Home | History | Annotate | Download | only in quick
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "dex/compiler_ir.h"
     18 #include "dex/frontend.h"
     19 #include "dex/quick/dex_file_method_inliner.h"
     20 #include "dex/quick/dex_file_to_method_inliner_map.h"
     21 #include "dex_file-inl.h"
     22 #include "entrypoints/quick/quick_entrypoints.h"
     23 #include "invoke_type.h"
     24 #include "mirror/array.h"
     25 #include "mirror/class-inl.h"
     26 #include "mirror/dex_cache.h"
     27 #include "mirror/object_array-inl.h"
     28 #include "mirror/reference-inl.h"
     29 #include "mirror/string.h"
     30 #include "mir_to_lir-inl.h"
     31 #include "scoped_thread_state_change.h"
     32 #include "x86/codegen_x86.h"
     33 
     34 namespace art {
     35 
     36 // Shortcuts to repeatedly used long types.
     37 typedef mirror::ObjectArray<mirror::Object> ObjArray;
     38 
     39 /*
     40  * This source files contains "gen" codegen routines that should
     41  * be applicable to most targets.  Only mid-level support utilities
     42  * and "op" calls may be used here.
     43  */
     44 
     45 void Mir2Lir::AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume) {
     46   class IntrinsicSlowPathPath : public Mir2Lir::LIRSlowPath {
     47    public:
     48     IntrinsicSlowPathPath(Mir2Lir* m2l, CallInfo* info, LIR* branch, LIR* resume = nullptr)
     49         : LIRSlowPath(m2l, info->offset, branch, resume), info_(info) {
     50     }
     51 
     52     void Compile() {
     53       m2l_->ResetRegPool();
     54       m2l_->ResetDefTracking();
     55       GenerateTargetLabel(kPseudoIntrinsicRetry);
     56       // NOTE: GenInvokeNoInline() handles MarkSafepointPC.
     57       m2l_->GenInvokeNoInline(info_);
     58       if (cont_ != nullptr) {
     59         m2l_->OpUnconditionalBranch(cont_);
     60       }
     61     }
     62 
     63    private:
     64     CallInfo* const info_;
     65   };
     66 
     67   AddSlowPath(new (arena_) IntrinsicSlowPathPath(this, info, branch, resume));
     68 }
     69 
     70 /*
     71  * To save scheduling time, helper calls are broken into two parts: generation of
     72  * the helper target address, and the actual call to the helper.  Because x86
     73  * has a memory call operation, part 1 is a NOP for x86.  For other targets,
     74  * load arguments between the two parts.
     75  */
     76 // template <size_t pointer_size>
     77 RegStorage Mir2Lir::CallHelperSetup(QuickEntrypointEnum trampoline) {
     78   if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
     79     return RegStorage::InvalidReg();
     80   } else {
     81     return LoadHelper(trampoline);
     82   }
     83 }
     84 
     85 LIR* Mir2Lir::CallHelper(RegStorage r_tgt, QuickEntrypointEnum trampoline, bool safepoint_pc,
     86                          bool use_link) {
     87   LIR* call_inst = InvokeTrampoline(use_link ? kOpBlx : kOpBx, r_tgt, trampoline);
     88 
     89   if (r_tgt.Valid()) {
     90     FreeTemp(r_tgt);
     91   }
     92 
     93   if (safepoint_pc) {
     94     MarkSafepointPC(call_inst);
     95   }
     96   return call_inst;
     97 }
     98 
     99 void Mir2Lir::CallRuntimeHelper(QuickEntrypointEnum trampoline, bool safepoint_pc) {
    100   RegStorage r_tgt = CallHelperSetup(trampoline);
    101   ClobberCallerSave();
    102   CallHelper(r_tgt, trampoline, safepoint_pc);
    103 }
    104 
    105 void Mir2Lir::CallRuntimeHelperImm(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc) {
    106   RegStorage r_tgt = CallHelperSetup(trampoline);
    107   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
    108   ClobberCallerSave();
    109   CallHelper(r_tgt, trampoline, safepoint_pc);
    110 }
    111 
    112 void Mir2Lir::CallRuntimeHelperReg(QuickEntrypointEnum trampoline, RegStorage arg0,
    113                                    bool safepoint_pc) {
    114   RegStorage r_tgt = CallHelperSetup(trampoline);
    115   OpRegCopy(TargetReg(kArg0, arg0.GetWideKind()), arg0);
    116   ClobberCallerSave();
    117   CallHelper(r_tgt, trampoline, safepoint_pc);
    118 }
    119 
    120 void Mir2Lir::CallRuntimeHelperRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0,
    121                                            bool safepoint_pc) {
    122   RegStorage r_tgt = CallHelperSetup(trampoline);
    123   if (arg0.wide == 0) {
    124     LoadValueDirectFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, arg0));
    125   } else {
    126     LoadValueDirectWideFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kWide));
    127   }
    128   ClobberCallerSave();
    129   CallHelper(r_tgt, trampoline, safepoint_pc);
    130 }
    131 
    132 void Mir2Lir::CallRuntimeHelperImmImm(QuickEntrypointEnum trampoline, int arg0, int arg1,
    133                                       bool safepoint_pc) {
    134   RegStorage r_tgt = CallHelperSetup(trampoline);
    135   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
    136   LoadConstant(TargetReg(kArg1, kNotWide), arg1);
    137   ClobberCallerSave();
    138   CallHelper(r_tgt, trampoline, safepoint_pc);
    139 }
    140 
    141 void Mir2Lir::CallRuntimeHelperImmRegLocation(QuickEntrypointEnum trampoline, int arg0,
    142                                               RegLocation arg1, bool safepoint_pc) {
    143   RegStorage r_tgt = CallHelperSetup(trampoline);
    144   if (arg1.wide == 0) {
    145     LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
    146   } else {
    147     RegStorage r_tmp = TargetReg(cu_->instruction_set == kMips ? kArg2 : kArg1, kWide);
    148     LoadValueDirectWideFixed(arg1, r_tmp);
    149   }
    150   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
    151   ClobberCallerSave();
    152   CallHelper(r_tgt, trampoline, safepoint_pc);
    153 }
    154 
    155 void Mir2Lir::CallRuntimeHelperRegLocationImm(QuickEntrypointEnum trampoline, RegLocation arg0,
    156                                               int arg1, bool safepoint_pc) {
    157   RegStorage r_tgt = CallHelperSetup(trampoline);
    158   DCHECK(!arg0.wide);
    159   LoadValueDirectFixed(arg0, TargetReg(kArg0, arg0));
    160   LoadConstant(TargetReg(kArg1, kNotWide), arg1);
    161   ClobberCallerSave();
    162   CallHelper(r_tgt, trampoline, safepoint_pc);
    163 }
    164 
    165 void Mir2Lir::CallRuntimeHelperImmReg(QuickEntrypointEnum trampoline, int arg0, RegStorage arg1,
    166                                       bool safepoint_pc) {
    167   RegStorage r_tgt = CallHelperSetup(trampoline);
    168   OpRegCopy(TargetReg(kArg1, arg1.GetWideKind()), arg1);
    169   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
    170   ClobberCallerSave();
    171   CallHelper(r_tgt, trampoline, safepoint_pc);
    172 }
    173 
    174 void Mir2Lir::CallRuntimeHelperRegImm(QuickEntrypointEnum trampoline, RegStorage arg0, int arg1,
    175                                       bool safepoint_pc) {
    176   RegStorage r_tgt = CallHelperSetup(trampoline);
    177   OpRegCopy(TargetReg(kArg0, arg0.GetWideKind()), arg0);
    178   LoadConstant(TargetReg(kArg1, kNotWide), arg1);
    179   ClobberCallerSave();
    180   CallHelper(r_tgt, trampoline, safepoint_pc);
    181 }
    182 
    183 void Mir2Lir::CallRuntimeHelperImmMethod(QuickEntrypointEnum trampoline, int arg0,
    184                                          bool safepoint_pc) {
    185   RegStorage r_tgt = CallHelperSetup(trampoline);
    186   LoadCurrMethodDirect(TargetReg(kArg1, kRef));
    187   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
    188   ClobberCallerSave();
    189   CallHelper(r_tgt, trampoline, safepoint_pc);
    190 }
    191 
    192 void Mir2Lir::CallRuntimeHelperRegMethod(QuickEntrypointEnum trampoline, RegStorage arg0,
    193                                          bool safepoint_pc) {
    194   RegStorage r_tgt = CallHelperSetup(trampoline);
    195   DCHECK(!IsSameReg(TargetReg(kArg1, arg0.GetWideKind()), arg0));
    196   RegStorage r_tmp = TargetReg(kArg0, arg0.GetWideKind());
    197   if (r_tmp.NotExactlyEquals(arg0)) {
    198     OpRegCopy(r_tmp, arg0);
    199   }
    200   LoadCurrMethodDirect(TargetReg(kArg1, kRef));
    201   ClobberCallerSave();
    202   CallHelper(r_tgt, trampoline, safepoint_pc);
    203 }
    204 
    205 void Mir2Lir::CallRuntimeHelperRegMethodRegLocation(QuickEntrypointEnum trampoline, RegStorage arg0,
    206                                                     RegLocation arg2, bool safepoint_pc) {
    207   RegStorage r_tgt = CallHelperSetup(trampoline);
    208   DCHECK(!IsSameReg(TargetReg(kArg1, arg0.GetWideKind()), arg0));
    209   RegStorage r_tmp = TargetReg(kArg0, arg0.GetWideKind());
    210   if (r_tmp.NotExactlyEquals(arg0)) {
    211     OpRegCopy(r_tmp, arg0);
    212   }
    213   LoadCurrMethodDirect(TargetReg(kArg1, kRef));
    214   LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
    215   ClobberCallerSave();
    216   CallHelper(r_tgt, trampoline, safepoint_pc);
    217 }
    218 
    219 void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(QuickEntrypointEnum trampoline,
    220                                                       RegLocation arg0, RegLocation arg1,
    221                                                       bool safepoint_pc) {
    222   RegStorage r_tgt = CallHelperSetup(trampoline);
    223   if (cu_->instruction_set == kArm64 || cu_->instruction_set == kX86_64) {
    224     RegStorage arg0_reg = TargetReg((arg0.fp) ? kFArg0 : kArg0, arg0);
    225 
    226     RegStorage arg1_reg;
    227     if (arg1.fp == arg0.fp) {
    228       arg1_reg = TargetReg((arg1.fp) ? kFArg1 : kArg1, arg1);
    229     } else {
    230       arg1_reg = TargetReg((arg1.fp) ? kFArg0 : kArg0, arg1);
    231     }
    232 
    233     if (arg0.wide == 0) {
    234       LoadValueDirectFixed(arg0, arg0_reg);
    235     } else {
    236       LoadValueDirectWideFixed(arg0, arg0_reg);
    237     }
    238 
    239     if (arg1.wide == 0) {
    240       LoadValueDirectFixed(arg1, arg1_reg);
    241     } else {
    242       LoadValueDirectWideFixed(arg1, arg1_reg);
    243     }
    244   } else {
    245     DCHECK(!cu_->target64);
    246     if (arg0.wide == 0) {
    247       LoadValueDirectFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kNotWide));
    248       if (arg1.wide == 0) {
    249         if (cu_->instruction_set == kMips) {
    250           LoadValueDirectFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg1, kNotWide));
    251         } else {
    252           LoadValueDirectFixed(arg1, TargetReg(kArg1, kNotWide));
    253         }
    254       } else {
    255         if (cu_->instruction_set == kMips) {
    256           LoadValueDirectWideFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kWide));
    257         } else {
    258           LoadValueDirectWideFixed(arg1, TargetReg(kArg1, kWide));
    259         }
    260       }
    261     } else {
    262       LoadValueDirectWideFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kWide));
    263       if (arg1.wide == 0) {
    264         LoadValueDirectFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kNotWide));
    265       } else {
    266         LoadValueDirectWideFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kWide));
    267       }
    268     }
    269   }
    270   ClobberCallerSave();
    271   CallHelper(r_tgt, trampoline, safepoint_pc);
    272 }
    273 
    274 void Mir2Lir::CopyToArgumentRegs(RegStorage arg0, RegStorage arg1) {
    275   WideKind arg0_kind = arg0.GetWideKind();
    276   WideKind arg1_kind = arg1.GetWideKind();
    277   if (IsSameReg(arg1, TargetReg(kArg0, arg1_kind))) {
    278     if (IsSameReg(arg0, TargetReg(kArg1, arg0_kind))) {
    279       // Swap kArg0 and kArg1 with kArg2 as temp.
