Home | History | Annotate | Download | only in x64
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
      6 #define V8_X64_MACRO_ASSEMBLER_X64_H_
      7 
      8 #include "src/assembler.h"
      9 #include "src/frames.h"
     10 #include "src/globals.h"
     11 
     12 namespace v8 {
     13 namespace internal {
     14 
     15 // Default scratch register used by MacroAssembler (and other code that needs
     16 // a spare register). The register isn't callee save, and not used by the
     17 // function calling convention.
     18 const Register kScratchRegister = { 10 };      // r10.
     19 const Register kSmiConstantRegister = { 12 };  // r12 (callee save).
     20 const Register kRootRegister = { 13 };         // r13 (callee save).
     21 // Value of smi in kSmiConstantRegister.
     22 const int kSmiConstantRegisterValue = 1;
     23 // Actual value of root register is offset from the root array's start
     24 // to take advantage of negitive 8-bit displacement values.
     25 const int kRootRegisterBias = 128;
     26 
     27 // Convenience for platform-independent signatures.
     28 typedef Operand MemOperand;
     29 
     30 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
     31 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
     32 enum PointersToHereCheck {
     33   kPointersToHereMaybeInteresting,
     34   kPointersToHereAreAlwaysInteresting
     35 };
     36 
     37 enum SmiOperationConstraint {
     38   PRESERVE_SOURCE_REGISTER,
     39   BAILOUT_ON_NO_OVERFLOW,
     40   BAILOUT_ON_OVERFLOW,
     41   NUMBER_OF_CONSTRAINTS
     42 };
     43 
     44 STATIC_ASSERT(NUMBER_OF_CONSTRAINTS <= 8);
     45 
     46 class SmiOperationExecutionMode : public EnumSet<SmiOperationConstraint, byte> {
     47  public:
     48   SmiOperationExecutionMode() : EnumSet<SmiOperationConstraint, byte>(0) { }
     49   explicit SmiOperationExecutionMode(byte bits)
     50       : EnumSet<SmiOperationConstraint, byte>(bits) { }
     51 };
     52 
     53 bool AreAliased(Register r1, Register r2, Register r3, Register r4);
     54 
     55 // Forward declaration.
     56 class JumpTarget;
     57 
     58 struct SmiIndex {
     59   SmiIndex(Register index_register, ScaleFactor scale)
     60       : reg(index_register),
     61         scale(scale) {}
     62   Register reg;
     63   ScaleFactor scale;
     64 };
     65 
     66 
     67 // MacroAssembler implements a collection of frequently used macros.
     68 class MacroAssembler: public Assembler {
     69  public:
     70   // The isolate parameter can be NULL if the macro assembler should
     71   // not use isolate-dependent functionality. In this case, it's the
     72   // responsibility of the caller to never invoke such function on the
     73   // macro assembler.
     74   MacroAssembler(Isolate* isolate, void* buffer, int size);
     75 
     76   // Prevent the use of the RootArray during the lifetime of this
     77   // scope object.
     78   class NoRootArrayScope BASE_EMBEDDED {
     79    public:
     80     explicit NoRootArrayScope(MacroAssembler* assembler)
     81         : variable_(&assembler->root_array_available_),
     82           old_value_(assembler->root_array_available_) {
     83       assembler->root_array_available_ = false;
     84     }
     85     ~NoRootArrayScope() {
     86       *variable_ = old_value_;
     87     }
     88    private:
     89     bool* variable_;
     90     bool old_value_;
     91   };
     92 
     93   // Operand pointing to an external reference.
     94   // May emit code to set up the scratch register. The operand is
     95   // only guaranteed to be correct as long as the scratch register
     96   // isn't changed.
     97   // If the operand is used more than once, use a scratch register
     98   // that is guaranteed not to be clobbered.
     99   Operand ExternalOperand(ExternalReference reference,
    100                           Register scratch = kScratchRegister);
    101   // Loads and stores the value of an external reference.
    102   // Special case code for load and store to take advantage of
    103   // load_rax/store_rax if possible/necessary.
    104   // For other operations, just use:
    105   //   Operand operand = ExternalOperand(extref);
    106   //   operation(operand, ..);
    107   void Load(Register destination, ExternalReference source);
    108   void Store(ExternalReference destination, Register source);
    109   // Loads the address of the external reference into the destination
    110   // register.
    111   void LoadAddress(Register destination, ExternalReference source);
    112   // Returns the size of the code generated by LoadAddress.
    113   // Used by CallSize(ExternalReference) to find the size of a call.
    114   int LoadAddressSize(ExternalReference source);
    115   // Pushes the address of the external reference onto the stack.
    116   void PushAddress(ExternalReference source);
    117 
    118   // Operations on roots in the root-array.
    119   void LoadRoot(Register destination, Heap::RootListIndex index);
    120   void StoreRoot(Register source, Heap::RootListIndex index);
    121   // Load a root value where the index (or part of it) is variable.
    122   // The variable_offset register is added to the fixed_offset value
    123   // to get the index into the root-array.
    124   void LoadRootIndexed(Register destination,
    125                        Register variable_offset,
    126                        int fixed_offset);
    127   void CompareRoot(Register with, Heap::RootListIndex index);
    128   void CompareRoot(const Operand& with, Heap::RootListIndex index);
    129   void PushRoot(Heap::RootListIndex index);
    130 
    131   // These functions do not arrange the registers in any particular order so
    132   // they are not useful for calls that can cause a GC.  The caller can
    133   // exclude up to 3 registers that do not need to be saved and restored.
    134   void PushCallerSaved(SaveFPRegsMode fp_mode,
    135                        Register exclusion1 = no_reg,
    136                        Register exclusion2 = no_reg,
    137                        Register exclusion3 = no_reg);
    138   void PopCallerSaved(SaveFPRegsMode fp_mode,
    139                       Register exclusion1 = no_reg,
    140                       Register exclusion2 = no_reg,
    141                       Register exclusion3 = no_reg);
    142 
    143 // ---------------------------------------------------------------------------
    144 // GC Support
    145 
    146 
    147   enum RememberedSetFinalAction {
    148     kReturnAtEnd,
    149     kFallThroughAtEnd
    150   };
    151 
    152   // Record in the remembered set the fact that we have a pointer to new space
    153   // at the address pointed to by the addr register.  Only works if addr is not
    154   // in new space.
    155   void RememberedSetHelper(Register object,  // Used for debug code.
    156                            Register addr,
    157                            Register scratch,
    158                            SaveFPRegsMode save_fp,
    159                            RememberedSetFinalAction and_then);
    160 
    161   void CheckPageFlag(Register object,
    162                      Register scratch,
    163                      int mask,
    164                      Condition cc,
    165                      Label* condition_met,
    166                      Label::Distance condition_met_distance = Label::kFar);
    167 
    168   void CheckMapDeprecated(Handle<Map> map,
    169                           Register scratch,
    170                           Label* if_deprecated);
    171 
    172   // Check if object is in new space.  Jumps if the object is not in new space.
    173   // The register scratch can be object itself, but scratch will be clobbered.
    174   void JumpIfNotInNewSpace(Register object,
    175                            Register scratch,
    176                            Label* branch,
    177                            Label::Distance distance = Label::kFar) {
    178     InNewSpace(object, scratch, not_equal, branch, distance);
    179   }
    180 
    181   // Check if object is in new space.  Jumps if the object is in new space.
    182   // The register scratch can be object itself, but it will be clobbered.
    183   void JumpIfInNewSpace(Register object,
    184                         Register scratch,
    185                         Label* branch,
    186                         Label::Distance distance = Label::kFar) {
    187     InNewSpace(object, scratch, equal, branch, distance);
    188   }
    189 
    190   // Check if an object has the black incremental marking color.  Also uses rcx!
    191   void JumpIfBlack(Register object,
    192                    Register scratch0,
    193                    Register scratch1,
    194                    Label* on_black,
    195                    Label::Distance on_black_distance = Label::kFar);
    196 
    197   // Detects conservatively whether an object is data-only, i.e. it does need to
    198   // be scanned by the garbage collector.
    199   void JumpIfDataObject(Register value,
    200                         Register scratch,
    201                         Label* not_data_object,
    202                         Label::Distance not_data_object_distance);
    203 
    204   // Checks the color of an object.  If the object is already grey or black
    205   // then we just fall through, since it is already live.  If it is white and
    206   // we can determine that it doesn't need to be scanned, then we just mark it
    207   // black and fall through.  For the rest we jump to the label so the
    208   // incremental marker can fix its assumptions.
