1 //===--- Allocator.h - Simple memory allocation abstraction -----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// \file 10 /// 11 /// This file defines the MallocAllocator and BumpPtrAllocator interfaces. Both 12 /// of these conform to an LLVM "Allocator" concept which consists of an 13 /// Allocate method accepting a size and alignment, and a Deallocate accepting 14 /// a pointer and size. Further, the LLVM "Allocator" concept has overloads of 15 /// Allocate and Deallocate for setting size and alignment based on the final 16 /// type. These overloads are typically provided by a base class template \c 17 /// AllocatorBase. 18 /// 19 //===----------------------------------------------------------------------===// 20 21 #ifndef LLVM_SUPPORT_ALLOCATOR_H 22 #define LLVM_SUPPORT_ALLOCATOR_H 23 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/AlignOf.h" 26 #include "llvm/Support/DataTypes.h" 27 #include "llvm/Support/MathExtras.h" 28 #include "llvm/Support/Memory.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cstddef> 32 #include <cstdlib> 33 34 namespace llvm { 35 36 /// \brief CRTP base class providing obvious overloads for the core \c 37 /// Allocate() methods of LLVM-style allocators. 38 /// 39 /// This base class both documents the full public interface exposed by all 40 /// LLVM-style allocators, and redirects all of the overloads to a single core 41 /// set of methods which the derived class must define. 42 template <typename DerivedT> class AllocatorBase { 43 public: 44 /// \brief Allocate \a Size bytes of \a Alignment aligned memory. This method 45 /// must be implemented by \c DerivedT. 46 void *Allocate(size_t Size, size_t Alignment) { 47 #ifdef __clang__ 48 static_assert(static_cast<void *(AllocatorBase::*)(size_t, size_t)>( 49 &AllocatorBase::Allocate) != 50 static_cast<void *(DerivedT::*)(size_t, size_t)>( 51 &DerivedT::Allocate), 52 "Class derives from AllocatorBase without implementing the " 53 "core Allocate(size_t, size_t) overload!"); 54 #endif 55 return static_cast<DerivedT *>(this)->Allocate(Size, Alignment); 56 } 57 58 /// \brief Deallocate \a Ptr to \a Size bytes of memory allocated by this 59 /// allocator. 60 void Deallocate(const void *Ptr, size_t Size) { 61 #ifdef __clang__ 62 static_assert(static_cast<void (AllocatorBase::*)(const void *, size_t)>( 63 &AllocatorBase::Deallocate) != 64 static_cast<void (DerivedT::*)(const void *, size_t)>( 65 &DerivedT::Deallocate), 66 "Class derives from AllocatorBase without implementing the " 67 "core Deallocate(void *) overload!"); 68 #endif 69 return static_cast<DerivedT *>(this)->Deallocate(Ptr, Size); 70 } 71 72 // The rest of these methods are helpers that redirect to one of the above 73 // core methods. 74 75 /// \brief Allocate space for a sequence of objects without constructing them. 76 template <typename T> T *Allocate(size_t Num = 1) { 77 return static_cast<T *>(Allocate(Num * sizeof(T), AlignOf<T>::Alignment)); 78 } 79 80 /// \brief Deallocate space for a sequence of objects without constructing them. 81 template <typename T> 82 typename std::enable_if< 83 !std::is_same<typename std::remove_cv<T>::type, void>::value, void>::type 84 Deallocate(T *Ptr, size_t Num = 1) { 85 Deallocate(static_cast<const void *>(Ptr), Num * sizeof(T)); 86 } 87 }; 88 89 class MallocAllocator : public AllocatorBase<MallocAllocator> { 90 public: 91 void Reset() {} 92 93 void *Allocate(size_t Size, size_t /*Alignment*/) { return malloc(Size); } 94 95 // Pull in base class overloads. 96 using AllocatorBase<MallocAllocator>::Allocate; 97 98 void Deallocate(const void *Ptr, size_t /*Size*/) { 99 free(const_cast<void *>(Ptr)); 100 } 101 102 // Pull in base class overloads. 