Home | History | Annotate | Download | only in gfx
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "ui/gfx/skbitmap_operations.h"
      6 
      7 #include <algorithm>
      8 #include <string.h>
      9 
     10 #include "base/logging.h"
     11 #include "skia/ext/refptr.h"
     12 #include "third_party/skia/include/core/SkBitmap.h"
     13 #include "third_party/skia/include/core/SkCanvas.h"
     14 #include "third_party/skia/include/core/SkColorFilter.h"
     15 #include "third_party/skia/include/core/SkColorPriv.h"
     16 #include "third_party/skia/include/core/SkUnPreMultiply.h"
     17 #include "third_party/skia/include/effects/SkBlurImageFilter.h"
     18 #include "ui/gfx/insets.h"
     19 #include "ui/gfx/point.h"
     20 #include "ui/gfx/size.h"
     21 
     22 // static
     23 SkBitmap SkBitmapOperations::CreateInvertedBitmap(const SkBitmap& image) {
     24   DCHECK(image.colorType() == kPMColor_SkColorType);
     25 
     26   SkAutoLockPixels lock_image(image);
     27 
     28   SkBitmap inverted;
     29   inverted.allocN32Pixels(image.width(), image.height());
     30   inverted.eraseARGB(0, 0, 0, 0);
     31 
     32   for (int y = 0; y < image.height(); ++y) {
     33     uint32* image_row = image.getAddr32(0, y);
     34     uint32* dst_row = inverted.getAddr32(0, y);
     35 
     36     for (int x = 0; x < image.width(); ++x) {
     37       uint32 image_pixel = image_row[x];
     38       dst_row[x] = (image_pixel & 0xFF000000) |
     39                    (0x00FFFFFF - (image_pixel & 0x00FFFFFF));
     40     }
     41   }
     42 
     43   return inverted;
     44 }
     45 
     46 // static
     47 SkBitmap SkBitmapOperations::CreateSuperimposedBitmap(const SkBitmap& first,
     48                                                       const SkBitmap& second) {
     49   DCHECK(first.width() == second.width());
     50   DCHECK(first.height() == second.height());
     51   DCHECK(first.bytesPerPixel() == second.bytesPerPixel());
     52   DCHECK(first.colorType() == kPMColor_SkColorType);
     53 
     54   SkAutoLockPixels lock_first(first);
     55   SkAutoLockPixels lock_second(second);
     56 
     57   SkBitmap superimposed;
     58   superimposed.allocN32Pixels(first.width(), first.height());
     59   superimposed.eraseARGB(0, 0, 0, 0);
     60 
     61   SkCanvas canvas(superimposed);
     62 
     63   SkRect rect;
     64   rect.fLeft = 0;
     65   rect.fTop = 0;
     66   rect.fRight = SkIntToScalar(first.width());
     67   rect.fBottom = SkIntToScalar(first.height());
     68 
     69   canvas.drawBitmapRect(first, NULL, rect);
     70   canvas.drawBitmapRect(second, NULL, rect);
     71 
     72   return superimposed;
     73 }
     74 
     75 // static
     76 SkBitmap SkBitmapOperations::CreateBlendedBitmap(const SkBitmap& first,
     77                                                  const SkBitmap& second,
     78                                                  double alpha) {
     79   DCHECK((alpha >= 0) && (alpha <= 1));
     80   DCHECK(first.width() == second.width());
     81   DCHECK(first.height() == second.height());
     82   DCHECK(first.bytesPerPixel() == second.bytesPerPixel());
     83   DCHECK(first.colorType() == kPMColor_SkColorType);
     84 
     85   // Optimize for case where we won't need to blend anything.