    209   void EnsureNotWhite(Register object,
    210                       Register scratch1,
    211                       Register scratch2,
    212                       Label* object_is_white_and_not_data,
    213                       Label::Distance distance);
    214 
    215   // Notify the garbage collector that we wrote a pointer into an object.
    216   // |object| is the object being stored into, |value| is the object being
    217   // stored.  value and scratch registers are clobbered by the operation.
    218   // The offset is the offset from the start of the object, not the offset from
    219   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
    220   void RecordWriteField(
    221       Register object,
    222       int offset,
    223       Register value,
    224       Register scratch,
    225       SaveFPRegsMode save_fp,
    226       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    227       SmiCheck smi_check = INLINE_SMI_CHECK,
    228       PointersToHereCheck pointers_to_here_check_for_value =
    229           kPointersToHereMaybeInteresting);
    230 
    231   // As above, but the offset has the tag presubtracted.  For use with
    232   // Operand(reg, off).
    233   void RecordWriteContextSlot(
    234       Register context,
    235       int offset,
    236       Register value,
    237       Register scratch,
    238       SaveFPRegsMode save_fp,
    239       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    240       SmiCheck smi_check = INLINE_SMI_CHECK,
    241       PointersToHereCheck pointers_to_here_check_for_value =
    242           kPointersToHereMaybeInteresting) {
    243     RecordWriteField(context,
    244                      offset + kHeapObjectTag,
    245                      value,
    246                      scratch,
    247                      save_fp,
    248                      remembered_set_action,
    249                      smi_check,
    250                      pointers_to_here_check_for_value);
    251   }
    252 
    253   // Notify the garbage collector that we wrote a pointer into a fixed array.
    254   // |array| is the array being stored into, |value| is the
    255   // object being stored.  |index| is the array index represented as a non-smi.
    256   // All registers are clobbered by the operation RecordWriteArray
    257   // filters out smis so it does not update the write barrier if the
    258   // value is a smi.
    259   void RecordWriteArray(
    260       Register array,
    261       Register value,
    262       Register index,
    263       SaveFPRegsMode save_fp,
    264       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    265       SmiCheck smi_check = INLINE_SMI_CHECK,
    266       PointersToHereCheck pointers_to_here_check_for_value =
    267           kPointersToHereMaybeInteresting);
    268 
    269   void RecordWriteForMap(
    270       Register object,
    271       Register map,
    272       Register dst,
    273       SaveFPRegsMode save_fp);
    274 
    275   // For page containing |object| mark region covering |address|
    276   // dirty. |object| is the object being stored into, |value| is the
    277   // object being stored. The address and value registers are clobbered by the
    278   // operation.  RecordWrite filters out smis so it does not update
    279   // the write barrier if the value is a smi.
    280   void RecordWrite(
    281       Register object,
    282       Register address,
    283       Register value,
    284       SaveFPRegsMode save_fp,
    285       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
    286       SmiCheck smi_check = INLINE_SMI_CHECK,
    287       PointersToHereCheck pointers_to_here_check_for_value =
    288           kPointersToHereMaybeInteresting);
    289 
    290   // ---------------------------------------------------------------------------
    291   // Debugger Support
    292 
    293   void DebugBreak();
    294 
    295   // Generates function and stub prologue code.
    296   void StubPrologue();
    297   void Prologue(bool code_pre_aging);
    298 
    299   // Enter specific kind of exit frame; either in normal or
    300   // debug mode. Expects the number of arguments in register rax and
    301   // sets up the number of arguments in register rdi and the pointer
    302   // to the first argument in register rsi.
    303   //
    304   // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
    305   // accessible via StackSpaceOperand.
    306   void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false);
    307 
    308   // Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize
    309   // memory (not GCed) on the stack accessible via StackSpaceOperand.
    310   void EnterApiExitFrame(int arg_stack_space);
    311 
    312   // Leave the current exit frame. Expects/provides the return value in
    313   // register rax:rdx (untouched) and the pointer to the first
    314   // argument in register rsi.
    315   void LeaveExitFrame(bool save_doubles = false);
    316 
    317   // Leave the current exit frame. Expects/provides the return value in
    318   // register rax (untouched).
    319   void LeaveApiExitFrame(bool restore_context);
    320 
    321   // Push and pop the registers that can hold pointers.
    322   void PushSafepointRegisters() { Pushad(); }
    323   void PopSafepointRegisters() { Popad(); }
    324   // Store the value in register src in the safepoint register stack
    325   // slot for register dst.
    326   void StoreToSafepointRegisterSlot(Register dst, const Immediate& imm);
    327   void StoreToSafepointRegisterSlot(Register dst, Register src);
    328   void LoadFromSafepointRegisterSlot(Register dst, Register src);
    329 
    330   void InitializeRootRegister() {
    331     ExternalReference roots_array_start =
    332         ExternalReference::roots_array_start(isolate());
    333     Move(kRootRegister, roots_array_start);
    334     addp(kRootRegister, Immediate(kRootRegisterBias));
    335   }
    336 
    337   // ---------------------------------------------------------------------------
    338   // JavaScript invokes
    339 
    340   // Invoke the JavaScript function code by either calling or jumping.
    341   void InvokeCode(Register code,
    342                   const ParameterCount& expected,
    343                   const ParameterCount& actual,
    344                   InvokeFlag flag,
    345                   const CallWrapper& call_wrapper);
    346 
    347   // Invoke the JavaScript function in the given register. Changes the
    348   // current context to the context in the function before invoking.
    349   void InvokeFunction(Register function,
    350                       const ParameterCount& actual,
    351                       InvokeFlag flag,
    352                       const CallWrapper& call_wrapper);
    353 
    354   void InvokeFunction(Register function,
    355                       const ParameterCount& expected,
    356                       const ParameterCount& actual,
    357                       InvokeFlag flag,
    358                       const CallWrapper& call_wrapper);
    359 
    360   void InvokeFunction(Handle<JSFunction> function,
    361                       const ParameterCount& expected,
    362                       const ParameterCount& actual,
    363                       InvokeFlag flag,
    364                       const CallWrapper& call_wrapper);
    365 
    366   // Invoke specified builtin JavaScript function. Adds an entry to
    367   // the unresolved list if the name does not resolve.
    368   void InvokeBuiltin(Builtins::JavaScript id,
    369                      InvokeFlag flag,
    370                      const CallWrapper& call_wrapper = NullCallWrapper());
    371 
    372   // Store the function for the given builtin in the target register.
    373   void GetBuiltinFunction(Register target, Builtins::JavaScript id);
    374 
    375   // Store the code object for the given builtin in the target register.
    376   void GetBuiltinEntry(Register target, Builtins::JavaScript id);
    377 
    378 
    379   // ---------------------------------------------------------------------------
    380   // Smi tagging, untagging and operations on tagged smis.
    381 
    382   // Support for constant splitting.
    383   bool IsUnsafeInt(const int32_t x);
    384   void SafeMove(Register dst, Smi* src);
    385   void SafePush(Smi* src);
    386 
    387   void InitializeSmiConstantRegister() {
    388     Move(kSmiConstantRegister, Smi::FromInt(kSmiConstantRegisterValue),
    389          Assembler::RelocInfoNone());
    390   }
    391 
    392   // Conversions between tagged smi values and non-tagged integer values.
    393 
    394   // Tag an integer value. The result must be known to be a valid smi value.
    395   // Only uses the low 32 bits of the src register. Sets the N and Z flags
    396   // based on the value of the resulting smi.
    397   void Integer32ToSmi(Register dst, Register src);
    398 
    399   // Stores an integer32 value into a memory field that already holds a smi.
    400   void Integer32ToSmiField(const Operand& dst, Register src);
    401 
    402   // Adds constant to src and tags the result as a smi.
    403   // Result must be a valid smi.
    404   void Integer64PlusConstantToSmi(Register dst, Register src, int constant);
    405 
    406   // Convert smi to 32-bit integer. I.e., not sign extended into
    407   // high 32 bits of destination.
    408   void SmiToInteger32(Register dst, Register src);
    409   void SmiToInteger32(Register dst, const Operand& src);
    410 
    411   // Convert smi to 64-bit integer (sign extended if necessary).
    412   void SmiToInteger64(Register dst, Register src);
    413   void SmiToInteger64(Register dst, const Operand& src);
    414 
    415   // Multiply a positive smi's integer value by a power of two.
    416   // Provides result as 64-bit integer value.
    417   void PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
    418                                              Register src,
    419                                              int power);
    420 
    421   // Divide a positive smi's integer value by a power of two.
    422   // Provides result as 32-bit integer value.
