Home | History | Annotate | Download | only in Eigenvalues
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2009 Claire Maurice
      5 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      6 // Copyright (C) 2010,2012 Jitse Niesen <jitse (at) maths.leeds.ac.uk>
      7 //
      8 // This Source Code Form is subject to the terms of the Mozilla
      9 // Public License v. 2.0. If a copy of the MPL was not distributed
     10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     11 
     12 #ifndef EIGEN_COMPLEX_EIGEN_SOLVER_H
     13 #define EIGEN_COMPLEX_EIGEN_SOLVER_H
     14 
     15 #include "./ComplexSchur.h"
     16 
     17 namespace Eigen {
     18 
     19 /** \eigenvalues_module \ingroup Eigenvalues_Module
     20   *
     21   *
     22   * \class ComplexEigenSolver
     23   *
     24   * \brief Computes eigenvalues and eigenvectors of general complex matrices
     25   *
     26   * \tparam _MatrixType the type of the matrix of which we are
     27   * computing the eigendecomposition; this is expected to be an
     28   * instantiation of the Matrix class template.
     29   *
     30   * The eigenvalues and eigenvectors of a matrix \f$ A \f$ are scalars
     31   * \f$ \lambda \f$ and vectors \f$ v \f$ such that \f$ Av = \lambda v
     32   * \f$.  If \f$ D \f$ is a diagonal matrix with the eigenvalues on
     33   * the diagonal, and \f$ V \f$ is a matrix with the eigenvectors as
     34   * its columns, then \f$ A V = V D \f$. The matrix \f$ V \f$ is
     35   * almost always invertible, in which case we have \f$ A = V D V^{-1}
     36   * \f$. This is called the eigendecomposition.
     37   *
     38   * The main function in this class is compute(), which computes the
     39   * eigenvalues and eigenvectors of a given function. The
     40   * documentation for that function contains an example showing the
     41   * main features of the class.
     42   *
     43   * \sa class EigenSolver, class SelfAdjointEigenSolver
     44   */
     45 template<typename _MatrixType> class ComplexEigenSolver
     46 {
     47   public:
     48 
     49     /** \brief Synonym for the template parameter \p _MatrixType. */
     50     typedef _MatrixType MatrixType;
     51 
     52     enum {
     53       RowsAtCompileTime = MatrixType::RowsAtCompileTime,
     54       ColsAtCompileTime = MatrixType::ColsAtCompileTime,
     55       Options = MatrixType::Options,
     56       MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
     57       MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
     58     };
     59 
     60     /** \brief Scalar type for matrices of type #MatrixType. */
     61     typedef typename MatrixType::Scalar Scalar;
     62     typedef typename NumTraits<Scalar>::Real RealScalar;
     63     typedef typename MatrixType::Index Index;
     64 
     65     /** \brief Complex scalar type for #MatrixType.
     66       *
     67       * This is \c std::complex<Scalar> if #Scalar is real (e.g.,
     68       * \c float or \c double) and just \c Scalar if #Scalar is
     69       * complex.
     70       */
     71     typedef std::complex<RealScalar> ComplexScalar;
     72 
     73     /** \brief Type for vector of eigenvalues as returned by eigenvalues().
     74       *
     75       * This is a column vector with entries of type #ComplexScalar.
     76       * The length of the vector is the size of #MatrixType.
     77       */
     78     typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options&(~RowMajor), MaxColsAtCompileTime, 1> EigenvalueType;
     79 
     80     /** \brief Type for matrix of eigenvectors as returned by eigenvectors().
     81       *
     82       * This is a square matrix with entries of type #ComplexScalar.
     83       * The size is the same as the size of #MatrixType.
     84       */
     85     typedef Matrix<ComplexScalar, RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime> EigenvectorType;
     86 
     87     /** \brief Default constructor.
     88       *
     89       * The default constructor is useful in cases in which the user intends to
     90       * perform decompositions via compute().
     91       */
     92     ComplexEigenSolver()
     93             : m_eivec(),
     94               m_eivalues(),
     95               m_schur(),
     96               m_isInitialized(false),
     97               m_eigenvectorsOk(false),
     98               m_matX()
     99     {}
    100 
    101     /** \brief Default Constructor with memory preallocation
    102       *
    103       * Like the default constructor but with preallocation of the internal data
    104       * according to the specified problem \a size.
    105       * \sa ComplexEigenSolver()
    106       */
    107     ComplexEigenSolver(Index size)
    108             : m_eivec(size, size),
    109               m_eivalues(size),
    110               m_schur(size),
    111               m_isInitialized(false),
    112               m_eigenvectorsOk(false),
    113               m_matX(size, size)
    114     {}
    115 
    116     /** \brief Constructor; computes eigendecomposition of given matrix.