103 using AllocatorBase<MallocAllocator>::Deallocate; 104 105 void PrintStats() const {} 106 }; 107 108 namespace detail { 109 110 // We call out to an external function to actually print the message as the 111 // printing code uses Allocator.h in its implementation. 112 void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated, 113 size_t TotalMemory); 114 } // End namespace detail. 115 116 /// \brief Allocate memory in an ever growing pool, as if by bump-pointer. 117 /// 118 /// This isn't strictly a bump-pointer allocator as it uses backing slabs of 119 /// memory rather than relying on boundless contiguous heap. However, it has 120 /// bump-pointer semantics in that is a monotonically growing pool of memory 121 /// where every allocation is found by merely allocating the next N bytes in 122 /// the slab, or the next N bytes in the next slab. 123 /// 124 /// Note that this also has a threshold for forcing allocations above a certain 125 /// size into their own slab. 126 /// 127 /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator 128 /// object, which wraps malloc, to allocate memory, but it can be changed to 129 /// use a custom allocator. 130 template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096, 131 size_t SizeThreshold = SlabSize> 132 class BumpPtrAllocatorImpl 133 : public AllocatorBase< 134 BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold>> { 135 public: 136 static_assert(SizeThreshold <= SlabSize, 137 "The SizeThreshold must be at most the SlabSize to ensure " 138 "that objects larger than a slab go into their own memory " 139 "allocation."); 140 141 BumpPtrAllocatorImpl() 142 : CurPtr(nullptr), End(nullptr), BytesAllocated(0), Allocator() {} 143 template <typename T> 144 BumpPtrAllocatorImpl(T &&Allocator) 145 : CurPtr(nullptr), End(nullptr), BytesAllocated(0), 146 Allocator(std::forward<T &&>(Allocator)) {} 147 148 // Manually implement a move constructor as we must clear the old allocators 149 // slabs as a matter of correctness. 150 BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old) 151 : CurPtr(Old.CurPtr), End(Old.End), Slabs(std::move(Old.Slabs)), 152 CustomSizedSlabs(std::move(Old.CustomSizedSlabs)), 153 BytesAllocated(Old.BytesAllocated), 154 Allocator(std::move(Old.Allocator)) { 155 Old.CurPtr = Old.End = nullptr; 156 Old.BytesAllocated = 0; 157 Old.Slabs.clear(); 158 Old.CustomSizedSlabs.clear(); 159 } 160 161 ~BumpPtrAllocatorImpl() { 162 DeallocateSlabs(Slabs.begin(), Slabs.end()); 163 DeallocateCustomSizedSlabs(); 164 } 165 166 BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) { 167 DeallocateSlabs(Slabs.begin(), Slabs.end()); 168 DeallocateCustomSizedSlabs(); 169 170 CurPtr = RHS.CurPtr; 171 End = RHS.End; 172 BytesAllocated = RHS.BytesAllocated; 173 Slabs = std::move(RHS.Slabs); 174 CustomSizedSlabs = std::move(RHS.CustomSizedSlabs); 175 Allocator = std::move(RHS.Allocator); 176 177 RHS.CurPtr = RHS.End = nullptr; 178 RHS.BytesAllocated = 0; 179 RHS.Slabs.clear(); 180 RHS.CustomSizedSlabs.clear(); 181 return *this; 182 } 183 184 /// \brief Deallocate all but the current slab and reset the current pointer 185 /// to the beginning of it, freeing all memory allocated so far. 186 void Reset() { 187 if (Slabs.empty()) 188 return; 189 190 // Reset the state. 191 BytesAllocated = 0; 192 CurPtr = (char *)Slabs.front(); 193 End = CurPtr + SlabSize; 194 195 // Deallocate all but the first slab, and all custome sized slabs. 196 DeallocateSlabs(std::next(Slabs.begin()), Slabs.end()); 197 Slabs.erase(std::next(Slabs.begin()), Slabs.end()); 198 DeallocateCustomSizedSlabs(); 199 CustomSizedSlabs.clear(); 200 } 201 202 /// \brief Allocate space at the specified alignment. 203 void *Allocate(size_t Size, size_t Alignment) { 204 if (!CurPtr) // Start a new slab if we haven't allocated one already. 