    423   void PositiveSmiDivPowerOfTwoToInteger32(Register dst,
    424                                            Register src,
    425                                            int power);
    426 
    427   // Perform the logical or of two smi values and return a smi value.
    428   // If either argument is not a smi, jump to on_not_smis and retain
    429   // the original values of source registers. The destination register
    430   // may be changed if it's not one of the source registers.
    431   void SmiOrIfSmis(Register dst,
    432                    Register src1,
    433                    Register src2,
    434                    Label* on_not_smis,
    435                    Label::Distance near_jump = Label::kFar);
    436 
    437 
    438   // Simple comparison of smis.  Both sides must be known smis to use these,
    439   // otherwise use Cmp.
    440   void SmiCompare(Register smi1, Register smi2);
    441   void SmiCompare(Register dst, Smi* src);
    442   void SmiCompare(Register dst, const Operand& src);
    443   void SmiCompare(const Operand& dst, Register src);
    444   void SmiCompare(const Operand& dst, Smi* src);
    445   // Compare the int32 in src register to the value of the smi stored at dst.
    446   void SmiCompareInteger32(const Operand& dst, Register src);
    447   // Sets sign and zero flags depending on value of smi in register.
    448   void SmiTest(Register src);
    449 
    450   // Functions performing a check on a known or potential smi. Returns
    451   // a condition that is satisfied if the check is successful.
    452 
    453   // Is the value a tagged smi.
    454   Condition CheckSmi(Register src);
    455   Condition CheckSmi(const Operand& src);
    456 
    457   // Is the value a non-negative tagged smi.
    458   Condition CheckNonNegativeSmi(Register src);
    459 
    460   // Are both values tagged smis.
    461   Condition CheckBothSmi(Register first, Register second);
    462 
    463   // Are both values non-negative tagged smis.
    464   Condition CheckBothNonNegativeSmi(Register first, Register second);
    465 
    466   // Are either value a tagged smi.
    467   Condition CheckEitherSmi(Register first,
    468                            Register second,
    469                            Register scratch = kScratchRegister);
    470 
    471   // Is the value the minimum smi value (since we are using
    472   // two's complement numbers, negating the value is known to yield
    473   // a non-smi value).
    474   Condition CheckIsMinSmi(Register src);
    475 
    476   // Checks whether an 32-bit integer value is a valid for conversion
    477   // to a smi.
    478   Condition CheckInteger32ValidSmiValue(Register src);
    479 
    480   // Checks whether an 32-bit unsigned integer value is a valid for
    481   // conversion to a smi.
    482   Condition CheckUInteger32ValidSmiValue(Register src);
    483 
    484   // Check whether src is a Smi, and set dst to zero if it is a smi,
    485   // and to one if it isn't.
    486   void CheckSmiToIndicator(Register dst, Register src);
    487   void CheckSmiToIndicator(Register dst, const Operand& src);
    488 
    489   // Test-and-jump functions. Typically combines a check function
    490   // above with a conditional jump.
    491 
    492   // Jump if the value can be represented by a smi.
    493   void JumpIfValidSmiValue(Register src, Label* on_valid,
    494                            Label::Distance near_jump = Label::kFar);
    495 
    496   // Jump if the value cannot be represented by a smi.
    497   void JumpIfNotValidSmiValue(Register src, Label* on_invalid,
    498                               Label::Distance near_jump = Label::kFar);
    499 
    500   // Jump if the unsigned integer value can be represented by a smi.
    501   void JumpIfUIntValidSmiValue(Register src, Label* on_valid,
    502                                Label::Distance near_jump = Label::kFar);
    503 
    504   // Jump if the unsigned integer value cannot be represented by a smi.
    505   void JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid,
    506                                   Label::Distance near_jump = Label::kFar);
    507 
    508   // Jump to label if the value is a tagged smi.
    509   void JumpIfSmi(Register src,
    510                  Label* on_smi,
    511                  Label::Distance near_jump = Label::kFar);
    512 
    513   // Jump to label if the value is not a tagged smi.
    514   void JumpIfNotSmi(Register src,
    515                     Label* on_not_smi,
    516                     Label::Distance near_jump = Label::kFar);
    517 
    518   // Jump to label if the value is not a non-negative tagged smi.
    519   void JumpUnlessNonNegativeSmi(Register src,
    520                                 Label* on_not_smi,
    521                                 Label::Distance near_jump = Label::kFar);
    522 
    523   // Jump to label if the value, which must be a tagged smi, has value equal
    524   // to the constant.
    525   void JumpIfSmiEqualsConstant(Register src,
    526                                Smi* constant,
    527                                Label* on_equals,
    528                                Label::Distance near_jump = Label::kFar);
    529 
    530   // Jump if either or both register are not smi values.
    531   void JumpIfNotBothSmi(Register src1,
    532                         Register src2,
    533                         Label* on_not_both_smi,
    534                         Label::Distance near_jump = Label::kFar);
    535 
    536   // Jump if either or both register are not non-negative smi values.
    537   void JumpUnlessBothNonNegativeSmi(Register src1, Register src2,
    538                                     Label* on_not_both_smi,
    539                                     Label::Distance near_jump = Label::kFar);
    540 
    541   // Operations on tagged smi values.
    542 
    543   // Smis represent a subset of integers. The subset is always equivalent to
    544   // a two's complement interpretation of a fixed number of bits.
    545 
    546   // Add an integer constant to a tagged smi, giving a tagged smi as result.
    547   // No overflow testing on the result is done.
    548   void SmiAddConstant(Register dst, Register src, Smi* constant);
    549 
    550   // Add an integer constant to a tagged smi, giving a tagged smi as result.
    551   // No overflow testing on the result is done.
    552   void SmiAddConstant(const Operand& dst, Smi* constant);
    553 
    554   // Add an integer constant to a tagged smi, giving a tagged smi as result,
    555   // or jumping to a label if the result cannot be represented by a smi.
    556   void SmiAddConstant(Register dst,
    557                       Register src,
    558                       Smi* constant,
    559                       SmiOperationExecutionMode mode,
    560                       Label* bailout_label,
    561                       Label::Distance near_jump = Label::kFar);
    562 
    563   // Subtract an integer constant from a tagged smi, giving a tagged smi as
    564   // result. No testing on the result is done. Sets the N and Z flags
    565   // based on the value of the resulting integer.
    566   void SmiSubConstant(Register dst, Register src, Smi* constant);
    567 
    568   // Subtract an integer constant from a tagged smi, giving a tagged smi as
    569   // result, or jumping to a label if the result cannot be represented by a smi.
    570   void SmiSubConstant(Register dst,
    571                       Register src,
    572                       Smi* constant,
    573                       SmiOperationExecutionMode mode,
    574                       Label* bailout_label,
    575                       Label::Distance near_jump = Label::kFar);
    576 
    577   // Negating a smi can give a negative zero or too large positive value.
    578   // NOTICE: This operation jumps on success, not failure!
    579   void SmiNeg(Register dst,
    580               Register src,
    581               Label* on_smi_result,
    582               Label::Distance near_jump = Label::kFar);
    583 
    584   // Adds smi values and return the result as a smi.
    585   // If dst is src1, then src1 will be destroyed if the operation is
    586   // successful, otherwise kept intact.
    587   void SmiAdd(Register dst,
    588               Register src1,
    589               Register src2,
    590               Label* on_not_smi_result,
    591               Label::Distance near_jump = Label::kFar);
    592   void SmiAdd(Register dst,
    593               Register src1,
    594               const Operand& src2,
    595               Label* on_not_smi_result,
    596               Label::Distance near_jump = Label::kFar);
    597 
    598   void SmiAdd(Register dst,
    599               Register src1,
    600               Register src2);
    601 
    602   // Subtracts smi values and return the result as a smi.
    603   // If dst is src1, then src1 will be destroyed if the operation is
    604   // successful, otherwise kept intact.
    605   void SmiSub(Register dst,
    606               Register src1,
    607               Register src2,
    608               Label* on_not_smi_result,
    609               Label::Distance near_jump = Label::kFar);
    610   void SmiSub(Register dst,
    611               Register src1,
    612               const Operand& src2,
    613               Label* on_not_smi_result,
    614               Label::Distance near_jump = Label::kFar);
    615 
    616   void SmiSub(Register dst,
    617               Register src1,
    618               Register src2);
    619 
    620   void SmiSub(Register dst,
    621               Register src1,
    622               const Operand& src2);
    623 
    624   // Multiplies smi values and return the result as a smi,
    625   // if possible.
    626   // If dst is src1, then src1 will be destroyed, even if
    627   // the operation is unsuccessful.