    117       *
    118       * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
    119       * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
    120       *    eigenvalues are computed; if false, only the eigenvalues are
    121       *    computed.
    122       *
    123       * This constructor calls compute() to compute the eigendecomposition.
    124       */
    125       ComplexEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
    126             : m_eivec(matrix.rows(),matrix.cols()),
    127               m_eivalues(matrix.cols()),
    128               m_schur(matrix.rows()),
    129               m_isInitialized(false),
    130               m_eigenvectorsOk(false),
    131               m_matX(matrix.rows(),matrix.cols())
    132     {
    133       compute(matrix, computeEigenvectors);
    134     }
    135 
    136     /** \brief Returns the eigenvectors of given matrix.
    137       *
    138       * \returns  A const reference to the matrix whose columns are the eigenvectors.
    139       *
    140       * \pre Either the constructor
    141       * ComplexEigenSolver(const MatrixType& matrix, bool) or the member
    142       * function compute(const MatrixType& matrix, bool) has been called before
    143       * to compute the eigendecomposition of a matrix, and
    144       * \p computeEigenvectors was set to true (the default).
    145       *
    146       * This function returns a matrix whose columns are the eigenvectors. Column
    147       * \f$ k \f$ is an eigenvector corresponding to eigenvalue number \f$ k
    148       * \f$ as returned by eigenvalues().  The eigenvectors are normalized to
    149       * have (Euclidean) norm equal to one. The matrix returned by this
    150       * function is the matrix \f$ V \f$ in the eigendecomposition \f$ A = V D
    151       * V^{-1} \f$, if it exists.
    152       *
    153       * Example: \include ComplexEigenSolver_eigenvectors.cpp
    154       * Output: \verbinclude ComplexEigenSolver_eigenvectors.out
    155       */
    156     const EigenvectorType& eigenvectors() const
    157     {
    158       eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
    159       eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
    160       return m_eivec;
    161     }
    162 
    163     /** \brief Returns the eigenvalues of given matrix.
    164       *
    165       * \returns A const reference to the column vector containing the eigenvalues.
    166       *
    167       * \pre Either the constructor
    168       * ComplexEigenSolver(const MatrixType& matrix, bool) or the member
    169       * function compute(const MatrixType& matrix, bool) has been called before
    170       * to compute the eigendecomposition of a matrix.
    171       *
    172       * This function returns a column vector containing the
    173       * eigenvalues. Eigenvalues are repeated according to their
    174       * algebraic multiplicity, so there are as many eigenvalues as
    175       * rows in the matrix. The eigenvalues are not sorted in any particular
    176       * order.
    177       *
    178       * Example: \include ComplexEigenSolver_eigenvalues.cpp
    179       * Output: \verbinclude ComplexEigenSolver_eigenvalues.out
    180       */
    181     const EigenvalueType& eigenvalues() const
    182     {
    183       eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
    184       return m_eivalues;
    185     }
    186 
    187     /** \brief Computes eigendecomposition of given matrix.
    188       *
    189       * \param[in]  matrix  Square matrix whose eigendecomposition is to be computed.
    190       * \param[in]  computeEigenvectors  If true, both the eigenvectors and the
    191       *    eigenvalues are computed; if false, only the eigenvalues are
    192       *    computed.
    193       * \returns    Reference to \c *this
    194       *
    195       * This function computes the eigenvalues of the complex matrix \p matrix.
    196       * The eigenvalues() function can be used to retrieve them.  If
    197       * \p computeEigenvectors is true, then the eigenvectors are also computed
    198       * and can be retrieved by calling eigenvectors().
    199       *
    200       * The matrix is first reduced to Schur form using the
    201       * ComplexSchur class. The Schur decomposition is then used to
    202       * compute the eigenvalues and eigenvectors.
    203       *
    204       * The cost of the computation is dominated by the cost of the
    205       * Schur decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$
    206       * is the size of the matrix.
    207       *
    208       * Example: \include ComplexEigenSolver_compute.cpp
    209       * Output: \verbinclude ComplexEigenSolver_compute.out
    210       */
    211     ComplexEigenSolver& compute(const MatrixType& matrix, bool computeEigenvectors = true);
    212 
    213     /** \brief Reports whether previous computation was successful.