205 StartNewSlab(); 206 207 // Keep track of how many bytes we've allocated. 208 BytesAllocated += Size; 209 210 // 0-byte alignment means 1-byte alignment. 211 if (Alignment == 0) 212 Alignment = 1; 213 214 // Allocate the aligned space, going forwards from CurPtr. 215 char *Ptr = alignPtr(CurPtr, Alignment); 216 217 // Check if we can hold it. 218 if (Ptr + Size <= End) { 219 CurPtr = Ptr + Size; 220 // Update the allocation point of this memory block in MemorySanitizer. 221 // Without this, MemorySanitizer messages for values originated from here 222 // will point to the allocation of the entire slab. 223 __msan_allocated_memory(Ptr, Size); 224 return Ptr; 225 } 226 227 // If Size is really big, allocate a separate slab for it. 228 size_t PaddedSize = Size + Alignment - 1; 229 if (PaddedSize > SizeThreshold) { 230 void *NewSlab = Allocator.Allocate(PaddedSize, 0); 231 CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize)); 232 233 Ptr = alignPtr((char *)NewSlab, Alignment); 234 assert((uintptr_t)Ptr + Size <= (uintptr_t)NewSlab + PaddedSize); 235 __msan_allocated_memory(Ptr, Size); 236 return Ptr; 237 } 238 239 // Otherwise, start a new slab and try again. 240 StartNewSlab(); 241 Ptr = alignPtr(CurPtr, Alignment); 242 CurPtr = Ptr + Size; 243 assert(CurPtr <= End && "Unable to allocate memory!"); 244 __msan_allocated_memory(Ptr, Size); 245 return Ptr; 246 } 247 248 // Pull in base class overloads. 249 using AllocatorBase<BumpPtrAllocatorImpl>::Allocate; 250 251 void Deallocate(const void * /*Ptr*/, size_t /*Size*/) {} 252 253 // Pull in base class overloads. 254 using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate; 255 256 size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); } 257 258 size_t getTotalMemory() const { 259 size_t TotalMemory = 0; 260 for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I) 261 TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I)); 262 for (auto &PtrAndSize : CustomSizedSlabs) 263 TotalMemory += PtrAndSize.second; 264 return TotalMemory; 265 } 266 267 void PrintStats() const { 268 detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated, 269 getTotalMemory()); 270 } 271 272 private: 273 /// \brief The current pointer into the current slab. 274 /// 275 /// This points to the next free byte in the slab. 276 char *CurPtr; 277 278 /// \brief The end of the current slab. 279 char *End; 280 281 /// \brief The slabs allocated so far. 282 SmallVector<void *, 4> Slabs; 283 284 /// \brief Custom-sized slabs allocated for too-large allocation requests. 285 SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs; 286 287 /// \brief How many bytes we've allocated. 288 /// 289 /// Used so that we can compute how much space was wasted. 290 size_t BytesAllocated; 291 292 /// \brief The allocator instance we use to get slabs of memory. 293 AllocatorT Allocator; 294 295 static size_t computeSlabSize(unsigned SlabIdx) { 296 // Scale the actual allocated slab size based on the number of slabs 297 // allocated. Every 128 slabs allocated, we double the allocated size to 298 // reduce allocation frequency, but saturate at multiplying the slab size by 299 // 2^30. 300 return SlabSize * ((size_t)1 << std::min<size_t>(30, SlabIdx / 128)); 301 } 302 303 /// \brief Allocate a new slab and move the bump pointers over into the new 304 /// slab, modifying CurPtr and End. 305 void StartNewSlab() { 306 size_t AllocatedSlabSize = computeSlabSize(Slabs.size()); 307 308 void *NewSlab = Allocator.Allocate(AllocatedSlabSize, 0); 309 Slabs.push_back(NewSlab); 310 CurPtr = (char *)(NewSlab); 311 End = ((char *)NewSlab) + AllocatedSlabSize; 312 } 313 314 /// \brief Deallocate a sequence of slabs. 