    628   void SmiMul(Register dst,
    629               Register src1,
    630               Register src2,
    631               Label* on_not_smi_result,
    632               Label::Distance near_jump = Label::kFar);
    633 
    634   // Divides one smi by another and returns the quotient.
    635   // Clobbers rax and rdx registers.
    636   void SmiDiv(Register dst,
    637               Register src1,
    638               Register src2,
    639               Label* on_not_smi_result,
    640               Label::Distance near_jump = Label::kFar);
    641 
    642   // Divides one smi by another and returns the remainder.
    643   // Clobbers rax and rdx registers.
    644   void SmiMod(Register dst,
    645               Register src1,
    646               Register src2,
    647               Label* on_not_smi_result,
    648               Label::Distance near_jump = Label::kFar);
    649 
    650   // Bitwise operations.
    651   void SmiNot(Register dst, Register src);
    652   void SmiAnd(Register dst, Register src1, Register src2);
    653   void SmiOr(Register dst, Register src1, Register src2);
    654   void SmiXor(Register dst, Register src1, Register src2);
    655   void SmiAndConstant(Register dst, Register src1, Smi* constant);
    656   void SmiOrConstant(Register dst, Register src1, Smi* constant);
    657   void SmiXorConstant(Register dst, Register src1, Smi* constant);
    658 
    659   void SmiShiftLeftConstant(Register dst,
    660                             Register src,
    661                             int shift_value,
    662                             Label* on_not_smi_result = NULL,
    663                             Label::Distance near_jump = Label::kFar);
    664   void SmiShiftLogicalRightConstant(Register dst,
    665                                     Register src,
    666                                     int shift_value,
    667                                     Label* on_not_smi_result,
    668                                     Label::Distance near_jump = Label::kFar);
    669   void SmiShiftArithmeticRightConstant(Register dst,
    670                                        Register src,
    671                                        int shift_value);
    672 
    673   // Shifts a smi value to the left, and returns the result if that is a smi.
    674   // Uses and clobbers rcx, so dst may not be rcx.
    675   void SmiShiftLeft(Register dst,
    676                     Register src1,
    677                     Register src2,
    678                     Label* on_not_smi_result = NULL,
    679                     Label::Distance near_jump = Label::kFar);
    680   // Shifts a smi value to the right, shifting in zero bits at the top, and
    681   // returns the unsigned intepretation of the result if that is a smi.
    682   // Uses and clobbers rcx, so dst may not be rcx.
    683   void SmiShiftLogicalRight(Register dst,
    684                             Register src1,
    685                             Register src2,
    686                             Label* on_not_smi_result,
    687                             Label::Distance near_jump = Label::kFar);
    688   // Shifts a smi value to the right, sign extending the top, and
    689   // returns the signed intepretation of the result. That will always
    690   // be a valid smi value, since it's numerically smaller than the
    691   // original.
    692   // Uses and clobbers rcx, so dst may not be rcx.
    693   void SmiShiftArithmeticRight(Register dst,
    694                                Register src1,
    695                                Register src2);
    696 
    697   // Specialized operations
    698 
    699   // Select the non-smi register of two registers where exactly one is a
    700   // smi. If neither are smis, jump to the failure label.
    701   void SelectNonSmi(Register dst,
    702                     Register src1,
    703                     Register src2,
    704                     Label* on_not_smis,
    705                     Label::Distance near_jump = Label::kFar);
    706 
    707   // Converts, if necessary, a smi to a combination of number and
    708   // multiplier to be used as a scaled index.
    709   // The src register contains a *positive* smi value. The shift is the
    710   // power of two to multiply the index value by (e.g.
    711   // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
    712   // The returned index register may be either src or dst, depending
    713   // on what is most efficient. If src and dst are different registers,
    714   // src is always unchanged.
    715   SmiIndex SmiToIndex(Register dst, Register src, int shift);
    716 
    717   // Converts a positive smi to a negative index.
    718   SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift);
    719 
    720   // Add the value of a smi in memory to an int32 register.
    721   // Sets flags as a normal add.
    722   void AddSmiField(Register dst, const Operand& src);
    723 
    724   // Basic Smi operations.
    725   void Move(Register dst, Smi* source) {
    726     LoadSmiConstant(dst, source);
    727   }
    728 
    729   void Move(const Operand& dst, Smi* source) {
    730     Register constant = GetSmiConstant(source);
    731     movp(dst, constant);
    732   }
    733 
    734   void Push(Smi* smi);
    735 
    736   // Save away a raw integer with pointer size on the stack as two integers
    737   // masquerading as smis so that the garbage collector skips visiting them.
    738   void PushRegisterAsTwoSmis(Register src, Register scratch = kScratchRegister);
    739   // Reconstruct a raw integer with pointer size from two integers masquerading
    740   // as smis on the top of stack.
    741   void PopRegisterAsTwoSmis(Register dst, Register scratch = kScratchRegister);
    742 
    743   void Test(const Operand& dst, Smi* source);
    744 
    745 
    746   // ---------------------------------------------------------------------------
    747   // String macros.
    748 
    749   // Generate code to do a lookup in the number string cache. If the number in
    750   // the register object is found in the cache the generated code falls through
    751   // with the result in the result register. The object and the result register
    752   // can be the same. If the number is not found in the cache the code jumps to
    753   // the label not_found with only the content of register object unchanged.
    754   void LookupNumberStringCache(Register object,
    755                                Register result,
    756                                Register scratch1,
    757                                Register scratch2,
    758                                Label* not_found);
    759 
    760   // If object is a string, its map is loaded into object_map.
    761   void JumpIfNotString(Register object,
    762                        Register object_map,
    763                        Label* not_string,
    764                        Label::Distance near_jump = Label::kFar);
    765 
    766 
    767   void JumpIfNotBothSequentialAsciiStrings(
    768       Register first_object,
    769       Register second_object,
    770       Register scratch1,
    771       Register scratch2,
    772       Label* on_not_both_flat_ascii,
    773       Label::Distance near_jump = Label::kFar);
    774 
    775   // Check whether the instance type represents a flat ASCII string. Jump to the
    776   // label if not. If the instance type can be scratched specify same register
    777   // for both instance type and scratch.
    778   void JumpIfInstanceTypeIsNotSequentialAscii(
    779       Register instance_type,
    780       Register scratch,
    781       Label*on_not_flat_ascii_string,
    782       Label::Distance near_jump = Label::kFar);
    783 
    784   void JumpIfBothInstanceTypesAreNotSequentialAscii(
    785       Register first_object_instance_type,
    786       Register second_object_instance_type,
    787       Register scratch1,
    788       Register scratch2,
    789       Label* on_fail,
    790       Label::Distance near_jump = Label::kFar);
    791 
    792   void EmitSeqStringSetCharCheck(Register string,
    793                                  Register index,
    794                                  Register value,
    795                                  uint32_t encoding_mask);
    796 
    797   // Checks if the given register or operand is a unique name
    798   void JumpIfNotUniqueName(Register reg, Label* not_unique_name,
    799                            Label::Distance distance = Label::kFar);
    800   void JumpIfNotUniqueName(Operand operand, Label* not_unique_name,
    801                            Label::Distance distance = Label::kFar);
    802 
    803   // ---------------------------------------------------------------------------
    804   // Macro instructions.
    805 
    806   // Load/store with specific representation.
    807   void Load(Register dst, const Operand& src, Representation r);
    808   void Store(const Operand& dst, Register src, Representation r);
    809 
    810   // Load a register with a long value as efficiently as possible.
    811   void Set(Register dst, int64_t x);
    812   void Set(const Operand& dst, intptr_t x);
    813 
    814   // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
    815   // hinders register renaming and makes dependence chains longer. So we use
    816   // xorps to clear the dst register before cvtsi2sd to solve this issue.
    817   void Cvtlsi2sd(XMMRegister dst, Register src);
    818   void Cvtlsi2sd(XMMRegister dst, const Operand& src);
    819 
    820   // Move if the registers are not identical.
    821   void Move(Register target, Register source);
    822 
    823   // TestBit and Load SharedFunctionInfo special field.
    824   void TestBitSharedFunctionInfoSpecialField(Register base,
    825                                              int offset,
    826                                              int bit_index);
    827   void LoadSharedFunctionInfoSpecialField(Register dst,
    828                                           Register base,
    829                                           int offset);
    830 
    831   // Handle support
    832   void Move(Register dst, Handle<Object> source);
    833   void Move(const Operand& dst, Handle<Object> source);
    834   void Cmp(Register dst, Handle<Object> source);
    835   void Cmp(const Operand& dst, Handle<Object> source);
    836   void Cmp(Register dst, Smi* src);
    837   void Cmp(const Operand& dst, Smi* src);
    838   void Push(Handle<Object> source);
    839 
    840   // Load a heap object and handle the case of new-space objects by
    841   // indirecting via a global cell.