    280       OpRegCopy(TargetReg(kArg2, arg1_kind), arg1);
    281       OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
    282       OpRegCopy(TargetReg(kArg1, arg1_kind), TargetReg(kArg2, arg1_kind));
    283     } else {
    284       OpRegCopy(TargetReg(kArg1, arg1_kind), arg1);
    285       OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
    286     }
    287   } else {
    288     OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
    289     OpRegCopy(TargetReg(kArg1, arg1_kind), arg1);
    290   }
    291 }
    292 
    293 void Mir2Lir::CallRuntimeHelperRegReg(QuickEntrypointEnum trampoline, RegStorage arg0,
    294                                       RegStorage arg1, bool safepoint_pc) {
    295   RegStorage r_tgt = CallHelperSetup(trampoline);
    296   CopyToArgumentRegs(arg0, arg1);
    297   ClobberCallerSave();
    298   CallHelper(r_tgt, trampoline, safepoint_pc);
    299 }
    300 
    301 void Mir2Lir::CallRuntimeHelperRegRegImm(QuickEntrypointEnum trampoline, RegStorage arg0,
    302                                          RegStorage arg1, int arg2, bool safepoint_pc) {
    303   RegStorage r_tgt = CallHelperSetup(trampoline);
    304   CopyToArgumentRegs(arg0, arg1);
    305   LoadConstant(TargetReg(kArg2, kNotWide), arg2);
    306   ClobberCallerSave();
    307   CallHelper(r_tgt, trampoline, safepoint_pc);
    308 }
    309 
    310 void Mir2Lir::CallRuntimeHelperImmMethodRegLocation(QuickEntrypointEnum trampoline, int arg0,
    311                                                     RegLocation arg2, bool safepoint_pc) {
    312   RegStorage r_tgt = CallHelperSetup(trampoline);
    313   LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
    314   LoadCurrMethodDirect(TargetReg(kArg1, kRef));
    315   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
    316   ClobberCallerSave();
    317   CallHelper(r_tgt, trampoline, safepoint_pc);
    318 }
    319 
    320 void Mir2Lir::CallRuntimeHelperImmMethodImm(QuickEntrypointEnum trampoline, int arg0, int arg2,
    321                                             bool safepoint_pc) {
    322   RegStorage r_tgt = CallHelperSetup(trampoline);
    323   LoadCurrMethodDirect(TargetReg(kArg1, kRef));
    324   LoadConstant(TargetReg(kArg2, kNotWide), arg2);
    325   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
    326   ClobberCallerSave();
    327   CallHelper(r_tgt, trampoline, safepoint_pc);
    328 }
    329 
    330 void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(QuickEntrypointEnum trampoline, int arg0,
    331                                                          RegLocation arg1,
    332                                                          RegLocation arg2, bool safepoint_pc) {
    333   RegStorage r_tgt = CallHelperSetup(trampoline);
    334   DCHECK_EQ(static_cast<unsigned int>(arg1.wide), 0U);  // The static_cast works around an
    335                                                         // instantiation bug in GCC.
    336   LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
    337   if (arg2.wide == 0) {
    338     LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
    339   } else {
    340     LoadValueDirectWideFixed(arg2, TargetReg(kArg2, kWide));
    341   }
    342   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
    343   ClobberCallerSave();
    344   CallHelper(r_tgt, trampoline, safepoint_pc);
    345 }
    346 
    347 void Mir2Lir::CallRuntimeHelperRegLocationRegLocationRegLocation(
    348     QuickEntrypointEnum trampoline,
    349     RegLocation arg0,
    350     RegLocation arg1,
    351     RegLocation arg2,
    352     bool safepoint_pc) {
    353   RegStorage r_tgt = CallHelperSetup(trampoline);
    354   LoadValueDirectFixed(arg0, TargetReg(kArg0, arg0));
    355   LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
    356   LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
    357   ClobberCallerSave();
    358   CallHelper(r_tgt, trampoline, safepoint_pc);
    359 }
    360 
    361 /*
    362  * If there are any ins passed in registers that have not been promoted
    363  * to a callee-save register, flush them to the frame.  Perform initial
    364  * assignment of promoted arguments.
    365  *
    366  * ArgLocs is an array of location records describing the incoming arguments
    367  * with one location record per word of argument.
    368  */
    369 void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
    370   /*
    371    * Dummy up a RegLocation for the incoming StackReference<mirror::ArtMethod>
    372    * It will attempt to keep kArg0 live (or copy it to home location
    373    * if promoted).
    374    */
    375   RegLocation rl_src = rl_method;
    376   rl_src.location = kLocPhysReg;
    377   rl_src.reg = TargetReg(kArg0, kRef);
    378   rl_src.home = false;
    379   MarkLive(rl_src);
    380   StoreValue(rl_method, rl_src);
    381   // If Method* has been promoted, explicitly flush
    382   if (rl_method.location == kLocPhysReg) {
    383     StoreRefDisp(TargetPtrReg(kSp), 0, rl_src.reg, kNotVolatile);
    384   }
    385 
    386   if (cu_->num_ins == 0) {
    387     return;
    388   }
    389 
    390   int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
    391   /*
    392    * Copy incoming arguments to their proper home locations.
    393    * NOTE: an older version of dx had an issue in which
    394    * it would reuse static method argument registers.
    395    * This could result in the same Dalvik virtual register
    396    * being promoted to both core and fp regs. To account for this,
    397    * we only copy to the corresponding promoted physical register
    398    * if it matches the type of the SSA name for the incoming
    399    * argument.  It is also possible that long and double arguments
    400    * end up half-promoted.  In those cases, we must flush the promoted
    401    * half to memory as well.
    402    */
    403   ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    404   for (int i = 0; i < cu_->num_ins; i++) {
    405     PromotionMap* v_map = &promotion_map_[start_vreg + i];
    406     RegStorage reg = GetArgMappingToPhysicalReg(i);
    407 
    408     if (reg.Valid()) {
    409       // If arriving in register
    410       bool need_flush = true;
    411       RegLocation* t_loc = &ArgLocs[i];
    412       if ((v_map->core_location == kLocPhysReg) && !t_loc->fp) {
    413         OpRegCopy(RegStorage::Solo32(v_map->core_reg), reg);
    414         need_flush = false;
    415       } else if ((v_map->fp_location == kLocPhysReg) && t_loc->fp) {
    416         OpRegCopy(RegStorage::Solo32(v_map->fp_reg), reg);
    417         need_flush = false;
    418       } else {
    419         need_flush = true;
    420       }
    421 
    422       // For wide args, force flush if not fully promoted
    423       if (t_loc->wide) {
    424         PromotionMap* p_map = v_map + (t_loc->high_word ? -1 : +1);
    425         // Is only half promoted?
    426         need_flush |= (p_map->core_location != v_map->core_location) ||
    427             (p_map->fp_location != v_map->fp_location);
    428         if ((cu_->instruction_set == kThumb2) && t_loc->fp && !need_flush) {
    429           /*
    430            * In Arm, a double is represented as a pair of consecutive single float
    431            * registers starting at an even number.  It's possible that both Dalvik vRegs
    432            * representing the incoming double were independently promoted as singles - but
    433            * not in a form usable as a double.  If so, we need to flush - even though the
    434            * incoming arg appears fully in register.  At this point in the code, both
    435            * halves of the double are promoted.  Make sure they are in a usable form.