     86   static const double alpha_min = 1.0 / 255;
     87   static const double alpha_max = 254.0 / 255;
     88   if (alpha < alpha_min)
     89     return first;
     90   else if (alpha > alpha_max)
     91     return second;
     92 
     93   SkAutoLockPixels lock_first(first);
     94   SkAutoLockPixels lock_second(second);
     95 
     96   SkBitmap blended;
     97   blended.allocN32Pixels(first.width(), first.height());
     98   blended.eraseARGB(0, 0, 0, 0);
     99 
    100   double first_alpha = 1 - alpha;
    101 
    102   for (int y = 0; y < first.height(); ++y) {
    103     uint32* first_row = first.getAddr32(0, y);
    104     uint32* second_row = second.getAddr32(0, y);
    105     uint32* dst_row = blended.getAddr32(0, y);
    106 
    107     for (int x = 0; x < first.width(); ++x) {
    108       uint32 first_pixel = first_row[x];
    109       uint32 second_pixel = second_row[x];
    110 
    111       int a = static_cast<int>((SkColorGetA(first_pixel) * first_alpha) +
    112                                (SkColorGetA(second_pixel) * alpha));
    113       int r = static_cast<int>((SkColorGetR(first_pixel) * first_alpha) +
    114                                (SkColorGetR(second_pixel) * alpha));
    115       int g = static_cast<int>((SkColorGetG(first_pixel) * first_alpha) +
    116                                (SkColorGetG(second_pixel) * alpha));
    117       int b = static_cast<int>((SkColorGetB(first_pixel) * first_alpha) +
    118                                (SkColorGetB(second_pixel) * alpha));
    119 
    120       dst_row[x] = SkColorSetARGB(a, r, g, b);
    121     }
    122   }
    123 
    124   return blended;
    125 }
    126 
    127 // static
    128 SkBitmap SkBitmapOperations::CreateMaskedBitmap(const SkBitmap& rgb,
    129                                                 const SkBitmap& alpha) {
    130   DCHECK(rgb.width() == alpha.width());
    131   DCHECK(rgb.height() == alpha.height());
    132   DCHECK(rgb.bytesPerPixel() == alpha.bytesPerPixel());
    133   DCHECK(rgb.colorType() == kPMColor_SkColorType);
    134   DCHECK(alpha.colorType() == kPMColor_SkColorType);
    135 
    136   SkBitmap masked;
    137   masked.allocN32Pixels(rgb.width(), rgb.height());
    138   masked.eraseARGB(0, 0, 0, 0);
    139 
    140   SkAutoLockPixels lock_rgb(rgb);
    141   SkAutoLockPixels lock_alpha(alpha);
    142   SkAutoLockPixels lock_masked(masked);
    143 
    144   for (int y = 0; y < masked.height(); ++y) {
    145     uint32* rgb_row = rgb.getAddr32(0, y);
    146     uint32* alpha_row = alpha.getAddr32(0, y);
    147     uint32* dst_row = masked.getAddr32(0, y);
    148 
    149     for (int x = 0; x < masked.width(); ++x) {
    150       SkColor rgb_pixel = SkUnPreMultiply::PMColorToColor(rgb_row[x]);
    151       SkColor alpha_pixel = SkUnPreMultiply::PMColorToColor(alpha_row[x]);
    152       int alpha = SkAlphaMul(SkColorGetA(rgb_pixel),
    153                              SkAlpha255To256(SkColorGetA(alpha_pixel)));
    154       int alpha_256 = SkAlpha255To256(alpha);
    155       dst_row[x] = SkColorSetARGB(alpha,
    156                                   SkAlphaMul(SkColorGetR(rgb_pixel), alpha_256),
    157                                   SkAlphaMul(SkColorGetG(rgb_pixel), alpha_256),
    158                                   SkAlphaMul(SkColorGetB(rgb_pixel),
    159                                              alpha_256));
    160     }
    161   }
    162 
    163   return masked;
    164 }
    165 
    166 // static
    167 SkBitmap SkBitmapOperations::CreateButtonBackground(SkColor color,
    168                                                     const SkBitmap& image,
    169                                                     const SkBitmap& mask) {
    170   DCHECK(image.colorType() == kPMColor_SkColorType);
    171   DCHECK(mask.colorType() == kPMColor_SkColorType);
    172 
    173   SkBitmap background;
    174   background.allocN32Pixels(mask.width(), mask.height());
    175 
    176   double bg_a = SkColorGetA(color);
    177   double bg_r = SkColorGetR(color);
    178   double bg_g = SkColorGetG(color);
    179   double bg_b = SkColorGetB(color);
    180 
    181   SkAutoLockPixels lock_mask(mask);
    182   SkAutoLockPixels lock_image(image);
    183   SkAutoLockPixels lock_background(background);
    184 
    185   for (int y = 0; y < mask.height(); ++y) {
    186     uint32* dst_row = background.getAddr32(0, y);
    187     uint32* image_row = image.getAddr32(0, y % image.height());
    188     uint32* mask_row = mask.getAddr32(0, y);
    189 
    190     for (int x = 0; x < mask.width(); ++x) {
    191       uint32 image_pixel = image_row[x % image.width()];
    192 
    193       double img_a = SkColorGetA(image_pixel);
    194       double img_r = SkColorGetR(image_pixel);
    195       double img_g = SkColorGetG(image_pixel);
    196       double img_b = SkColorGetB(image_pixel);
    197 
    198       double img_alpha = static_cast<double>(img_a) / 255.0;
    199       double img_inv = 1 - img_alpha;
    200 
    201       double mask_a = static_cast<double>(SkColorGetA(mask_row[x])) / 255.0;
    202 
    203       dst_row[x] = SkColorSetARGB(
    204           static_cast<int>(std::min(255.0, bg_a + img_a) * mask_a),
    205           static_cast<int>(((bg_r * img_inv) + (img_r * img_alpha)) * mask_a),
    206           static_cast<int>(((bg_g * img_inv) + (img_g * img_alpha)) * mask_a),
    207           static_cast<int>(((bg_b * img_inv) + (img_b * img_alpha)) * mask_a));
    208     }
    209   }
    210 
    211   return background;
    212 }
    213 
    214 namespace {
    215 namespace HSLShift {
    216 
    217 // TODO(viettrungluu): Some things have yet to be optimized at all.