    842   void MoveHeapObject(Register result, Handle<Object> object);
    843 
    844   // Load a global cell into a register.
    845   void LoadGlobalCell(Register dst, Handle<Cell> cell);
    846 
    847   // Emit code to discard a non-negative number of pointer-sized elements
    848   // from the stack, clobbering only the rsp register.
    849   void Drop(int stack_elements);
    850   // Emit code to discard a positive number of pointer-sized elements
    851   // from the stack under the return address which remains on the top,
    852   // clobbering the rsp register.
    853   void DropUnderReturnAddress(int stack_elements,
    854                               Register scratch = kScratchRegister);
    855 
    856   void Call(Label* target) { call(target); }
    857   void Push(Register src);
    858   void Push(const Operand& src);
    859   void PushQuad(const Operand& src);
    860   void Push(Immediate value);
    861   void PushImm32(int32_t imm32);
    862   void Pop(Register dst);
    863   void Pop(const Operand& dst);
    864   void PopQuad(const Operand& dst);
    865   void PushReturnAddressFrom(Register src) { pushq(src); }
    866   void PopReturnAddressTo(Register dst) { popq(dst); }
    867   void Move(Register dst, ExternalReference ext) {
    868     movp(dst, reinterpret_cast<void*>(ext.address()),
    869          RelocInfo::EXTERNAL_REFERENCE);
    870   }
    871 
    872   // Loads a pointer into a register with a relocation mode.
    873   void Move(Register dst, void* ptr, RelocInfo::Mode rmode) {
    874     // This method must not be used with heap object references. The stored
    875     // address is not GC safe. Use the handle version instead.
    876     ASSERT(rmode > RelocInfo::LAST_GCED_ENUM);
    877     movp(dst, ptr, rmode);
    878   }
    879 
    880   void Move(Register dst, Handle<Object> value, RelocInfo::Mode rmode) {
    881     AllowDeferredHandleDereference using_raw_address;
    882     ASSERT(!RelocInfo::IsNone(rmode));
    883     ASSERT(value->IsHeapObject());
    884     ASSERT(!isolate()->heap()->InNewSpace(*value));
    885     movp(dst, reinterpret_cast<void*>(value.location()), rmode);
    886   }
    887 
    888   // Control Flow
    889   void Jump(Address destination, RelocInfo::Mode rmode);
    890   void Jump(ExternalReference ext);
    891   void Jump(const Operand& op);
    892   void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);
    893 
    894   void Call(Address destination, RelocInfo::Mode rmode);
    895   void Call(ExternalReference ext);
    896   void Call(const Operand& op);
    897   void Call(Handle<Code> code_object,
    898             RelocInfo::Mode rmode,
    899             TypeFeedbackId ast_id = TypeFeedbackId::None());
    900 
    901   // The size of the code generated for different call instructions.
    902   int CallSize(Address destination) {
    903     return kCallSequenceLength;
    904   }
    905   int CallSize(ExternalReference ext);
    906   int CallSize(Handle<Code> code_object) {
    907     // Code calls use 32-bit relative addressing.
    908     return kShortCallInstructionLength;
    909   }
    910   int CallSize(Register target) {
    911     // Opcode: REX_opt FF /2 m64
    912     return (target.high_bit() != 0) ? 3 : 2;
    913   }
    914   int CallSize(const Operand& target) {
    915     // Opcode: REX_opt FF /2 m64
    916     return (target.requires_rex() ? 2 : 1) + target.operand_size();
    917   }
    918 
    919   // Emit call to the code we are currently generating.
    920   void CallSelf() {
    921     Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
    922     Call(self, RelocInfo::CODE_TARGET);
    923   }
    924 
    925   // Non-x64 instructions.
    926   // Push/pop all general purpose registers.
    927   // Does not push rsp/rbp nor any of the assembler's special purpose registers
    928   // (kScratchRegister, kSmiConstantRegister, kRootRegister).
    929   void Pushad();
    930   void Popad();
    931   // Sets the stack as after performing Popad, without actually loading the
    932   // registers.
    933   void Dropad();
    934 
    935   // Compare object type for heap object.
    936   // Always use unsigned comparisons: above and below, not less and greater.
    937   // Incoming register is heap_object and outgoing register is map.
    938   // They may be the same register, and may be kScratchRegister.
    939   void CmpObjectType(Register heap_object, InstanceType type, Register map);
    940 
    941   // Compare instance type for map.
    942   // Always use unsigned comparisons: above and below, not less and greater.
    943   void CmpInstanceType(Register map, InstanceType type);
    944 
    945   // Check if a map for a JSObject indicates that the object has fast elements.
    946   // Jump to the specified label if it does not.
    947   void CheckFastElements(Register map,
    948                          Label* fail,
    949                          Label::Distance distance = Label::kFar);
    950 
    951   // Check if a map for a JSObject indicates that the object can have both smi
    952   // and HeapObject elements.  Jump to the specified label if it does not.
    953   void CheckFastObjectElements(Register map,
    954                                Label* fail,
    955                                Label::Distance distance = Label::kFar);
    956 
    957   // Check if a map for a JSObject indicates that the object has fast smi only
    958   // elements.  Jump to the specified label if it does not.
    959   void CheckFastSmiElements(Register map,
    960                             Label* fail,
    961                             Label::Distance distance = Label::kFar);
    962 
    963   // Check to see if maybe_number can be stored as a double in
    964   // FastDoubleElements. If it can, store it at the index specified by index in
    965   // the FastDoubleElements array elements, otherwise jump to fail.  Note that
    966   // index must not be smi-tagged.
    967   void StoreNumberToDoubleElements(Register maybe_number,
    968                                    Register elements,
    969                                    Register index,
    970                                    XMMRegister xmm_scratch,
    971                                    Label* fail,
    972                                    int elements_offset = 0);
    973 
    974   // Compare an object's map with the specified map.
    975   void CompareMap(Register obj, Handle<Map> map);
    976 
    977   // Check if the map of an object is equal to a specified map and branch to
    978   // label if not. Skip the smi check if not required (object is known to be a
    979   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
    980   // against maps that are ElementsKind transition maps of the specified map.
    981   void CheckMap(Register obj,
    982                 Handle<Map> map,
    983                 Label* fail,
    984                 SmiCheckType smi_check_type);
    985 
    986   // Check if the map of an object is equal to a specified map and branch to a
    987   // specified target if equal. Skip the smi check if not required (object is
    988   // known to be a heap object)
    989   void DispatchMap(Register obj,
    990                    Register unused,
    991                    Handle<Map> map,
    992                    Handle<Code> success,
    993                    SmiCheckType smi_check_type);
    994 
    995   // Check if the object in register heap_object is a string. Afterwards the
    996   // register map contains the object map and the register instance_type
    997   // contains the instance_type. The registers map and instance_type can be the
    998   // same in which case it contains the instance type afterwards. Either of the
    999   // registers map and instance_type can be the same as heap_object.
   1000   Condition IsObjectStringType(Register heap_object,
   1001                                Register map,
   1002                                Register instance_type);
   1003 
   1004   // Check if the object in register heap_object is a name. Afterwards the
   1005   // register map contains the object map and the register instance_type
   1006   // contains the instance_type. The registers map and instance_type can be the
   1007   // same in which case it contains the instance type afterwards. Either of the
   1008   // registers map and instance_type can be the same as heap_object.
   1009   Condition IsObjectNameType(Register heap_object,
   1010                              Register map,
   1011                              Register instance_type);
   1012 
   1013   // FCmp compares and pops the two values on top of the FPU stack.