    436            */
    437           int lowreg_index = start_vreg + i + (t_loc->high_word ? -1 : 0);
    438           int low_reg = promotion_map_[lowreg_index].fp_reg;
    439           int high_reg = promotion_map_[lowreg_index + 1].fp_reg;
    440           if (((low_reg & 0x1) != 0) || (high_reg != (low_reg + 1))) {
    441             need_flush = true;
    442           }
    443         }
    444       }
    445       if (need_flush) {
    446         Store32Disp(TargetPtrReg(kSp), SRegOffset(start_vreg + i), reg);
    447       }
    448     } else {
    449       // If arriving in frame & promoted
    450       if (v_map->core_location == kLocPhysReg) {
    451         Load32Disp(TargetPtrReg(kSp), SRegOffset(start_vreg + i),
    452                    RegStorage::Solo32(v_map->core_reg));
    453       }
    454       if (v_map->fp_location == kLocPhysReg) {
    455         Load32Disp(TargetPtrReg(kSp), SRegOffset(start_vreg + i),
    456                    RegStorage::Solo32(v_map->fp_reg));
    457       }
    458     }
    459   }
    460 }
    461 
    462 static void CommonCallCodeLoadThisIntoArg1(const CallInfo* info, Mir2Lir* cg) {
    463   RegLocation rl_arg = info->args[0];
    464   cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1, kRef));
    465 }
    466 
    467 static void CommonCallCodeLoadClassIntoArg0(const CallInfo* info, Mir2Lir* cg) {
    468   cg->GenNullCheck(cg->TargetReg(kArg1, kRef), info->opt_flags);
    469   // get this->klass_ [use kArg1, set kArg0]
    470   cg->LoadRefDisp(cg->TargetReg(kArg1, kRef), mirror::Object::ClassOffset().Int32Value(),
    471                   cg->TargetReg(kArg0, kRef),
    472                   kNotVolatile);
    473   cg->MarkPossibleNullPointerException(info->opt_flags);
    474 }
    475 
    476 static bool CommonCallCodeLoadCodePointerIntoInvokeTgt(const CallInfo* info,
    477                                                        const RegStorage* alt_from,
    478                                                        const CompilationUnit* cu, Mir2Lir* cg) {
    479   if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
    480     // Get the compiled code address [use *alt_from or kArg0, set kInvokeTgt]
    481     cg->LoadWordDisp(alt_from == nullptr ? cg->TargetReg(kArg0, kRef) : *alt_from,
    482                      mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value(),
    483                      cg->TargetPtrReg(kInvokeTgt));
    484     return true;
    485   }
    486   return false;
    487 }
    488 
    489 /*
    490  * Bit of a hack here - in the absence of a real scheduling pass,
    491  * emit the next instruction in static & direct invoke sequences.
    492  */
    493 static int NextSDCallInsn(CompilationUnit* cu, CallInfo* info,
    494                           int state, const MethodReference& target_method,
    495                           uint32_t unused,
    496                           uintptr_t direct_code, uintptr_t direct_method,
    497                           InvokeType type) {
    498   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
    499   if (direct_code != 0 && direct_method != 0) {
    500     switch (state) {
    501     case 0:  // Get the current Method* [sets kArg0]
    502       if (direct_code != static_cast<uintptr_t>(-1)) {
    503         if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
    504           cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code);
    505         }
    506       } else if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
    507         cg->LoadCodeAddress(target_method, type, kInvokeTgt);
    508       }
    509       if (direct_method != static_cast<uintptr_t>(-1)) {
    510         cg->LoadConstant(cg->TargetReg(kArg0, kRef), direct_method);
    511       } else {
    512         cg->LoadMethodAddress(target_method, type, kArg0);
    513       }
    514       break;
    515     default:
    516       return -1;
    517     }
    518   } else {
    519     RegStorage arg0_ref = cg->TargetReg(kArg0, kRef);
    520     switch (state) {
    521     case 0:  // Get the current Method* [sets kArg0]
    522       // TUNING: we can save a reg copy if Method* has been promoted.
    523       cg->LoadCurrMethodDirect(arg0_ref);
    524       break;
    525     case 1:  // Get method->dex_cache_resolved_methods_
    526       cg->LoadRefDisp(arg0_ref,
    527                       mirror::ArtMethod::DexCacheResolvedMethodsOffset().Int32Value(),
    528                       arg0_ref,
    529                       kNotVolatile);
    530       // Set up direct code if known.
    531       if (direct_code != 0) {
    532         if (direct_code != static_cast<uintptr_t>(-1)) {
    533           cg->LoadConstant(cg->TargetPtrReg(kInvokeTgt), direct_code);
    534         } else if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
    535           CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
    536           cg->LoadCodeAddress(target_method, type, kInvokeTgt);
    537         }
    538       }
    539       break;
    540     case 2:  // Grab target method*
    541       CHECK_EQ(cu->dex_file, target_method.dex_file);
    542       cg->LoadRefDisp(arg0_ref,
    543                       ObjArray::OffsetOfElement(target_method.dex_method_index).Int32Value(),
    544                       arg0_ref,
    545                       kNotVolatile);
    546       break;
    547     case 3:  // Grab the code from the method*
    548       if (direct_code == 0) {
    549         if (CommonCallCodeLoadCodePointerIntoInvokeTgt(info, &arg0_ref, cu, cg)) {
    550           break;                                    // kInvokeTgt := arg0_ref->entrypoint
    551         }
    552       } else if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
    553         break;
    554       }
    555       // Intentional fallthrough for x86
    556     default:
    557       return -1;
    558     }
    559   }
    560   return state + 1;
    561 }
    562 
    563 /*
    564  * Bit of a hack here - in the absence of a real scheduling pass,
    565  * emit the next instruction in a virtual invoke sequence.
    566  * We can use kLr as a temp prior to target address loading
    567  * Note also that we'll load the first argument ("this") into
    568  * kArg1 here rather than the standard LoadArgRegs.
    569  */
    570 static int NextVCallInsn(CompilationUnit* cu, CallInfo* info,
    571                          int state, const MethodReference& target_method,
    572                          uint32_t method_idx, uintptr_t unused, uintptr_t unused2,
    573                          InvokeType unused3) {
    574   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
    575   /*
    576    * This is the fast path in which the target virtual method is
    577    * fully resolved at compile time.
    578    */
    579   switch (state) {
    580     case 0:
    581       CommonCallCodeLoadThisIntoArg1(info, cg);   // kArg1 := this
    582       break;
    583     case 1:
    584       CommonCallCodeLoadClassIntoArg0(info, cg);  // kArg0 := kArg1->class
    585                                                   // Includes a null-check.
    586       break;
    587     case 2: {
    588       // Get this->klass_.embedded_vtable[method_idx] [usr kArg0, set kArg0]
    589       int32_t offset = mirror::Class::EmbeddedVTableOffset().Uint32Value() +
    590           method_idx * sizeof(mirror::Class::VTableEntry);
    591       // Load target method from embedded vtable to kArg0 [use kArg0, set kArg0]
    592       cg->LoadRefDisp(cg->TargetReg(kArg0, kRef), offset, cg->TargetReg(kArg0, kRef), kNotVolatile);
    593       break;
    594     }
    595     case 3:
    596       if (CommonCallCodeLoadCodePointerIntoInvokeTgt(info, nullptr, cu, cg)) {
    597         break;                                    // kInvokeTgt := kArg0->entrypoint
    598       }
    599       // Intentional fallthrough for X86
    600     default:
    601       return -1;
    602   }
    603   return state + 1;
    604 }
    605 
    606 /*
    607  * Emit the next instruction in an invoke interface sequence. This will do a lookup in the
    608  * class's IMT, calling either the actual method or art_quick_imt_conflict_trampoline if
    609  * more than one interface method map to the same index. Note also that we'll load the first
    610  * argument ("this") into kArg1 here rather than the standard LoadArgRegs.
    611  */
    612 static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state,
    613                                  const MethodReference& target_method,
    614                                  uint32_t method_idx, uintptr_t unused,
    615                                  uintptr_t direct_method, InvokeType unused2) {
    616   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
    617 
    618   switch (state) {
    619     case 0:  // Set target method index in case of conflict [set kHiddenArg, kHiddenFpArg (x86)]
    620       CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
    621       cg->LoadConstant(cg->TargetReg(kHiddenArg, kNotWide), target_method.dex_method_index);
    622       if (cu->instruction_set == kX86) {
    623         cg->OpRegCopy(cg->TargetReg(kHiddenFpArg, kNotWide), cg->TargetReg(kHiddenArg, kNotWide));
    624       }
    625       break;
    626     case 1:
    627       CommonCallCodeLoadThisIntoArg1(info, cg);   // kArg1 := this
    628       break;
    629     case 2:
    630       CommonCallCodeLoadClassIntoArg0(info, cg);  // kArg0 := kArg1->class
    631                                                   // Includes a null-check.
    632       break;
    633     case 3: {  // Get target method [use kInvokeTgt, set kArg0]
    634       int32_t offset = mirror::Class::EmbeddedImTableOffset().Uint32Value() +
    635           (method_idx % mirror::Class::kImtSize) * sizeof(mirror::Class::ImTableEntry);
    636       // Load target method from embedded imtable to kArg0 [use kArg0, set kArg0]
    637       cg->LoadRefDisp(cg->TargetReg(kArg0, kRef), offset, cg->TargetReg(kArg0, kRef), kNotVolatile);
    638       break;
    639     }
    640     case 4:
    641       if (CommonCallCodeLoadCodePointerIntoInvokeTgt(info, nullptr, cu, cg)) {
    642         break;                                    // kInvokeTgt := kArg0->entrypoint
    643       }
    644       // Intentional fallthrough for X86
    645     default:
    646       return -1;
    647   }
    648   return state + 1;
    649 }
    650 
    651 static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info,
    652                             QuickEntrypointEnum trampoline, int state,
    653                             const MethodReference& target_method, uint32_t method_idx) {
    654   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
    655 
    656 
    657   /*
    658    * This handles the case in which the base method is not fully
    659    * resolved at compile time, we bail to a runtime helper.
