/external/jpeg/ |
jidctint.c | 258 wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); 259 wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); 260 wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); 261 wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); 262 wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); 263 wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); 264 wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); 265 wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); 273 /* Note that we must descale the results by a factor of 8 == 2**3, */ 291 JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3 [all...] |
mips_jidctfst.c | 55 * see jidctint.c for more details. However, we choose to descale 112 #undef DESCALE 113 #define DESCALE(x,n) RIGHT_SHIFT(x, n) 118 * descale to yield a DCTELEM result. 121 #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) 134 DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) 138 /* Like DESCALE, but applies to a DCTELEM and produces an int. 201 /* Note that we must descale the results by a factor of 8 == 2**3, */
|
jidctred.c | 188 wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1); 189 wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1); 190 wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1); 191 wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1); 205 JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) 247 outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2, 250 outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2, 253 outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0, 256 outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0, 323 wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2) [all...] |
jfdctint.c | 177 dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), 179 dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), 205 dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); 206 dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); 207 dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); 208 dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); 238 dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS); 239 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS); 242 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), 244 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065) [all...] |
jidctflt.c | 177 /* Note that we must descale the results by a factor of 8 == 2**3. */ 221 outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3) 223 outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3) 225 outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3) 227 outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3) 229 outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3) 231 outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3) 233 outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3) 235 outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
|
jfdctfst.c | 51 * see jfdctint.c for more details. However, we choose to descale 97 #undef DESCALE 98 #define DESCALE(x,n) RIGHT_SHIFT(x, n) 103 * descale to yield a DCTELEM result. 106 #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
|
jidctfst.c | 53 * see jidctint.c for more details. However, we choose to descale 110 #undef DESCALE 111 #define DESCALE(x,n) RIGHT_SHIFT(x, n) 116 * descale to yield a DCTELEM result. 119 #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) 132 DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) 136 /* Like DESCALE, but applies to a DCTELEM and produces an int. 182 SHIFT_TEMPS /* for DESCALE */ 278 /* Note that we must descale the results by a factor of 8 == 2**3, */
|
jcdctmgr.c | 120 DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], 226 /* Quantize/descale the coefficients, and store into coef_blocks[] */ 317 /* Quantize/descale the coefficients, and store into coef_blocks[] */
|
jdct.h | 145 /* Descale and correctly round an INT32 value that's scaled by N bits. 150 #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
|
/external/qemu/distrib/jpeg-6b/ |
jidctint.c | 258 wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); 259 wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); 260 wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); 261 wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); 262 wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); 263 wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); 264 wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); 265 wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); 273 /* Note that we must descale the results by a factor of 8 == 2**3, */ 291 JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3 [all...] |
jidctred.c | 188 wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1); 189 wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1); 190 wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1); 191 wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1); 205 JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) 247 outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2, 250 outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2, 253 outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0, 256 outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0, 323 wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2) [all...] |
