
()
RealSchur.h
43
*
matrixT
() functions to retrieve the matrices U and T in the decomposition.
141
const MatrixType&
matrixT
() const
EigenSolver.h
359
m_matT = m_realSchur.
matrixT
();
/external/eigen/test/eigen2/
eigen2_qr.cpp
35
VERIFY_IS_APPROX(b, tridiag.matrixQ() * tridiag.
matrixT
() * tridiag.matrixQ().adjoint());
40
VERIFY_IS_APPROX(tridiag.
matrixT
(), hess.matrixH());
/external/eigen/unsupported/Eigen/src/MatrixFunctions/
MatrixSquareRoot.h
84
const MatrixType& T = schurOfA.
matrixT
();
294
const MatrixType& T = schurOfA.
matrixT
();
370
const MatrixType& T = schurOfA.
matrixT
();
404
const MatrixType& T = schurOfA.
matrixT
();
MatrixFunction.h
220
m_T = schurOfA.
matrixT
();
Completed in 249 milliseconds