    660    */
    661   if (state == 0) {
    662     if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
    663       // Load trampoline target
    664       int32_t disp;
    665       if (cu->target64) {
    666         disp = GetThreadOffset<8>(trampoline).Int32Value();
    667       } else {
    668         disp = GetThreadOffset<4>(trampoline).Int32Value();
    669       }
    670       cg->LoadWordDisp(cg->TargetPtrReg(kSelf), disp, cg->TargetPtrReg(kInvokeTgt));
    671     }
    672     // Load kArg0 with method index
    673     CHECK_EQ(cu->dex_file, target_method.dex_file);
    674     cg->LoadConstant(cg->TargetReg(kArg0, kNotWide), target_method.dex_method_index);
    675     return 1;
    676   }
    677   return -1;
    678 }
    679 
    680 static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info,
    681                                 int state,
    682                                 const MethodReference& target_method,
    683                                 uint32_t unused, uintptr_t unused2,
    684                                 uintptr_t unused3, InvokeType unused4) {
    685   return NextInvokeInsnSP(cu, info, kQuickInvokeStaticTrampolineWithAccessCheck, state,
    686                           target_method, 0);
    687 }
    688 
    689 static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
    690                                 const MethodReference& target_method,
    691                                 uint32_t unused, uintptr_t unused2,
    692                                 uintptr_t unused3, InvokeType unused4) {
    693   return NextInvokeInsnSP(cu, info, kQuickInvokeDirectTrampolineWithAccessCheck, state,
    694                           target_method, 0);
    695 }
    696 
    697 static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
    698                                const MethodReference& target_method,
    699                                uint32_t unused, uintptr_t unused2,
    700                                uintptr_t unused3, InvokeType unused4) {
    701   return NextInvokeInsnSP(cu, info, kQuickInvokeSuperTrampolineWithAccessCheck, state,
    702                           target_method, 0);
    703 }
    704 
    705 static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
    706                            const MethodReference& target_method,
    707                            uint32_t unused, uintptr_t unused2,
    708                            uintptr_t unused3, InvokeType unused4) {
    709   return NextInvokeInsnSP(cu, info, kQuickInvokeVirtualTrampolineWithAccessCheck, state,
    710                           target_method, 0);
    711 }
    712 
    713 static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu,
    714                                                 CallInfo* info, int state,
    715                                                 const MethodReference& target_method,
    716                                                 uint32_t unused, uintptr_t unused2,
    717                                                 uintptr_t unused3, InvokeType unused4) {
    718   return NextInvokeInsnSP(cu, info, kQuickInvokeInterfaceTrampolineWithAccessCheck, state,
    719                           target_method, 0);
    720 }
    721 
    722 int Mir2Lir::LoadArgRegs(CallInfo* info, int call_state,
    723                          NextCallInsn next_call_insn,
    724                          const MethodReference& target_method,
    725                          uint32_t vtable_idx, uintptr_t direct_code,
    726                          uintptr_t direct_method, InvokeType type, bool skip_this) {
    727   int last_arg_reg = 3 - 1;
    728   int arg_regs[3] = {TargetReg(kArg1, kNotWide).GetReg(), TargetReg(kArg2, kNotWide).GetReg(),
    729                      TargetReg(kArg3, kNotWide).GetReg()};
    730 
    731   int next_reg = 0;
    732   int next_arg = 0;
    733   if (skip_this) {
    734     next_reg++;
    735     next_arg++;
    736   }
    737   for (; (next_reg <= last_arg_reg) && (next_arg < info->num_arg_words); next_reg++) {
    738     RegLocation rl_arg = info->args[next_arg++];
    739     rl_arg = UpdateRawLoc(rl_arg);
    740     if (rl_arg.wide && (next_reg <= last_arg_reg - 1)) {
    741       RegStorage r_tmp(RegStorage::k64BitPair, arg_regs[next_reg], arg_regs[next_reg + 1]);
    742       LoadValueDirectWideFixed(rl_arg, r_tmp);
    743       next_reg++;
    744       next_arg++;
    745     } else {
    746       if (rl_arg.wide) {
    747         rl_arg = NarrowRegLoc(rl_arg);
    748         rl_arg.is_const = false;
    749       }
    750       LoadValueDirectFixed(rl_arg, RegStorage::Solo32(arg_regs[next_reg]));
    751     }
    752     call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    753                                 direct_code, direct_method, type);
    754   }
    755   return call_state;
    756 }
    757 
    758 /*
    759  * Load up to 5 arguments, the first three of which will be in
    760  * kArg1 .. kArg3.  On entry kArg0 contains the current method pointer,
    761  * and as part of the load sequence, it must be replaced with
    762  * the target method pointer.  Note, this may also be called
    763  * for "range" variants if the number of arguments is 5 or fewer.
    764  */
    765 int Mir2Lir::GenDalvikArgsNoRange(CallInfo* info,
    766                                   int call_state, LIR** pcrLabel, NextCallInsn next_call_insn,
    767                                   const MethodReference& target_method,
    768                                   uint32_t vtable_idx, uintptr_t direct_code,
    769                                   uintptr_t direct_method, InvokeType type, bool skip_this) {
    770   RegLocation rl_arg;
    771 
    772   /* If no arguments, just return */
    773   if (info->num_arg_words == 0)
    774     return call_state;
    775 
    776   call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    777                               direct_code, direct_method, type);
    778 
    779   DCHECK_LE(info->num_arg_words, 5);
    780   if (info->num_arg_words > 3) {
    781     int32_t next_use = 3;
    782     // Detect special case of wide arg spanning arg3/arg4
    783     RegLocation rl_use0 = info->args[0];
    784     RegLocation rl_use1 = info->args[1];
    785     RegLocation rl_use2 = info->args[2];
    786     if (((!rl_use0.wide && !rl_use1.wide) || rl_use0.wide) && rl_use2.wide) {
    787       RegStorage reg;
    788       // Wide spans, we need the 2nd half of uses[2].
    789       rl_arg = UpdateLocWide(rl_use2);
    790       if (rl_arg.location == kLocPhysReg) {
    791         if (rl_arg.reg.IsPair()) {
    792           reg = rl_arg.reg.GetHigh();
    793         } else {
    794           RegisterInfo* info = GetRegInfo(rl_arg.reg);
    795           info = info->FindMatchingView(RegisterInfo::kHighSingleStorageMask);
    796           if (info == nullptr) {
    797             // NOTE: For hard float convention we won't split arguments across reg/mem.
    798             UNIMPLEMENTED(FATAL) << "Needs hard float api.";
    799           }
    800           reg = info->GetReg();
    801         }
    802       } else {
    803         // kArg2 & rArg3 can safely be used here
    804         reg = TargetReg(kArg3, kNotWide);
    805         {
    806           ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    807           Load32Disp(TargetPtrReg(kSp), SRegOffset(rl_arg.s_reg_low) + 4, reg);
    808         }
    809         call_state = next_call_insn(cu_, info, call_state, target_method,
    810                                     vtable_idx, direct_code, direct_method, type);
    811       }
    812       {
    813         ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    814         Store32Disp(TargetPtrReg(kSp), (next_use + 1) * 4, reg);
    815       }
    816       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    817                                   direct_code, direct_method, type);
    818       next_use++;
    819     }
    820     // Loop through the rest
    821     while (next_use < info->num_arg_words) {
    822       RegStorage arg_reg;
    823       rl_arg = info->args[next_use];
    824       rl_arg = UpdateRawLoc(rl_arg);
    825       if (rl_arg.location == kLocPhysReg) {
    826         arg_reg = rl_arg.reg;
    827       } else {
    828         arg_reg = TargetReg(kArg2, rl_arg.wide ? kWide : kNotWide);
    829         if (rl_arg.wide) {
    830           LoadValueDirectWideFixed(rl_arg, arg_reg);
    831         } else {
    832           LoadValueDirectFixed(rl_arg, arg_reg);
    833         }
    834         call_state = next_call_insn(cu_, info, call_state, target_method,
    835                                     vtable_idx, direct_code, direct_method, type);
    836       }
    837       int outs_offset = (next_use + 1) * 4;
    838       {
    839         ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    840         if (rl_arg.wide) {
    841           StoreBaseDisp(TargetPtrReg(kSp), outs_offset, arg_reg, k64, kNotVolatile);
    842           next_use += 2;
    843         } else {
    844           Store32Disp(TargetPtrReg(kSp), outs_offset, arg_reg);
    845           next_use++;
    846         }
    847       }
    848       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    849                                direct_code, direct_method, type);
    850     }
    851   }
    852 
    853   call_state = LoadArgRegs(info, call_state, next_call_insn,
    854                            target_method, vtable_idx, direct_code, direct_method,
    855                            type, skip_this);
    856 
    857   if (pcrLabel) {
    858     if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
    859       *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
    860     } else {
    861       *pcrLabel = nullptr;
    862       if (!(cu_->disable_opt & (1 << kNullCheckElimination)) &&
    863           (info->opt_flags & MIR_IGNORE_NULL_CHECK)) {
    864         return call_state;
    865       }
    866       // In lieu of generating a check for kArg1 being null, we need to
    867       // perform a load when doing implicit checks.
    868       GenImplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
    869     }
    870   }
    871   return call_state;
    872 }
    873 
    874 // Default implementation of implicit null pointer check.
    875 // Overridden by arch specific as necessary.
    876 void Mir2Lir::GenImplicitNullCheck(RegStorage reg, int opt_flags) {
    877   if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
    878     return;
    879   }
    880   RegStorage tmp = AllocTemp();
    881   Load32Disp(reg, 0, tmp);
    882   MarkPossibleNullPointerException(opt_flags);
    883   FreeTemp(tmp);
    884 }
    885 
    886 
    887 /*
    888  * May have 0+ arguments (also used for jumbo).  Note that
    889  * source virtual registers may be in physical registers, so may
    890  * need to be flushed to home location before copying.  This
    891  * applies to arg3 and above (see below).
    892  *
    893  * Two general strategies:
    894  *    If < 20 arguments
    895  *       Pass args 3-18 using vldm/vstm block copy
    896  *       Pass arg0, arg1 & arg2 in kArg1-kArg3
    897  *    If 20+ arguments
    898  *       Pass args arg19+ using memcpy block copy
    899  *       Pass arg0, arg1 & arg2 in kArg1-kArg3
    900  *
    901  */
    902 int Mir2Lir::GenDalvikArgsRange(CallInfo* info, int call_state,
    903                                 LIR** pcrLabel, NextCallInsn next_call_insn,
    904                                 const MethodReference& target_method,
    905                                 uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
    906                                 InvokeType type, bool skip_this) {
    907   // If we can treat it as non-range (Jumbo ops will use range form)
    908   if (info->num_arg_words <= 5)
    909     return GenDalvikArgsNoRange(info, call_state, pcrLabel,
    910                                 next_call_insn, target_method, vtable_idx,
    911                                 direct_code, direct_method, type, skip_this);
    912   /*
    913    * First load the non-register arguments.  Both forms expect all
    914    * of the source arguments to be in their home frame location, so
    915    * scan the s_reg names and flush any that have been promoted to
    916    * frame backing storage.