    214       *
    215       * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
    216       */
    217     ComputationInfo info() const
    218     {
    219       eigen_assert(m_isInitialized && "ComplexEigenSolver is not initialized.");
    220       return m_schur.info();
    221     }
    222 
    223     /** \brief Sets the maximum number of iterations allowed. */
    224     ComplexEigenSolver& setMaxIterations(Index maxIters)
    225     {
    226       m_schur.setMaxIterations(maxIters);
    227       return *this;
    228     }
    229 
    230     /** \brief Returns the maximum number of iterations. */
    231     Index getMaxIterations()
    232     {
    233       return m_schur.getMaxIterations();
    234     }
    235 
    236   protected:
    237     EigenvectorType m_eivec;
    238     EigenvalueType m_eivalues;
    239     ComplexSchur<MatrixType> m_schur;
    240     bool m_isInitialized;
    241     bool m_eigenvectorsOk;
    242     EigenvectorType m_matX;
    243 
    244   private:
    245     void doComputeEigenvectors(const RealScalar& matrixnorm);
    246     void sortEigenvalues(bool computeEigenvectors);
    247 };
    248 
    249 
    250 template<typename MatrixType>
    251 ComplexEigenSolver<MatrixType>&
    252 ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix, bool computeEigenvectors)
    253 {
    254   // this code is inspired from Jampack
    255   eigen_assert(matrix.cols() == matrix.rows());
    256 
    257   // Do a complex Schur decomposition, A = U T U^*
    258   // The eigenvalues are on the diagonal of T.
    259   m_schur.compute(matrix, computeEigenvectors);
    260 
    261   if(m_schur.info() == Success)
    262   {
    263     m_eivalues = m_schur.matrixT().diagonal();
    264     if(computeEigenvectors)
    265       doComputeEigenvectors(matrix.norm());
    266     sortEigenvalues(computeEigenvectors);
    267   }
    268 
    269   m_isInitialized = true;
    270   m_eigenvectorsOk = computeEigenvectors;
    271   return *this;
    272 }
    273 
    274 
    275 template<typename MatrixType>
    276 void ComplexEigenSolver<MatrixType>::doComputeEigenvectors(const RealScalar& matrixnorm)
    277 {
    278   const Index n = m_eivalues.size();
    279 
    280   // Compute X such that T = X D X^(-1), where D is the diagonal of T.
    281   // The matrix X is unit triangular.
    282   m_matX = EigenvectorType::Zero(n, n);
    283   for(Index k=n-1 ; k>=0 ; k--)
    284   {
    285     m_matX.coeffRef(k,k) = ComplexScalar(1.0,0.0);
    286     // Compute X(i,k) using the (i,k) entry of the equation X T = D X
    287     for(Index i=k-1 ; i>=0 ; i--)
    288     {
    289       m_matX.coeffRef(i,k) = -m_schur.matrixT().coeff(i,k);
    290       if(k-i-1>0)
    291         m_matX.coeffRef(i,k) -= (m_schur.matrixT().row(i).segment(i+1,k-i-1) * m_matX.col(k).segment(i+1,k-i-1)).value();
    292       ComplexScalar z = m_schur.matrixT().coeff(i,i) - m_schur.matrixT().coeff(k,k);
    293       if(z==ComplexScalar(0))
    294       {
    295         // If the i-th and k-th eigenvalue are equal, then z equals 0.
    296         // Use a small value instead, to prevent division by zero.
    297         numext::real_ref(z) = NumTraits<RealScalar>::epsilon() * matrixnorm;
    298       }
    299       m_matX.coeffRef(i,k) = m_matX.coeff(i,k) / z;
    300     }
    301   }
    302 
    303   // Compute V as V = U X; now A = U T U^* = U X D X^(-1) U^* = V D V^(-1)
    304   m_eivec.noalias() = m_schur.matrixU() * m_matX;
    305   // .. and normalize the eigenvectors
    306   for(Index k=0 ; k<n ; k++)
    307   {
    308     m_eivec.col(k).normalize();
    309   }
    310 }
    311 
    312 
    313 template<typename MatrixType>
    314 void ComplexEigenSolver<MatrixType>::sortEigenvalues(bool computeEigenvectors)
    315 {
    316   const Index n =  m_eivalues.size();
    317   for (Index i=0; i<n; i++)
    318   {
    319     Index k;
    320     m_eivalues.cwiseAbs().tail(n-i).minCoeff(&k);
    321     if (k != 0)
    322     {
    323       k += i;
    324       std::swap(m_eivalues[k],m_eivalues[i]);
    325       if(computeEigenvectors)
    326 	m_eivec.col(i).swap(m_eivec.col(k));
    327     }
    328   }
    329 }
    330 
    331 } // end namespace Eigen
    332 
    333 #endif // EIGEN_COMPLEX_EIGEN_SOLVER_H
    334