   1014   // The flag results are similar to integer cmp, but requires unsigned
   1015   // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
   1016   void FCmp();
   1017 
   1018   void ClampUint8(Register reg);
   1019 
   1020   void ClampDoubleToUint8(XMMRegister input_reg,
   1021                           XMMRegister temp_xmm_reg,
   1022                           Register result_reg);
   1023 
   1024   void SlowTruncateToI(Register result_reg, Register input_reg,
   1025       int offset = HeapNumber::kValueOffset - kHeapObjectTag);
   1026 
   1027   void TruncateHeapNumberToI(Register result_reg, Register input_reg);
   1028   void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
   1029 
   1030   void DoubleToI(Register result_reg, XMMRegister input_reg,
   1031       XMMRegister scratch, MinusZeroMode minus_zero_mode,
   1032       Label* conversion_failed, Label::Distance dst = Label::kFar);
   1033 
   1034   void TaggedToI(Register result_reg, Register input_reg, XMMRegister temp,
   1035       MinusZeroMode minus_zero_mode, Label* lost_precision,
   1036       Label::Distance dst = Label::kFar);
   1037 
   1038   void LoadUint32(XMMRegister dst, Register src);
   1039 
   1040   void LoadInstanceDescriptors(Register map, Register descriptors);
   1041   void EnumLength(Register dst, Register map);
   1042   void NumberOfOwnDescriptors(Register dst, Register map);
   1043 
   1044   template<typename Field>
   1045   void DecodeField(Register reg) {
   1046     static const int shift = Field::kShift;
   1047     static const int mask = Field::kMask >> Field::kShift;
   1048     if (shift != 0) {
   1049       shrp(reg, Immediate(shift));
   1050     }
   1051     andp(reg, Immediate(mask));
   1052   }
   1053 
   1054   template<typename Field>
   1055   void DecodeFieldToSmi(Register reg) {
   1056     if (SmiValuesAre32Bits()) {
   1057       andp(reg, Immediate(Field::kMask));
   1058       shlp(reg, Immediate(kSmiShift - Field::kShift));
   1059     } else {
   1060       static const int shift = Field::kShift;
   1061       static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
   1062       ASSERT(SmiValuesAre31Bits());
   1063       ASSERT(kSmiShift == kSmiTagSize);
   1064       ASSERT((mask & 0x80000000u) == 0);
   1065       if (shift < kSmiShift) {
   1066         shlp(reg, Immediate(kSmiShift - shift));
   1067       } else if (shift > kSmiShift) {
   1068         sarp(reg, Immediate(shift - kSmiShift));
   1069       }
   1070       andp(reg, Immediate(mask));
   1071     }
   1072   }
   1073 
   1074   // Abort execution if argument is not a number, enabled via --debug-code.
   1075   void AssertNumber(Register object);
   1076 
   1077   // Abort execution if argument is a smi, enabled via --debug-code.
   1078   void AssertNotSmi(Register object);
   1079 
   1080   // Abort execution if argument is not a smi, enabled via --debug-code.
   1081   void AssertSmi(Register object);
   1082   void AssertSmi(const Operand& object);
   1083 
   1084   // Abort execution if a 64 bit register containing a 32 bit payload does not
   1085   // have zeros in the top 32 bits, enabled via --debug-code.
   1086   void AssertZeroExtended(Register reg);
   1087 
   1088   // Abort execution if argument is not a string, enabled via --debug-code.
   1089   void AssertString(Register object);
   1090 
   1091   // Abort execution if argument is not a name, enabled via --debug-code.
   1092   void AssertName(Register object);
   1093 
   1094   // Abort execution if argument is not undefined or an AllocationSite, enabled
   1095   // via --debug-code.
   1096   void AssertUndefinedOrAllocationSite(Register object);
   1097 
   1098   // Abort execution if argument is not the root value with the given index,
   1099   // enabled via --debug-code.
   1100   void AssertRootValue(Register src,
   1101                        Heap::RootListIndex root_value_index,
   1102                        BailoutReason reason);
   1103 
   1104   // ---------------------------------------------------------------------------
   1105   // Exception handling
   1106 
   1107   // Push a new try handler and link it into try handler chain.
   1108   void PushTryHandler(StackHandler::Kind kind, int handler_index);
   1109 
   1110   // Unlink the stack handler on top of the stack from the try handler chain.
   1111   void PopTryHandler();
   1112 
   1113   // Activate the top handler in the try hander chain and pass the
   1114   // thrown value.
   1115   void Throw(Register value);
   1116 
   1117   // Propagate an uncatchable exception out of the current JS stack.
   1118   void ThrowUncatchable(Register value);
   1119 
   1120   // ---------------------------------------------------------------------------
   1121   // Inline caching support
   1122 
   1123   // Generate code for checking access rights - used for security checks
   1124   // on access to global objects across environments. The holder register
   1125   // is left untouched, but the scratch register and kScratchRegister,
   1126   // which must be different, are clobbered.
   1127   void CheckAccessGlobalProxy(Register holder_reg,
   1128                               Register scratch,
   1129                               Label* miss);
   1130 
   1131   void GetNumberHash(Register r0, Register scratch);
   1132 
   1133   void LoadFromNumberDictionary(Label* miss,
   1134                                 Register elements,
   1135                                 Register key,
   1136                                 Register r0,
   1137                                 Register r1,
   1138                                 Register r2,
   1139                                 Register result);
   1140 
   1141 
   1142   // ---------------------------------------------------------------------------
   1143   // Allocation support
   1144 
   1145   // Allocate an object in new space or old pointer space. If the given space
   1146   // is exhausted control continues at the gc_required label. The allocated
   1147   // object is returned in result and end of the new object is returned in
   1148   // result_end. The register scratch can be passed as no_reg in which case
   1149   // an additional object reference will be added to the reloc info. The
   1150   // returned pointers in result and result_end have not yet been tagged as
   1151   // heap objects. If result_contains_top_on_entry is true the content of
   1152   // result is known to be the allocation top on entry (could be result_end
   1153   // from a previous call). If result_contains_top_on_entry is true scratch
   1154   // should be no_reg as it is never used.
   1155   void Allocate(int object_size,
   1156                 Register result,
   1157                 Register result_end,
   1158                 Register scratch,
   1159                 Label* gc_required,
   1160                 AllocationFlags flags);
   1161 
   1162   void Allocate(int header_size,
   1163                 ScaleFactor element_size,
   1164                 Register element_count,
   1165                 Register result,
   1166                 Register result_end,
   1167                 Register scratch,
   1168                 Label* gc_required,
   1169                 AllocationFlags flags);
   1170 
   1171   void Allocate(Register object_size,
   1172                 Register result,
   1173                 Register result_end,
   1174                 Register scratch,
   1175                 Label* gc_required,
   1176                 AllocationFlags flags);
   1177 
   1178   // Undo allocation in new space. The object passed and objects allocated after
   1179   // it will no longer be allocated. Make sure that no pointers are left to the
   1180   // object(s) no longer allocated as they would be invalid when allocation is
   1181   // un-done.
   1182   void UndoAllocationInNewSpace(Register object);
   1183 
   1184   // Allocate a heap number in new space with undefined value. Returns
   1185   // tagged pointer in result register, or jumps to gc_required if new
   1186   // space is full.
   1187   void AllocateHeapNumber(Register result,
   1188                           Register scratch,
   1189                           Label* gc_required);
   1190 
   1191   // Allocate a sequential string. All the header fields of the string object
   1192   // are initialized.
   1193   void AllocateTwoByteString(Register result,
   1194                              Register length,
   1195                              Register scratch1,
   1196                              Register scratch2,
   1197                              Register scratch3,
   1198                              Label* gc_required);
   1199   void AllocateAsciiString(Register result,
   1200                            Register length,
   1201                            Register scratch1,
   1202                            Register scratch2,
   1203                            Register scratch3,
   1204                            Label* gc_required);
   1205 
   1206   // Allocate a raw cons string object. Only the map field of the result is
   1207   // initialized.
   1208   void AllocateTwoByteConsString(Register result,
   1209                           Register scratch1,
   1210                           Register scratch2,
   1211                           Label* gc_required);
   1212   void AllocateAsciiConsString(Register result,
   1213                                Register scratch1,
   1214                                Register scratch2,
   1215                                Label* gc_required);
   1216 
   1217   // Allocate a raw sliced string object. Only the map field of the result is
   1218   // initialized.
   1219   void AllocateTwoByteSlicedString(Register result,
   1220                             Register scratch1,
   1221                             Register scratch2,
   1222                             Label* gc_required);
   1223   void AllocateAsciiSlicedString(Register result,
   1224                                  Register scratch1,
   1225                                  Register scratch2,
   1226                                  Label* gc_required);
   1227 
   1228   // ---------------------------------------------------------------------------
   1229   // Support functions.
   1230 
   1231   // Check if result is zero and op is negative.
   1232   void NegativeZeroTest(Register result, Register op, Label* then_label);
   1233 
   1234   // Check if result is zero and op is negative in code using jump targets.
   1235   void NegativeZeroTest(CodeGenerator* cgen,
   1236                         Register result,
   1237                         Register op,
   1238                         JumpTarget* then_target);
   1239 
   1240   // Check if result is zero and any of op1 and op2 are negative.
   1241   // Register scratch is destroyed, and it must be different from op2.