    917    */
    918   // Scan the rest of the args - if in phys_reg flush to memory
    919   for (int next_arg = 0; next_arg < info->num_arg_words;) {
    920     RegLocation loc = info->args[next_arg];
    921     if (loc.wide) {
    922       loc = UpdateLocWide(loc);
    923       if ((next_arg >= 2) && (loc.location == kLocPhysReg)) {
    924         ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    925         StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
    926       }
    927       next_arg += 2;
    928     } else {
    929       loc = UpdateLoc(loc);
    930       if ((next_arg >= 3) && (loc.location == kLocPhysReg)) {
    931         ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    932         Store32Disp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
    933       }
    934       next_arg++;
    935     }
    936   }
    937 
    938   // Logic below assumes that Method pointer is at offset zero from SP.
    939   DCHECK_EQ(VRegOffset(static_cast<int>(kVRegMethodPtrBaseReg)), 0);
    940 
    941   // The first 3 arguments are passed via registers.
    942   // TODO: For 64-bit, instead of hardcoding 4 for Method* size, we should either
    943   // get size of uintptr_t or size of object reference according to model being used.
    944   int outs_offset = 4 /* Method* */ + (3 * sizeof(uint32_t));
    945   int start_offset = SRegOffset(info->args[3].s_reg_low);
    946   int regs_left_to_pass_via_stack = info->num_arg_words - 3;
    947   DCHECK_GT(regs_left_to_pass_via_stack, 0);
    948 
    949   if (cu_->instruction_set == kThumb2 && regs_left_to_pass_via_stack <= 16) {
    950     // Use vldm/vstm pair using kArg3 as a temp
    951     call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    952                              direct_code, direct_method, type);
    953     OpRegRegImm(kOpAdd, TargetReg(kArg3, kRef), TargetPtrReg(kSp), start_offset);
    954     LIR* ld = nullptr;
    955     {
    956       ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    957       ld = OpVldm(TargetReg(kArg3, kRef), regs_left_to_pass_via_stack);
    958     }
    959     // TUNING: loosen barrier
    960     ld->u.m.def_mask = &kEncodeAll;
    961     call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    962                              direct_code, direct_method, type);
    963     OpRegRegImm(kOpAdd, TargetReg(kArg3, kRef), TargetPtrReg(kSp), 4 /* Method* */ + (3 * 4));
    964     call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    965                              direct_code, direct_method, type);
    966     LIR* st = nullptr;
    967     {
    968       ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    969       st = OpVstm(TargetReg(kArg3, kRef), regs_left_to_pass_via_stack);
    970     }
    971     st->u.m.def_mask = &kEncodeAll;
    972     call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    973                              direct_code, direct_method, type);
    974   } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
    975     int current_src_offset = start_offset;
    976     int current_dest_offset = outs_offset;
    977 
    978     // Only davik regs are accessed in this loop; no next_call_insn() calls.
    979     ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    980     while (regs_left_to_pass_via_stack > 0) {
    981       // This is based on the knowledge that the stack itself is 16-byte aligned.
    982       bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
    983       bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
    984       size_t bytes_to_move;
    985 
    986       /*
    987        * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
    988        * a 128-bit move because we won't get the chance to try to aligned. If there are more than
    989        * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
    990        * We do this because we could potentially do a smaller move to align.
    991        */
    992       if (regs_left_to_pass_via_stack == 4 ||
    993           (regs_left_to_pass_via_stack > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
    994         // Moving 128-bits via xmm register.
    995         bytes_to_move = sizeof(uint32_t) * 4;
    996 
    997         // Allocate a free xmm temp. Since we are working through the calling sequence,
    998         // we expect to have an xmm temporary available.  AllocTempDouble will abort if
    999         // there are no free registers.
   1000         RegStorage temp = AllocTempDouble();
   1001 
   1002         LIR* ld1 = nullptr;
   1003         LIR* ld2 = nullptr;
   1004         LIR* st1 = nullptr;
   1005         LIR* st2 = nullptr;
   1006 
   1007         /*
   1008          * The logic is similar for both loads and stores. If we have 16-byte alignment,
   1009          * do an aligned move. If we have 8-byte alignment, then do the move in two
   1010          * parts. This approach prevents possible cache line splits. Finally, fall back
   1011          * to doing an unaligned move. In most cases we likely won't split the cache
   1012          * line but we cannot prove it and thus take a conservative approach.
   1013          */
   1014         bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
   1015         bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
   1016 
   1017         if (src_is_16b_aligned) {
   1018           ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovA128FP);
   1019         } else if (src_is_8b_aligned) {
   1020           ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovLo128FP);
   1021           ld2 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset + (bytes_to_move >> 1),
   1022                             kMovHi128FP);
   1023         } else {
   1024           ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovU128FP);
   1025         }
   1026 
   1027         if (dest_is_16b_aligned) {
   1028           st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovA128FP);
   1029         } else if (dest_is_8b_aligned) {
   1030           st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovLo128FP);
   1031           st2 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset + (bytes_to_move >> 1),
   1032                             temp, kMovHi128FP);
   1033         } else {
   1034           st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovU128FP);
   1035         }
   1036 
   1037         // TODO If we could keep track of aliasing information for memory accesses that are wider
   1038         // than 64-bit, we wouldn't need to set up a barrier.
   1039         if (ld1 != nullptr) {
   1040           if (ld2 != nullptr) {
   1041             // For 64-bit load we can actually set up the aliasing information.
   1042             AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
   1043             AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true,
   1044                                     true);
   1045           } else {
   1046             // Set barrier for 128-bit load.
   1047             ld1->u.m.def_mask = &kEncodeAll;
   1048           }
   1049         }
   1050         if (st1 != nullptr) {
   1051           if (st2 != nullptr) {
   1052             // For 64-bit store we can actually set up the aliasing information.
   1053             AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
   1054             AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false,
   1055                                     true);
   1056           } else {
   1057             // Set barrier for 128-bit store.
   1058             st1->u.m.def_mask = &kEncodeAll;
   1059           }
   1060         }
   1061 
   1062         // Free the temporary used for the data movement.
   1063         FreeTemp(temp);
   1064       } else {
   1065         // Moving 32-bits via general purpose register.
   1066         bytes_to_move = sizeof(uint32_t);
   1067 
   1068         // Instead of allocating a new temp, simply reuse one of the registers being used
   1069         // for argument passing.
   1070         RegStorage temp = TargetReg(kArg3, kNotWide);
   1071 
   1072         // Now load the argument VR and store to the outs.
   1073         Load32Disp(TargetPtrReg(kSp), current_src_offset, temp);
   1074         Store32Disp(TargetPtrReg(kSp), current_dest_offset, temp);
   1075       }
   1076 
   1077       current_src_offset += bytes_to_move;
   1078       current_dest_offset += bytes_to_move;
   1079       regs_left_to_pass_via_stack -= (bytes_to_move >> 2);
   1080     }
   1081   } else {
   1082     // Generate memcpy
   1083     OpRegRegImm(kOpAdd, TargetReg(kArg0, kRef), TargetPtrReg(kSp), outs_offset);
   1084     OpRegRegImm(kOpAdd, TargetReg(kArg1, kRef), TargetPtrReg(kSp), start_offset);
   1085     CallRuntimeHelperRegRegImm(kQuickMemcpy, TargetReg(kArg0, kRef), TargetReg(kArg1, kRef),
   1086                                (info->num_arg_words - 3) * 4, false);
   1087   }
   1088 
   1089   call_state = LoadArgRegs(info, call_state, next_call_insn,
   1090                            target_method, vtable_idx, direct_code, direct_method,
   1091                            type, skip_this);
   1092 
   1093   call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
   1094                            direct_code, direct_method, type);
   1095   if (pcrLabel) {
   1096     if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
   1097       *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
   1098     } else {
   1099       *pcrLabel = nullptr;
   1100       if (!(cu_->disable_opt & (1 << kNullCheckElimination)) &&
   1101           (info->opt_flags & MIR_IGNORE_NULL_CHECK)) {
   1102         return call_state;
   1103       }
   1104       // In lieu of generating a check for kArg1 being null, we need to
   1105       // perform a load when doing implicit checks.
   1106       GenImplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
   1107     }
   1108   }
   1109   return call_state;
   1110 }
   1111 
   1112 RegLocation Mir2Lir::InlineTarget(CallInfo* info) {
   1113   RegLocation res;
   1114   if (info->result.location == kLocInvalid) {
   1115     res = GetReturn(LocToRegClass(info->result));
   1116   } else {
   1117     res = info->result;
   1118   }
   1119   return res;
   1120 }
   1121 
   1122 RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) {
   1123   RegLocation res;
   1124   if (info->result.location == kLocInvalid) {
   1125     res = GetReturnWide(kCoreReg);
   1126   } else {
   1127     res = info->result;
   1128   }
   1129   return res;
   1130 }
   1131 
   1132 bool Mir2Lir::GenInlinedReferenceGetReferent(CallInfo* info) {
   1133   if (cu_->instruction_set == kMips) {
   1134     // TODO - add Mips implementation
   1135     return false;
   1136   }
   1137 
   1138   // the refrence class is stored in the image dex file which might not be the same as the cu's
   1139   // dex file. Query the reference class for the image dex file then reset to starting dex file
   1140   // in after loading class type.
   1141   uint16_t type_idx = 0;
   1142   const DexFile* ref_dex_file = nullptr;
   1143   {
   1144     ScopedObjectAccess soa(Thread::Current());
   1145     type_idx = mirror::Reference::GetJavaLangRefReference()->GetDexTypeIndex();
   1146     ref_dex_file = mirror::Reference::GetJavaLangRefReference()->GetDexCache()->GetDexFile();
   1147   }
   1148   CHECK(LIKELY(ref_dex_file != nullptr));
   1149 
   1150   // address is either static within the image file, or needs to be patched up after compilation.
   1151   bool unused_type_initialized;
   1152   bool use_direct_type_ptr;
   1153   uintptr_t direct_type_ptr;
   1154   bool is_finalizable;
   1155   const DexFile* old_dex = cu_->dex_file;
   1156   cu_->dex_file = ref_dex_file;
   1157   RegStorage reg_class = TargetReg(kArg1, kRef);
   1158   Clobber(reg_class);
   1159   LockTemp(reg_class);
   1160   if (!cu_->compiler_driver->CanEmbedTypeInCode(*ref_dex_file, type_idx, &unused_type_initialized,
   1161                                                 &use_direct_type_ptr, &direct_type_ptr,
   1162                                                 &is_finalizable) || is_finalizable) {
   1163     cu_->dex_file = old_dex;
   1164     // address is not known and post-compile patch is not possible, cannot insert intrinsic.