jfdctint.c | 177 dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), 179 dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), 205 dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); 206 dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); 207 dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); 208 dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); 238 dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp11, PASS1_BITS); 239 dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp10 - tmp11, PASS1_BITS); 242 dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), 244 dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065) [all...] |
jidctflt.c | 177 /* Note that we must descale the results by a factor of 8 == 2**3. */ 221 outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3) 223 outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3) 225 outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3) 227 outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3) 229 outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3) 231 outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3) 233 outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3) 235 outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
|
jfdctfst.c | 51 * see jfdctint.c for more details. However, we choose to descale 97 #undef DESCALE 98 #define DESCALE(x,n) RIGHT_SHIFT(x, n) 103 * descale to yield a DCTELEM result. 106 #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS))
|
jidctfst.c | 53 * see jidctint.c for more details. However, we choose to descale 110 #undef DESCALE 111 #define DESCALE(x,n) RIGHT_SHIFT(x, n) 116 * descale to yield a DCTELEM result. 119 #define MULTIPLY(var,const) ((DCTELEM) DESCALE((var) * (const), CONST_BITS)) 132 DESCALE((coef)*(quantval), IFAST_SCALE_BITS-PASS1_BITS) 136 /* Like DESCALE, but applies to a DCTELEM and produces an int. 182 SHIFT_TEMPS /* for DESCALE */ 278 /* Note that we must descale the results by a factor of 8 == 2**3, */
|
jcdctmgr.c | 120 DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], 226 /* Quantize/descale the coefficients, and store into coef_blocks[] */ 317 /* Quantize/descale the coefficients, and store into coef_blocks[] */
|
jdct.h | 141 /* Descale and correctly round an INT32 value that's scaled by N bits. 146 #define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
|
/external/opencv/cvaux/src/ |
cvhmmobs.cpp | 102 #define DESCALE CV_DESCALE 107 #define DESCALE(x,n) (float)(x) 201 buf[0] = DESCALE( is * tab[-2], PASS1_SHIFT ); 213 buf[0] = DESCALE( s, PASS1_SHIFT ); 228 buf[0] = DESCALE( s, PASS1_SHIFT ); 268 *obs++ = (float) DESCALE( s * tab[-2], PASS2_SHIFT ); 281 obs[0] = (float) DESCALE( s, PASS2_SHIFT ); 296 obs[0] = (float) DESCALE( s, PASS2_SHIFT ); 398 buf[0] = DESCALE( is * tab[-2], PASS1_SHIFT ); 410 buf[0] = DESCALE( s, PASS1_SHIFT ) [all...] |
/external/opencv/otherlibs/highgui/ |
grfmt_jpeg.cpp | 674 x0 = descale( x4 - x0*C2_613, fixb); 675 x2 = descale( x2*C1_082 - x4, fixb); 676 x1 = descale( x1*C1_414, fixb); 690 x2 = descale((x2-x3)*C1_414, fixb) - x4; 725 x0 = descale( x4 - x0*C2_613, fixb); 726 x2 = descale( x2*C1_082 - x4, fixb); 727 x1 = descale( x1*C1_414, fixb); 741 x2 = descale((x2-x3)*C1_414, fixb) - x4; 749 x1 = descale(x1,3); 750 x2 = descale(x2,3) [all...] |
utils.cpp | 93 int t = descale( rgb[swap_rb]*cB + rgb[1]*cG + rgb[swap_rb^2]*cR, SCALE ); 112 int t = descale( rgb[swap_rb]*cB + rgb[1]*cG + rgb[swap_rb^2]*cR, SCALE ); 131 int t = descale( rgba[swap_rb]*cB + rgba[1]*cG + rgba[swap_rb^2]*cR, SCALE ); 238 int t = descale( ((((ushort*)bgr555)[i] << 3) & 0xf8)*cB + 255 int t = descale( ((((ushort*)bgr565)[i] << 3) & 0xf8)*cB + 332 int t = descale( y*cB + m*cG + c*cR, SCALE );
|
utils.h | 55 #define descale(x,n) (((x) + (1 << ((n)-1))) >> (n)) macro
|
/external/aac/libSBRdec/src/arm/ |
lpp_tran_arm.cpp | 108 int descale, 143 qmfBufferReal[i][hiBand] = accu1 + (real1>>descale); 144 qmfBufferImag[i][hiBand] = accu2 + (imag1>>descale);
|
/external/aac/libSBRdec/src/ |
lpp_tran.cpp | 652 int descale = fixMin(DFRACT_BITS-1, (LPC_SCALE_FACTOR+dynamicScale)); local 654 qmfBufferReal[i][hiBand] = lowBandReal[LPC_ORDER+i]>>descale; 655 qmfBufferImag[i][hiBand] = lowBandImag[LPC_ORDER+i]>>descale; 659 int descale = fixMin(DFRACT_BITS-1, (LPC_SCALE_FACTOR+dynamicScale)); local 661 qmfBufferReal[i][hiBand] = lowBandReal[LPC_ORDER+i]>>descale; 668 int descale = fixMin(DFRACT_BITS-1, (LPC_SCALE_FACTOR+dynamicScale)); local 673 dynamicScale,descale, 684 qmfBufferReal[i][hiBand] = (lowBandReal[LPC_ORDER+i]>>descale) + (accu1<<1); 685 qmfBufferImag[i][hiBand] = (lowBandImag[LPC_ORDER+i]>>descale) + (accu2<<1); 690 int descale = fixMin(DFRACT_BITS-1, (LPC_SCALE_FACTOR+dynamicScale)) local [all...] |
/external/llvm/lib/Transforms/InstCombine/ |
InstCombine.h | 382 /// Descale - Return a value X such that Val = X * Scale, or null if none. If 384 Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
|
InstructionCombining.cpp | 829 /// Descale - Return a value X such that Val = X * Scale, or null if none. If 831 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { 832 assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); [all...] |