315 void DeallocateSlabs(SmallVectorImpl<void *>::iterator I, 316 SmallVectorImpl<void *>::iterator E) { 317 for (; I != E; ++I) { 318 size_t AllocatedSlabSize = 319 computeSlabSize(std::distance(Slabs.begin(), I)); 320 #ifndef NDEBUG 321 // Poison the memory so stale pointers crash sooner. Note we must 322 // preserve the Size and NextPtr fields at the beginning. 323 sys::Memory::setRangeWritable(*I, AllocatedSlabSize); 324 memset(*I, 0xCD, AllocatedSlabSize); 325 #endif 326 Allocator.Deallocate(*I, AllocatedSlabSize); 327 } 328 } 329 330 /// \brief Deallocate all memory for custom sized slabs. 331 void DeallocateCustomSizedSlabs() { 332 for (auto &PtrAndSize : CustomSizedSlabs) { 333 void *Ptr = PtrAndSize.first; 334 size_t Size = PtrAndSize.second; 335 #ifndef NDEBUG 336 // Poison the memory so stale pointers crash sooner. Note we must 337 // preserve the Size and NextPtr fields at the beginning. 338 sys::Memory::setRangeWritable(Ptr, Size); 339 memset(Ptr, 0xCD, Size); 340 #endif 341 Allocator.Deallocate(Ptr, Size); 342 } 343 } 344 345 template <typename T> friend class SpecificBumpPtrAllocator; 346 }; 347 348 /// \brief The standard BumpPtrAllocator which just uses the default template 349 /// paramaters. 350 typedef BumpPtrAllocatorImpl<> BumpPtrAllocator; 351 352 /// \brief A BumpPtrAllocator that allows only elements of a specific type to be 353 /// allocated. 354 /// 355 /// This allows calling the destructor in DestroyAll() and when the allocator is 356 /// destroyed. 357 template <typename T> class SpecificBumpPtrAllocator { 358 BumpPtrAllocator Allocator; 359 360 public: 361 SpecificBumpPtrAllocator() : Allocator() {} 362 SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old) 363 : Allocator(std::move(Old.Allocator)) {} 364 ~SpecificBumpPtrAllocator() { DestroyAll(); } 365 366 SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) { 367 Allocator = std::move(RHS.Allocator); 368 return *this; 369 } 370 371 /// Call the destructor of each allocated object and deallocate all but the 372 /// current slab and reset the current pointer to the beginning of it, freeing 373 /// all memory allocated so far. 374 void DestroyAll() { 375 auto DestroyElements = [](char *Begin, char *End) { 376 assert(Begin == alignPtr(Begin, alignOf<T>())); 377 for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T)) 378 reinterpret_cast<T *>(Ptr)->~T(); 379 }; 380 381 for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E; 382 ++I) { 383 size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize( 384 std::distance(Allocator.Slabs.begin(), I)); 385 char *Begin = alignPtr((char *)*I, alignOf<T>()); 386 char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr 387 : (char *)*I + AllocatedSlabSize; 388 389 DestroyElements(Begin, End); 390 } 391 392 for (auto &PtrAndSize : Allocator.CustomSizedSlabs) { 393 void *Ptr = PtrAndSize.first; 394 size_t Size = PtrAndSize.second; 395 DestroyElements(alignPtr((char *)Ptr, alignOf<T>()), (char *)Ptr + Size); 396 } 397 398 Allocator.Reset(); 399 } 400 401 /// \brief Allocate space for an array of objects without constructing them. 402 T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); } 403 }; 404 405 } // end namespace llvm 406 407 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold> 408 void *operator new(size_t Size, 409 llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, 410 SizeThreshold> &Allocator) { 411 struct S { 412 char c; 413 union { 414 double D; 415 long double LD; 416 long long L; 417 void *P; 418 } x; 419 }; 420 return Allocator.Allocate( 421 Size, std::min((size_t)llvm::NextPowerOf2(Size), offsetof(S, x))); 422 } 423 424 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold> 425 void operator delete( 426 void *, llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold> &) { 427 } 428 429 #endif // LLVM_SUPPORT_ALLOCATOR_H 430