   1242   void NegativeZeroTest(Register result, Register op1, Register op2,
   1243                         Register scratch, Label* then_label);
   1244 
   1245   // Try to get function prototype of a function and puts the value in
   1246   // the result register. Checks that the function really is a
   1247   // function and jumps to the miss label if the fast checks fail. The
   1248   // function register will be untouched; the other register may be
   1249   // clobbered.
   1250   void TryGetFunctionPrototype(Register function,
   1251                                Register result,
   1252                                Label* miss,
   1253                                bool miss_on_bound_function = false);
   1254 
   1255   // Picks out an array index from the hash field.
   1256   // Register use:
   1257   //   hash - holds the index's hash. Clobbered.
   1258   //   index - holds the overwritten index on exit.
   1259   void IndexFromHash(Register hash, Register index);
   1260 
   1261   // Find the function context up the context chain.
   1262   void LoadContext(Register dst, int context_chain_length);
   1263 
   1264   // Conditionally load the cached Array transitioned map of type
   1265   // transitioned_kind from the native context if the map in register
   1266   // map_in_out is the cached Array map in the native context of
   1267   // expected_kind.
   1268   void LoadTransitionedArrayMapConditional(
   1269       ElementsKind expected_kind,
   1270       ElementsKind transitioned_kind,
   1271       Register map_in_out,
   1272       Register scratch,
   1273       Label* no_map_match);
   1274 
   1275   // Load the global function with the given index.
   1276   void LoadGlobalFunction(int index, Register function);
   1277 
   1278   // Load the initial map from the global function. The registers
   1279   // function and map can be the same.
   1280   void LoadGlobalFunctionInitialMap(Register function, Register map);
   1281 
   1282   // ---------------------------------------------------------------------------
   1283   // Runtime calls
   1284 
   1285   // Call a code stub.
   1286   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
   1287 
   1288   // Tail call a code stub (jump).
   1289   void TailCallStub(CodeStub* stub);
   1290 
   1291   // Return from a code stub after popping its arguments.
   1292   void StubReturn(int argc);
   1293 
   1294   // Call a runtime routine.
   1295   void CallRuntime(const Runtime::Function* f,
   1296                    int num_arguments,
   1297                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
   1298 
   1299   // Call a runtime function and save the value of XMM registers.
   1300   void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
   1301     const Runtime::Function* function = Runtime::FunctionForId(id);
   1302     CallRuntime(function, function->nargs, kSaveFPRegs);
   1303   }
   1304 
   1305   // Convenience function: Same as above, but takes the fid instead.
   1306   void CallRuntime(Runtime::FunctionId id,
   1307                    int num_arguments,
   1308                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
   1309     CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
   1310   }
   1311 
   1312   // Convenience function: call an external reference.
   1313   void CallExternalReference(const ExternalReference& ext,
   1314                              int num_arguments);
   1315 
   1316   // Tail call of a runtime routine (jump).
   1317   // Like JumpToExternalReference, but also takes care of passing the number
   1318   // of parameters.
   1319   void TailCallExternalReference(const ExternalReference& ext,
   1320                                  int num_arguments,
   1321                                  int result_size);
   1322 
   1323   // Convenience function: tail call a runtime routine (jump).
   1324   void TailCallRuntime(Runtime::FunctionId fid,
   1325                        int num_arguments,
   1326                        int result_size);
   1327 
   1328   // Jump to a runtime routine.
   1329   void JumpToExternalReference(const ExternalReference& ext, int result_size);
   1330 
   1331   // Prepares stack to put arguments (aligns and so on).  WIN64 calling
   1332   // convention requires to put the pointer to the return value slot into
   1333   // rcx (rcx must be preserverd until CallApiFunctionAndReturn).  Saves
   1334   // context (rsi).  Clobbers rax.  Allocates arg_stack_space * kPointerSize
   1335   // inside the exit frame (not GCed) accessible via StackSpaceOperand.
   1336   void PrepareCallApiFunction(int arg_stack_space);
   1337 
   1338   // Calls an API function.  Allocates HandleScope, extracts returned value
   1339   // from handle and propagates exceptions.  Clobbers r14, r15, rbx and
   1340   // caller-save registers.  Restores context.  On return removes
   1341   // stack_space * kPointerSize (GCed).
   1342   void CallApiFunctionAndReturn(Register function_address,
   1343                                 ExternalReference thunk_ref,
   1344                                 Register thunk_last_arg,
   1345                                 int stack_space,
   1346                                 Operand return_value_operand,
   1347                                 Operand* context_restore_operand);
   1348 
   1349   // Before calling a C-function from generated code, align arguments on stack.
   1350   // After aligning the frame, arguments must be stored in rsp[0], rsp[8],
   1351   // etc., not pushed. The argument count assumes all arguments are word sized.
   1352   // The number of slots reserved for arguments depends on platform. On Windows
   1353   // stack slots are reserved for the arguments passed in registers. On other
   1354   // platforms stack slots are only reserved for the arguments actually passed
   1355   // on the stack.
   1356   void PrepareCallCFunction(int num_arguments);
   1357 
   1358   // Calls a C function and cleans up the space for arguments allocated
   1359   // by PrepareCallCFunction. The called function is not allowed to trigger a
   1360   // garbage collection, since that might move the code and invalidate the
   1361   // return address (unless this is somehow accounted for by the called
   1362   // function).
   1363   void CallCFunction(ExternalReference function, int num_arguments);
   1364   void CallCFunction(Register function, int num_arguments);
   1365 
   1366   // Calculate the number of stack slots to reserve for arguments when calling a
   1367   // C function.
   1368   int ArgumentStackSlotsForCFunctionCall(int num_arguments);
   1369 
   1370   // ---------------------------------------------------------------------------
   1371   // Utilities
   1372 
   1373   void Ret();
   1374 
   1375   // Return and drop arguments from stack, where the number of arguments
   1376   // may be bigger than 2^16 - 1.  Requires a scratch register.
   1377   void Ret(int bytes_dropped, Register scratch);
   1378 
   1379   Handle<Object> CodeObject() {
   1380     ASSERT(!code_object_.is_null());
   1381     return code_object_;
   1382   }
   1383 
   1384   // Copy length bytes from source to destination.
   1385   // Uses scratch register internally (if you have a low-eight register
   1386   // free, do use it, otherwise kScratchRegister will be used).
   1387   // The min_length is a minimum limit on the value that length will have.
   1388   // The algorithm has some special cases that might be omitted if the string
   1389   // is known to always be long.
   1390   void CopyBytes(Register destination,
   1391                  Register source,
   1392                  Register length,
   1393                  int min_length = 0,
   1394                  Register scratch = kScratchRegister);
   1395 
   1396   // Initialize fields with filler values.  Fields starting at |start_offset|
   1397   // not including end_offset are overwritten with the value in |filler|.  At
   1398   // the end the loop, |start_offset| takes the value of |end_offset|.
   1399   void InitializeFieldsWithFiller(Register start_offset,
   1400                                   Register end_offset,
   1401                                   Register filler);
   1402 
   1403 
   1404   // Emit code for a truncating division by a constant. The dividend register is
   1405   // unchanged, the result is in rdx, and rax gets clobbered.
   1406   void TruncatingDiv(Register dividend, int32_t divisor);
   1407 
   1408   // ---------------------------------------------------------------------------
   1409   // StatsCounter support
   1410 
   1411   void SetCounter(StatsCounter* counter, int value);
   1412   void IncrementCounter(StatsCounter* counter, int value);
   1413   void DecrementCounter(StatsCounter* counter, int value);
   1414 
   1415 
   1416   // ---------------------------------------------------------------------------
   1417   // Debugging
   1418 
   1419   // Calls Abort(msg) if the condition cc is not satisfied.
   1420   // Use --debug_code to enable.
   1421   void Assert(Condition cc, BailoutReason reason);
   1422 
   1423   void AssertFastElements(Register elements);
   1424 
   1425   // Like Assert(), but always enabled.
   1426   void Check(Condition cc, BailoutReason reason);
   1427 
   1428   // Print a message to stdout and abort execution.
   1429   void Abort(BailoutReason msg);
   1430 
   1431   // Check that the stack is aligned.
   1432   void CheckStackAlignment();
   1433 
   1434   // Verify restrictions about code generated in stubs.
   1435   void set_generating_stub(bool value) { generating_stub_ = value; }
   1436   bool generating_stub() { return generating_stub_; }
   1437   void set_has_frame(bool value) { has_frame_ = value; }
   1438   bool has_frame() { return has_frame_; }
   1439   inline bool AllowThisStubCall(CodeStub* stub);
   1440 
   1441   static int SafepointRegisterStackIndex(Register reg) {
   1442     return SafepointRegisterStackIndex(reg.code());
   1443   }
   1444 
   1445   // Activation support.