   1165     return false;
   1166   }
   1167   if (use_direct_type_ptr) {
   1168     LoadConstant(reg_class, direct_type_ptr);
   1169   } else if (cu_->dex_file == old_dex) {
   1170     // TODO: Bug 16656190 If cu_->dex_file != old_dex the patching could retrieve the wrong class
   1171     // since the load class is indexed only by the type_idx. We should include which dex file a
   1172     // class is from in the LoadClassType LIR.
   1173     LoadClassType(type_idx, kArg1);
   1174   } else {
   1175     cu_->dex_file = old_dex;
   1176     return false;
   1177   }
   1178   cu_->dex_file = old_dex;
   1179 
   1180   // get the offset for flags in reference class.
   1181   uint32_t slow_path_flag_offset = 0;
   1182   uint32_t disable_flag_offset = 0;
   1183   {
   1184     ScopedObjectAccess soa(Thread::Current());
   1185     mirror::Class* reference_class = mirror::Reference::GetJavaLangRefReference();
   1186     slow_path_flag_offset = reference_class->GetSlowPathFlagOffset().Uint32Value();
   1187     disable_flag_offset = reference_class->GetDisableIntrinsicFlagOffset().Uint32Value();
   1188   }
   1189   CHECK(slow_path_flag_offset && disable_flag_offset &&
   1190         (slow_path_flag_offset != disable_flag_offset));
   1191 
   1192   // intrinsic logic start.
   1193   RegLocation rl_obj = info->args[0];
   1194   rl_obj = LoadValue(rl_obj);
   1195 
   1196   RegStorage reg_slow_path = AllocTemp();
   1197   RegStorage reg_disabled = AllocTemp();
   1198   Load32Disp(reg_class, slow_path_flag_offset, reg_slow_path);
   1199   Load32Disp(reg_class, disable_flag_offset, reg_disabled);
   1200   FreeTemp(reg_class);
   1201   LIR* or_inst = OpRegRegReg(kOpOr, reg_slow_path, reg_slow_path, reg_disabled);
   1202   FreeTemp(reg_disabled);
   1203 
   1204   // if slow path, jump to JNI path target
   1205   LIR* slow_path_branch;
   1206   if (or_inst->u.m.def_mask->HasBit(ResourceMask::kCCode)) {
   1207     // Generate conditional branch only, as the OR set a condition state (we are interested in a 'Z' flag).
   1208     slow_path_branch = OpCondBranch(kCondNe, nullptr);
   1209   } else {
   1210     // Generate compare and branch.
   1211     slow_path_branch = OpCmpImmBranch(kCondNe, reg_slow_path, 0, nullptr);
   1212   }
   1213   FreeTemp(reg_slow_path);
   1214 
   1215   // slow path not enabled, simply load the referent of the reference object
   1216   RegLocation rl_dest = InlineTarget(info);
   1217   RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
   1218   GenNullCheck(rl_obj.reg, info->opt_flags);
   1219   LoadRefDisp(rl_obj.reg, mirror::Reference::ReferentOffset().Int32Value(), rl_result.reg,
   1220       kNotVolatile);
   1221   MarkPossibleNullPointerException(info->opt_flags);
   1222   StoreValue(rl_dest, rl_result);
   1223 
   1224   LIR* intrinsic_finish = NewLIR0(kPseudoTargetLabel);
   1225   AddIntrinsicSlowPath(info, slow_path_branch, intrinsic_finish);
   1226   ClobberCallerSave();  // We must clobber everything because slow path will return here
   1227   return true;
   1228 }
   1229 
   1230 bool Mir2Lir::GenInlinedCharAt(CallInfo* info) {
   1231   if (cu_->instruction_set == kMips) {
   1232     // TODO - add Mips implementation
   1233     return false;
   1234   }
   1235   // Location of reference to data array
   1236   int value_offset = mirror::String::ValueOffset().Int32Value();
   1237   // Location of count
   1238   int count_offset = mirror::String::CountOffset().Int32Value();
   1239   // Starting offset within data array
   1240   int offset_offset = mirror::String::OffsetOffset().Int32Value();
   1241   // Start of char data with array_
   1242   int data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Int32Value();
   1243 
   1244   RegLocation rl_obj = info->args[0];
   1245   RegLocation rl_idx = info->args[1];
   1246   rl_obj = LoadValue(rl_obj, kRefReg);
   1247   rl_idx = LoadValue(rl_idx, kCoreReg);
   1248   RegStorage reg_max;
   1249   GenNullCheck(rl_obj.reg, info->opt_flags);
   1250   bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
   1251   LIR* range_check_branch = nullptr;
   1252   RegStorage reg_off;
   1253   RegStorage reg_ptr;
   1254   reg_off = AllocTemp();
   1255   reg_ptr = AllocTempRef();
   1256   if (range_check) {
   1257     reg_max = AllocTemp();
   1258     Load32Disp(rl_obj.reg, count_offset, reg_max);
   1259     MarkPossibleNullPointerException(info->opt_flags);
   1260   }
   1261   Load32Disp(rl_obj.reg, offset_offset, reg_off);
   1262   MarkPossibleNullPointerException(info->opt_flags);
   1263   LoadRefDisp(rl_obj.reg, value_offset, reg_ptr, kNotVolatile);
   1264   if (range_check) {
   1265     // Set up a slow path to allow retry in case of bounds violation */
   1266     OpRegReg(kOpCmp, rl_idx.reg, reg_max);
   1267     FreeTemp(reg_max);
   1268     range_check_branch = OpCondBranch(kCondUge, nullptr);
   1269   }
   1270   OpRegImm(kOpAdd, reg_ptr, data_offset);
   1271   if (rl_idx.is_const) {
   1272     OpRegImm(kOpAdd, reg_off, mir_graph_->ConstantValue(rl_idx.orig_sreg));
   1273   } else {
   1274     OpRegReg(kOpAdd, reg_off, rl_idx.reg);
   1275   }
   1276   FreeTemp(rl_obj.reg);
   1277   if (rl_idx.location == kLocPhysReg) {
   1278     FreeTemp(rl_idx.reg);
   1279   }
   1280   RegLocation rl_dest = InlineTarget(info);
   1281   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1282   LoadBaseIndexed(reg_ptr, reg_off, rl_result.reg, 1, kUnsignedHalf);
   1283   FreeTemp(reg_off);
   1284   FreeTemp(reg_ptr);
   1285   StoreValue(rl_dest, rl_result);
   1286   if (range_check) {
   1287     DCHECK(range_check_branch != nullptr);
   1288     info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've already null checked.
   1289     AddIntrinsicSlowPath(info, range_check_branch);
   1290   }
   1291   return true;
   1292 }
   1293 
   1294 // Generates an inlined String.is_empty or String.length.
   1295 bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) {
   1296   if (cu_->instruction_set == kMips) {
   1297     // TODO - add Mips implementation
   1298     return false;
   1299   }
   1300   // dst = src.length();
   1301   RegLocation rl_obj = info->args[0];
   1302   rl_obj = LoadValue(rl_obj, kRefReg);
   1303   RegLocation rl_dest = InlineTarget(info);
   1304   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1305   GenNullCheck(rl_obj.reg, info->opt_flags);
   1306   Load32Disp(rl_obj.reg, mirror::String::CountOffset().Int32Value(), rl_result.reg);
   1307   MarkPossibleNullPointerException(info->opt_flags);
   1308   if (is_empty) {
   1309     // dst = (dst == 0);
   1310     if (cu_->instruction_set == kThumb2) {
   1311       RegStorage t_reg = AllocTemp();
   1312       OpRegReg(kOpNeg, t_reg, rl_result.reg);
   1313       OpRegRegReg(kOpAdc, rl_result.reg, rl_result.reg, t_reg);
   1314     } else if (cu_->instruction_set == kArm64) {
   1315       OpRegImm(kOpSub, rl_result.reg, 1);
   1316       OpRegRegImm(kOpLsr, rl_result.reg, rl_result.reg, 31);
   1317     } else {
   1318       DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
   1319       OpRegImm(kOpSub, rl_result.reg, 1);
   1320       OpRegImm(kOpLsr, rl_result.reg, 31);
   1321     }
   1322   }
   1323   StoreValue(rl_dest, rl_result);
   1324   return true;
   1325 }
   1326 
   1327 bool Mir2Lir::GenInlinedReverseBytes(CallInfo* info, OpSize size) {
   1328   if (cu_->instruction_set == kMips) {
   1329     // TODO - add Mips implementation.
   1330     return false;
   1331   }
   1332   RegLocation rl_src_i = info->args[0];
   1333   RegLocation rl_i = (size == k64) ? LoadValueWide(rl_src_i, kCoreReg) : LoadValue(rl_src_i, kCoreReg);
   1334   RegLocation rl_dest = (size == k64) ? InlineTargetWide(info) : InlineTarget(info);  // result reg
   1335   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1336   if (size == k64) {
   1337     if (cu_->instruction_set == kArm64 || cu_->instruction_set == kX86_64) {
   1338       OpRegReg(kOpRev, rl_result.reg, rl_i.reg);
   1339       StoreValueWide(rl_dest, rl_result);
   1340       return true;
   1341     }
   1342     RegStorage r_i_low = rl_i.reg.GetLow();
   1343     if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) {
   1344       // First REV shall clobber rl_result.reg.GetReg(), save the value in a temp for the second REV.
   1345       r_i_low = AllocTemp();
   1346       OpRegCopy(r_i_low, rl_i.reg);
   1347     }
   1348     OpRegReg(kOpRev, rl_result.reg.GetLow(), rl_i.reg.GetHigh());
   1349     OpRegReg(kOpRev, rl_result.reg.GetHigh(), r_i_low);
   1350     if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) {
   1351       FreeTemp(r_i_low);
   1352     }
   1353     StoreValueWide(rl_dest, rl_result);
   1354   } else {
   1355     DCHECK(size == k32 || size == kSignedHalf);
   1356     OpKind op = (size == k32) ? kOpRev : kOpRevsh;
   1357     OpRegReg(op, rl_result.reg, rl_i.reg);
   1358     StoreValue(rl_dest, rl_result);
   1359   }
   1360   return true;
   1361 }
   1362 
   1363 bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) {
   1364   if (cu_->instruction_set == kMips) {
   1365     // TODO - add Mips implementation
   1366     return false;
   1367   }
   1368   RegLocation rl_src = info->args[0];
   1369   rl_src = LoadValue(rl_src, kCoreReg);
   1370   RegLocation rl_dest = InlineTarget(info);
   1371   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1372   RegStorage sign_reg = AllocTemp();
   1373   // abs(x) = y<=x>>31, (x+y)^y.
   1374   OpRegRegImm(kOpAsr, sign_reg, rl_src.reg, 31);
   1375   OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, sign_reg);
   1376   OpRegReg(kOpXor, rl_result.reg, sign_reg);
   1377   StoreValue(rl_dest, rl_result);
   1378   return true;
   1379 }
   1380 
   1381 bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) {
   1382   if (cu_->instruction_set == kMips) {
   1383     // TODO - add Mips implementation
   1384     return false;
   1385   }
   1386   RegLocation rl_src = info->args[0];
   1387   rl_src = LoadValueWide(rl_src, kCoreReg);
   1388   RegLocation rl_dest = InlineTargetWide(info);
   1389   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1390 
   1391   // If on x86 or if we would clobber a register needed later, just copy the source first.
   1392   if (cu_->instruction_set != kX86_64 &&
   1393       (cu_->instruction_set == kX86 ||
   1394        rl_result.reg.GetLowReg() == rl_src.reg.GetHighReg())) {
   1395     OpRegCopyWide(rl_result.reg, rl_src.reg);
   1396     if (rl_result.reg.GetLowReg() != rl_src.reg.GetLowReg() &&
   1397         rl_result.reg.GetLowReg() != rl_src.reg.GetHighReg() &&
   1398         rl_result.reg.GetHighReg() != rl_src.reg.GetLowReg() &&
   1399         rl_result.reg.GetHighReg() != rl_src.reg.GetHighReg()) {
   1400       // Reuse source registers to avoid running out of temps.
   1401       FreeTemp(rl_src.reg);
   1402     }
   1403     rl_src = rl_result;
   1404   }
   1405 
   1406   // abs(x) = y<=x>>31, (x+y)^y.
   1407   RegStorage sign_reg;
   1408   if (cu_->instruction_set == kX86_64) {
   1409     sign_reg = AllocTempWide();
   1410     OpRegRegImm(kOpAsr, sign_reg, rl_src.reg, 63);
   1411     OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, sign_reg);
   1412     OpRegReg(kOpXor, rl_result.reg, sign_reg);
   1413   } else {
   1414     sign_reg = AllocTemp();
   1415     OpRegRegImm(kOpAsr, sign_reg, rl_src.reg.GetHigh(), 31);
   1416     OpRegRegReg(kOpAdd, rl_result.reg.GetLow(), rl_src.reg.GetLow(), sign_reg);
   1417     OpRegRegReg(kOpAdc, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), sign_reg);
   1418     OpRegReg(kOpXor, rl_result.reg.GetLow(), sign_reg);
   1419     OpRegReg(kOpXor, rl_result.reg.GetHigh(), sign_reg);
   1420   }
   1421   FreeTemp(sign_reg);
   1422   StoreValueWide(rl_dest, rl_result);
   1423   return true;
   1424 }
   1425 
   1426 bool Mir2Lir::GenInlinedReverseBits(CallInfo* info, OpSize size) {
   1427   // Currently implemented only for ARM64
   1428   return false;
   1429 }
   1430 
   1431 bool Mir2Lir::GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double) {
   1432   // Currently implemented only for ARM64
   1433   return false;
   1434 }
   1435 
   1436 bool Mir2Lir::GenInlinedCeil(CallInfo* info) {
   1437   return false;
   1438 }
   1439 
   1440 bool Mir2Lir::GenInlinedFloor(CallInfo* info) {
   1441   return false;
   1442 }
   1443 
   1444 bool Mir2Lir::GenInlinedRint(CallInfo* info) {
   1445   return false;
   1446 }
   1447 
   1448 bool Mir2Lir::GenInlinedRound(CallInfo* info, bool is_double) {
   1449   return false;
   1450 }
   1451 
   1452 bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) {
   1453   if (cu_->instruction_set == kMips) {
   1454     // TODO - add Mips implementation
   1455     return false;
   1456   }
   1457   RegLocation rl_src = info->args[0];
   1458   RegLocation rl_dest = InlineTarget(info);
   1459   StoreValue(rl_dest, rl_src);
   1460   return true;
   1461 }
   1462 
   1463 bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) {
   1464   if (cu_->instruction_set == kMips) {
   1465     // TODO - add Mips implementation
   1466     return false;
   1467   }
   1468   RegLocation rl_src = info->args[0];
   1469   RegLocation rl_dest = InlineTargetWide(info);
   1470   StoreValueWide(rl_dest, rl_src);
   1471   return true;
   1472 }
   1473 
   1474 bool Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
   1475   return false;
   1476 }
   1477 
   1478 
   1479 /*
   1480  * Fast String.indexOf(I) & (II).  Tests for simple case of char <= 0xFFFF,
   1481  * otherwise bails to standard library code.
   1482  */
   1483 bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
   1484   if (cu_->instruction_set == kMips) {
   1485     // TODO - add Mips implementation
   1486     return false;
   1487   }
   1488   if (cu_->instruction_set == kX86_64) {
   1489     // TODO - add kX86_64 implementation
   1490     return false;
   1491   }
   1492   RegLocation rl_obj = info->args[0];
   1493   RegLocation rl_char = info->args[1];
   1494   if (rl_char.is_const && (mir_graph_->ConstantValue(rl_char) & ~0xFFFF) != 0) {
   1495     // Code point beyond 0xFFFF. Punt to the real String.indexOf().
   1496     return false;
   1497   }
   1498 
   1499   ClobberCallerSave();
   1500   LockCallTemps();  // Using fixed registers
   1501   RegStorage reg_ptr = TargetReg(kArg0, kRef);
   1502   RegStorage reg_char = TargetReg(kArg1, kNotWide);
   1503   RegStorage reg_start = TargetReg(kArg2, kNotWide);
   1504 
   1505   LoadValueDirectFixed(rl_obj, reg_ptr);
   1506   LoadValueDirectFixed(rl_char, reg_char);
   1507   if (zero_based) {
   1508     LoadConstant(reg_start, 0);
   1509   } else {
   1510     RegLocation rl_start = info->args[2];     // 3rd arg only present in III flavor of IndexOf.
   1511     LoadValueDirectFixed(rl_start, reg_start);
   1512   }
   1513   RegStorage r_tgt = LoadHelper(kQuickIndexOf);
   1514   GenExplicitNullCheck(reg_ptr, info->opt_flags);
   1515   LIR* high_code_point_branch =
   1516       rl_char.is_const ? nullptr : OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, nullptr);
   1517   // NOTE: not a safepoint
   1518   OpReg(kOpBlx, r_tgt);
   1519   if (!rl_char.is_const) {
   1520     // Add the slow path for code points beyond 0xFFFF.
   1521     DCHECK(high_code_point_branch != nullptr);
   1522     LIR* resume_tgt = NewLIR0(kPseudoTargetLabel);
   1523     info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
   1524     AddIntrinsicSlowPath(info, high_code_point_branch, resume_tgt);
   1525     ClobberCallerSave();  // We must clobber everything because slow path will return here
   1526   } else {
   1527     DCHECK_EQ(mir_graph_->ConstantValue(rl_char) & ~0xFFFF, 0);
   1528     DCHECK(high_code_point_branch == nullptr);
   1529   }
   1530   RegLocation rl_return = GetReturn(kCoreReg);
   1531   RegLocation rl_dest = InlineTarget(info);
   1532   StoreValue(rl_dest, rl_return);
   1533   return true;
   1534 }
   1535 
   1536 /* Fast string.compareTo(Ljava/lang/string;)I. */
   1537 bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) {
   1538   if (cu_->instruction_set == kMips) {
   1539     // TODO - add Mips implementation
   1540     return false;
   1541   }
   1542   ClobberCallerSave();
   1543   LockCallTemps();  // Using fixed registers
   1544   RegStorage reg_this = TargetReg(kArg0, kRef);
   1545   RegStorage reg_cmp = TargetReg(kArg1, kRef);
   1546 
   1547   RegLocation rl_this = info->args[0];
   1548   RegLocation rl_cmp = info->args[1];
   1549   LoadValueDirectFixed(rl_this, reg_this);
   1550   LoadValueDirectFixed(rl_cmp, reg_cmp);
   1551   RegStorage r_tgt;
   1552   if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) {
   1553     r_tgt = LoadHelper(kQuickStringCompareTo);
   1554   } else {
   1555     r_tgt = RegStorage::InvalidReg();
   1556   }
   1557   GenExplicitNullCheck(reg_this, info->opt_flags);
   1558   info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
   1559   // TUNING: check if rl_cmp.s_reg_low is already null checked
   1560   LIR* cmp_null_check_branch = OpCmpImmBranch(kCondEq, reg_cmp, 0, nullptr);
   1561   AddIntrinsicSlowPath(info, cmp_null_check_branch);
   1562   // NOTE: not a safepoint
   1563   CallHelper(r_tgt, kQuickStringCompareTo, false, true);
   1564   RegLocation rl_return = GetReturn(kCoreReg);
   1565   RegLocation rl_dest = InlineTarget(info);
   1566   StoreValue(rl_dest, rl_return);
   1567   return true;
   1568 }
   1569 
   1570 bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
   1571   RegLocation rl_dest = InlineTarget(info);
   1572 
   1573   // Early exit if the result is unused.
   1574   if (rl_dest.orig_sreg < 0) {
   1575     return true;
   1576   }
   1577 
   1578   RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
   1579 
   1580   switch (cu_->instruction_set) {
   1581     case kArm:
   1582       // Fall-through.
   1583     case kThumb2:
   1584       // Fall-through.