   1446   void EnterFrame(StackFrame::Type type);
   1447   void LeaveFrame(StackFrame::Type type);
   1448 
   1449   // Expects object in rax and returns map with validated enum cache
   1450   // in rax.  Assumes that any other register can be used as a scratch.
   1451   void CheckEnumCache(Register null_value,
   1452                       Label* call_runtime);
   1453 
   1454   // AllocationMemento support. Arrays may have an associated
   1455   // AllocationMemento object that can be checked for in order to pretransition
   1456   // to another type.
   1457   // On entry, receiver_reg should point to the array object.
   1458   // scratch_reg gets clobbered.
   1459   // If allocation info is present, condition flags are set to equal.
   1460   void TestJSArrayForAllocationMemento(Register receiver_reg,
   1461                                        Register scratch_reg,
   1462                                        Label* no_memento_found);
   1463 
   1464   void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
   1465                                          Register scratch_reg,
   1466                                          Label* memento_found) {
   1467     Label no_memento_found;
   1468     TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
   1469                                     &no_memento_found);
   1470     j(equal, memento_found);
   1471     bind(&no_memento_found);
   1472   }
   1473 
   1474   // Jumps to found label if a prototype map has dictionary elements.
   1475   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
   1476                                         Register scratch1, Label* found);
   1477 
   1478  private:
   1479   // Order general registers are pushed by Pushad.
   1480   // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15.
   1481   static const int kSafepointPushRegisterIndices[Register::kNumRegisters];
   1482   static const int kNumSafepointSavedRegisters = 11;
   1483   static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
   1484 
   1485   bool generating_stub_;
   1486   bool has_frame_;
   1487   bool root_array_available_;
   1488 
   1489   // Returns a register holding the smi value. The register MUST NOT be
   1490   // modified. It may be the "smi 1 constant" register.
   1491   Register GetSmiConstant(Smi* value);
   1492 
   1493   int64_t RootRegisterDelta(ExternalReference other);
   1494 
   1495   // Moves the smi value to the destination register.
   1496   void LoadSmiConstant(Register dst, Smi* value);
   1497 
   1498   // This handle will be patched with the code object on installation.
   1499   Handle<Object> code_object_;
   1500 
   1501   // Helper functions for generating invokes.
   1502   void InvokePrologue(const ParameterCount& expected,
   1503                       const ParameterCount& actual,
   1504                       Handle<Code> code_constant,
   1505                       Register code_register,
   1506                       Label* done,
   1507                       bool* definitely_mismatches,
   1508                       InvokeFlag flag,
   1509                       Label::Distance near_jump = Label::kFar,
   1510                       const CallWrapper& call_wrapper = NullCallWrapper());
   1511 
   1512   void EnterExitFramePrologue(bool save_rax);
   1513 
   1514   // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
   1515   // accessible via StackSpaceOperand.
   1516   void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);
   1517 
   1518   void LeaveExitFrameEpilogue(bool restore_context);
   1519 
   1520   // Allocation support helpers.
   1521   // Loads the top of new-space into the result register.
   1522   // Otherwise the address of the new-space top is loaded into scratch (if
   1523   // scratch is valid), and the new-space top is loaded into result.
   1524   void LoadAllocationTopHelper(Register result,
   1525                                Register scratch,
   1526                                AllocationFlags flags);
   1527 
   1528   void MakeSureDoubleAlignedHelper(Register result,
   1529                                    Register scratch,
   1530                                    Label* gc_required,
   1531                                    AllocationFlags flags);
   1532 
   1533   // Update allocation top with value in result_end register.
   1534   // If scratch is valid, it contains the address of the allocation top.
   1535   void UpdateAllocationTopHelper(Register result_end,
   1536                                  Register scratch,
   1537                                  AllocationFlags flags);
   1538 
   1539   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
   1540   void InNewSpace(Register object,
   1541                   Register scratch,
   1542                   Condition cc,
   1543                   Label* branch,
   1544                   Label::Distance distance = Label::kFar);
   1545 
   1546   // Helper for finding the mark bits for an address.  Afterwards, the
   1547   // bitmap register points at the word with the mark bits and the mask
   1548   // the position of the first bit.  Uses rcx as scratch and leaves addr_reg
   1549   // unchanged.
   1550   inline void GetMarkBits(Register addr_reg,
   1551                           Register bitmap_reg,
   1552                           Register mask_reg);
   1553 
   1554   // Helper for throwing exceptions.  Compute a handler address and jump to
   1555   // it.  See the implementation for register usage.
   1556   void JumpToHandlerEntry();
   1557 
   1558   // Compute memory operands for safepoint stack slots.
   1559   Operand SafepointRegisterSlot(Register reg);
   1560   static int SafepointRegisterStackIndex(int reg_code) {
   1561     return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1;
   1562   }
   1563 
   1564   // Needs access to SafepointRegisterStackIndex for compiled frame
   1565   // traversal.
   1566   friend class StandardFrame;
   1567 };
   1568 
   1569 
   1570 // The code patcher is used to patch (typically) small parts of code e.g. for
   1571 // debugging and other types of instrumentation. When using the code patcher
   1572 // the exact number of bytes specified must be emitted. Is not legal to emit
   1573 // relocation information. If any of these constraints are violated it causes
   1574 // an assertion.
   1575 class CodePatcher {
   1576  public:
   1577   CodePatcher(byte* address, int size);
   1578   virtual ~CodePatcher();
   1579 
   1580   // Macro assembler to emit code.
   1581   MacroAssembler* masm() { return &masm_; }
   1582 
   1583  private:
   1584   byte* address_;  // The address of the code being patched.
   1585   int size_;  // Number of bytes of the expected patch size.
   1586   MacroAssembler masm_;  // Macro assembler used to generate the code.
   1587 };
   1588 
   1589 
   1590 // -----------------------------------------------------------------------------
   1591 // Static helper functions.
   1592 
   1593 // Generate an Operand for loading a field from an object.
   1594 inline Operand FieldOperand(Register object, int offset) {
   1595   return Operand(object, offset - kHeapObjectTag);
   1596 }
   1597 
   1598 
   1599 // Generate an Operand for loading an indexed field from an object.
   1600 inline Operand FieldOperand(Register object,
   1601                             Register index,
   1602                             ScaleFactor scale,
   1603                             int offset) {
   1604   return Operand(object, index, scale, offset - kHeapObjectTag);
   1605 }
   1606 
   1607 
   1608 inline Operand ContextOperand(Register context, int index) {
   1609   return Operand(context, Context::SlotOffset(index));
   1610 }
   1611 
   1612 
   1613 inline Operand GlobalObjectOperand() {
   1614   return ContextOperand(rsi, Context::GLOBAL_OBJECT_INDEX);
   1615 }
   1616 
   1617 
   1618 // Provides access to exit frame stack space (not GCed).
   1619 inline Operand StackSpaceOperand(int index) {
   1620 #ifdef _WIN64
   1621   const int kShaddowSpace = 4;
   1622   return Operand(rsp, (index + kShaddowSpace) * kPointerSize);
   1623 #else
   1624   return Operand(rsp, index * kPointerSize);
   1625 #endif
   1626 }
   1627 
   1628 
   1629 inline Operand StackOperandForReturnAddress(int32_t disp) {
   1630   return Operand(rsp, disp);
   1631 }
   1632 
   1633 
   1634 #ifdef GENERATED_CODE_COVERAGE
   1635 extern void LogGeneratedCodeCoverage(const char* file_line);
   1636 #define CODE_COVERAGE_STRINGIFY(x) #x
   1637 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
   1638 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
   1639 #define ACCESS_MASM(masm) {                                                  \
   1640     Address x64_coverage_function = FUNCTION_ADDR(LogGeneratedCodeCoverage); \
   1641     masm->pushfq();                                                          \
   1642     masm->Pushad();                                                          \
   1643     masm->Push(Immediate(reinterpret_cast<int>(&__FILE_LINE__)));            \
   1644     masm->Call(x64_coverage_function, RelocInfo::EXTERNAL_REFERENCE);        \
   1645     masm->Pop(rax);                                                          \
   1646     masm->Popad();                                                           \
   1647     masm->popfq();                                                           \
   1648   }                                                                          \
   1649   masm->
   1650 #else
   1651 #define ACCESS_MASM(masm) masm->
   1652 #endif
   1653 
   1654 } }  // namespace v8::internal
   1655 
   1656 #endif  // V8_X64_MACRO_ASSEMBLER_X64_H_
   1657