   1585     case kMips:
   1586       Load32Disp(TargetPtrReg(kSelf), Thread::PeerOffset<4>().Int32Value(), rl_result.reg);
   1587       break;
   1588 
   1589     case kArm64:
   1590       LoadRefDisp(TargetPtrReg(kSelf), Thread::PeerOffset<8>().Int32Value(), rl_result.reg,
   1591                   kNotVolatile);
   1592       break;
   1593 
   1594     default:
   1595       LOG(FATAL) << "Unexpected isa " << cu_->instruction_set;
   1596   }
   1597   StoreValue(rl_dest, rl_result);
   1598   return true;
   1599 }
   1600 
   1601 bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info,
   1602                                   bool is_long, bool is_volatile) {
   1603   if (cu_->instruction_set == kMips) {
   1604     // TODO - add Mips implementation
   1605     return false;
   1606   }
   1607   // Unused - RegLocation rl_src_unsafe = info->args[0];
   1608   RegLocation rl_src_obj = info->args[1];  // Object
   1609   RegLocation rl_src_offset = info->args[2];  // long low
   1610   rl_src_offset = NarrowRegLoc(rl_src_offset);  // ignore high half in info->args[3]
   1611   RegLocation rl_dest = is_long ? InlineTargetWide(info) : InlineTarget(info);  // result reg
   1612 
   1613   RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
   1614   RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
   1615   RegLocation rl_result = EvalLoc(rl_dest, LocToRegClass(rl_dest), true);
   1616   if (is_long) {
   1617     if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64
   1618         || cu_->instruction_set == kArm64) {
   1619       LoadBaseIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0, k64);
   1620     } else {
   1621       RegStorage rl_temp_offset = AllocTemp();
   1622       OpRegRegReg(kOpAdd, rl_temp_offset, rl_object.reg, rl_offset.reg);
   1623       LoadBaseDisp(rl_temp_offset, 0, rl_result.reg, k64, kNotVolatile);
   1624       FreeTemp(rl_temp_offset);
   1625     }
   1626   } else {
   1627     if (rl_result.ref) {
   1628       LoadRefIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0);
   1629     } else {
   1630       LoadBaseIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0, k32);
   1631     }
   1632   }
   1633 
   1634   if (is_volatile) {
   1635     GenMemBarrier(kLoadAny);
   1636   }
   1637 
   1638   if (is_long) {
   1639     StoreValueWide(rl_dest, rl_result);
   1640   } else {
   1641     StoreValue(rl_dest, rl_result);
   1642   }
   1643   return true;
   1644 }
   1645 
   1646 bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long,
   1647                                   bool is_object, bool is_volatile, bool is_ordered) {
   1648   if (cu_->instruction_set == kMips) {
   1649     // TODO - add Mips implementation
   1650     return false;
   1651   }
   1652   // Unused - RegLocation rl_src_unsafe = info->args[0];
   1653   RegLocation rl_src_obj = info->args[1];  // Object
   1654   RegLocation rl_src_offset = info->args[2];  // long low
   1655   rl_src_offset = NarrowRegLoc(rl_src_offset);  // ignore high half in info->args[3]
   1656   RegLocation rl_src_value = info->args[4];  // value to store
   1657   if (is_volatile || is_ordered) {
   1658     GenMemBarrier(kAnyStore);
   1659   }
   1660   RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
   1661   RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
   1662   RegLocation rl_value;
   1663   if (is_long) {
   1664     rl_value = LoadValueWide(rl_src_value, kCoreReg);
   1665     if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64
   1666         || cu_->instruction_set == kArm64) {
   1667       StoreBaseIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0, k64);
   1668     } else {
   1669       RegStorage rl_temp_offset = AllocTemp();
   1670       OpRegRegReg(kOpAdd, rl_temp_offset, rl_object.reg, rl_offset.reg);
   1671       StoreBaseDisp(rl_temp_offset, 0, rl_value.reg, k64, kNotVolatile);
   1672       FreeTemp(rl_temp_offset);
   1673     }
   1674   } else {
   1675     rl_value = LoadValue(rl_src_value);
   1676     if (rl_value.ref) {
   1677       StoreRefIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0);
   1678     } else {
   1679       StoreBaseIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0, k32);
   1680     }
   1681   }
   1682 
   1683   // Free up the temp early, to ensure x86 doesn't run out of temporaries in MarkGCCard.
   1684   FreeTemp(rl_offset.reg);
   1685 
   1686   if (is_volatile) {
   1687     // Prevent reordering with a subsequent volatile load.
   1688     // May also be needed to address store atomicity issues.
   1689     GenMemBarrier(kAnyAny);
   1690   }
   1691   if (is_object) {
   1692     MarkGCCard(rl_value.reg, rl_object.reg);
   1693   }
   1694   return true;
   1695 }
   1696 
   1697 void Mir2Lir::GenInvoke(CallInfo* info) {
   1698   if ((info->opt_flags & MIR_INLINED) != 0) {
   1699     // Already inlined but we may still need the null check.
   1700     if (info->type != kStatic &&
   1701         ((cu_->disable_opt & (1 << kNullCheckElimination)) != 0 ||
   1702          (info->opt_flags & MIR_IGNORE_NULL_CHECK) == 0))  {
   1703       RegLocation rl_obj = LoadValue(info->args[0], kRefReg);
   1704       GenNullCheck(rl_obj.reg);
   1705     }
   1706     return;
   1707   }
   1708   DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
   1709   if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file)
   1710       ->GenIntrinsic(this, info)) {
   1711     return;
   1712   }
   1713   GenInvokeNoInline(info);
   1714 }
   1715 
   1716 static LIR* GenInvokeNoInlineCall(Mir2Lir* mir_to_lir, InvokeType type) {
   1717   QuickEntrypointEnum trampoline;
   1718   switch (type) {
   1719     case kInterface:
   1720       trampoline = kQuickInvokeInterfaceTrampolineWithAccessCheck;
   1721       break;
   1722     case kDirect:
   1723       trampoline = kQuickInvokeDirectTrampolineWithAccessCheck;
   1724       break;
   1725     case kStatic:
   1726       trampoline = kQuickInvokeStaticTrampolineWithAccessCheck;
   1727       break;
   1728     case kSuper:
   1729       trampoline = kQuickInvokeSuperTrampolineWithAccessCheck;
   1730       break;
   1731     case kVirtual:
   1732       trampoline = kQuickInvokeVirtualTrampolineWithAccessCheck;
   1733       break;
   1734     default:
   1735       LOG(FATAL) << "Unexpected invoke type";
   1736       trampoline = kQuickInvokeInterfaceTrampolineWithAccessCheck;
   1737   }
   1738   return mir_to_lir->InvokeTrampoline(kOpBlx, RegStorage::InvalidReg(), trampoline);
   1739 }
   1740 
   1741 void Mir2Lir::GenInvokeNoInline(CallInfo* info) {
   1742   int call_state = 0;
   1743   LIR* null_ck;
   1744   LIR** p_null_ck = NULL;
   1745   NextCallInsn next_call_insn;
   1746   FlushAllRegs();  /* Everything to home location */
   1747   // Explicit register usage
   1748   LockCallTemps();
   1749 
   1750   const MirMethodLoweringInfo& method_info = mir_graph_->GetMethodLoweringInfo(info->mir);
   1751   cu_->compiler_driver->ProcessedInvoke(method_info.GetInvokeType(), method_info.StatsFlags());
   1752   BeginInvoke(info);
   1753   InvokeType original_type = static_cast<InvokeType>(method_info.GetInvokeType());
   1754   info->type = static_cast<InvokeType>(method_info.GetSharpType());
   1755   bool fast_path = method_info.FastPath();
   1756   bool skip_this;
   1757   if (info->type == kInterface) {
   1758     next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck;
   1759     skip_this = fast_path;
   1760   } else if (info->type == kDirect) {
   1761     if (fast_path) {
   1762       p_null_ck = &null_ck;
   1763     }
   1764     next_call_insn = fast_path ? NextSDCallInsn : NextDirectCallInsnSP;
   1765     skip_this = false;
   1766   } else if (info->type == kStatic) {
   1767     next_call_insn = fast_path ? NextSDCallInsn : NextStaticCallInsnSP;
   1768     skip_this = false;
   1769   } else if (info->type == kSuper) {
   1770     DCHECK(!fast_path);  // Fast path is a direct call.
   1771     next_call_insn = NextSuperCallInsnSP;
   1772     skip_this = false;
   1773   } else {
   1774     DCHECK_EQ(info->type, kVirtual);
   1775     next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP;
   1776     skip_this = fast_path;
   1777   }
   1778   MethodReference target_method = method_info.GetTargetMethod();
   1779   if (!info->is_range) {
   1780     call_state = GenDalvikArgsNoRange(info, call_state, p_null_ck,
   1781                                       next_call_insn, target_method, method_info.VTableIndex(),
   1782                                       method_info.DirectCode(), method_info.DirectMethod(),
   1783                                       original_type, skip_this);
   1784   } else {
   1785     call_state = GenDalvikArgsRange(info, call_state, p_null_ck,
   1786                                     next_call_insn, target_method, method_info.VTableIndex(),
   1787                                     method_info.DirectCode(), method_info.DirectMethod(),
   1788                                     original_type, skip_this);
   1789   }
   1790   // Finish up any of the call sequence not interleaved in arg loading
   1791   while (call_state >= 0) {
   1792     call_state = next_call_insn(cu_, info, call_state, target_method, method_info.VTableIndex(),
   1793                                 method_info.DirectCode(), method_info.DirectMethod(), original_type);
   1794   }
   1795   LIR* call_inst;
   1796   if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) {
   1797     call_inst = OpReg(kOpBlx, TargetPtrReg(kInvokeTgt));
   1798   } else {
   1799     if (fast_path) {
   1800       if (method_info.DirectCode() == static_cast<uintptr_t>(-1)) {
   1801         // We can have the linker fixup a call relative.
   1802         call_inst =
   1803           reinterpret_cast<X86Mir2Lir*>(this)->CallWithLinkerFixup(target_method, info->type);
   1804       } else {
   1805         call_inst = OpMem(kOpBlx, TargetReg(kArg0, kRef),
   1806                           mirror::ArtMethod::EntryPointFromQuickCompiledCodeOffset().Int32Value());
   1807       }
   1808     } else {
   1809       call_inst = GenInvokeNoInlineCall(this, info->type);
   1810     }
   1811   }
   1812   EndInvoke(info);
   1813   MarkSafepointPC(call_inst);
   1814 
   1815   ClobberCallerSave();
   1816   if (info->result.location != kLocInvalid) {
   1817     // We have a following MOVE_RESULT - do it now.
   1818     if (info->result.wide) {
   1819       RegLocation ret_loc = GetReturnWide(LocToRegClass(info->result));
   1820       StoreValueWide(info->result, ret_loc);
   1821     } else {
   1822       RegLocation ret_loc = GetReturn(LocToRegClass(info->result));
   1823       StoreValue(info->result, ret_loc);
   1824     }
   1825   }
   1826 }
   1827 
   1828 }  // namespace art
   1829