    218 
    219 // Notes on and conventions used in the following code
    220 //
    221 // Conventions:
    222 //  - R, G, B, A = obvious; as variables: |r|, |g|, |b|, |a| (see also below)
    223 //  - H, S, L = obvious; as variables: |h|, |s|, |l| (see also below)
    224 //  - variables derived from S, L shift parameters: |sdec| and |sinc| for S
    225 //    increase and decrease factors, |ldec| and |linc| for L (see also below)
    226 //
    227 // To try to optimize HSL shifts, we do several things:
    228 //  - Avoid unpremultiplying (then processing) then premultiplying. This means
    229 //    that R, G, B values (and also L, but not H and S) should be treated as
    230 //    having a range of 0..A (where A is alpha).
    231 //  - Do things in integer/fixed-point. This avoids costly conversions between
    232 //    floating-point and integer, though I should study the tradeoff more
    233 //    carefully (presumably, at some point of processing complexity, converting
    234 //    and processing using simpler floating-point code will begin to win in
    235 //    performance). Also to be studied is the speed/type of floating point
    236 //    conversions; see, e.g., <http://www.stereopsis.com/sree/fpu2006.html>.
    237 //
    238 // Conventions for fixed-point arithmetic
    239 //  - Each function has a constant denominator (called |den|, which should be a
    240 //    power of 2), appropriate for the computations done in that function.
    241 //  - A value |x| is then typically represented by a numerator, named |x_num|,
    242 //    so that its actual value is |x_num / den| (casting to floating-point
    243 //    before division).
    244 //  - To obtain |x_num| from |x|, simply multiply by |den|, i.e., |x_num = x *
    245 //    den| (casting appropriately).
    246 //  - When necessary, a value |x| may also be represented as a numerator over
    247 //    the denominator squared (set |den2 = den * den|). In such a case, the
    248 //    corresponding variable is called |x_num2| (so that its actual value is
    249 //    |x_num^2 / den2|.
    250 //  - The representation of the product of |x| and |y| is be called |x_y_num| if
    251 //    |x * y == x_y_num / den|, and |xy_num2| if |x * y == x_y_num2 / den2|. In
    252 //    the latter case, notice that one can calculate |x_y_num2 = x_num * y_num|.
    253 
    254 // Routine used to process a line; typically specialized for specific kinds of
    255 // HSL shifts (to optimize).
    256 typedef void (*LineProcessor)(const color_utils::HSL&,
    257                               const SkPMColor*,
    258                               SkPMColor*,
    259                               int width);
    260 
    261 enum OperationOnH { kOpHNone = 0, kOpHShift, kNumHOps };
    262 enum OperationOnS { kOpSNone = 0, kOpSDec, kOpSInc, kNumSOps };
    263 enum OperationOnL { kOpLNone = 0, kOpLDec, kOpLInc, kNumLOps };
    264 
    265 // Epsilon used to judge when shift values are close enough to various critical
    266 // values (typically 0.5, which yields a no-op for S and L shifts. 1/256 should
    267 // be small enough, but let's play it safe>
    268 const double epsilon = 0.0005;
    269 
    270 // Line processor: default/universal (i.e., old-school).
    271 void LineProcDefault(const color_utils::HSL& hsl_shift,
    272                      const SkPMColor* in,
    273                      SkPMColor* out,
    274                      int width) {
    275   for (int x = 0; x < width; x++) {
    276     out[x] = SkPreMultiplyColor(color_utils::HSLShift(
    277         SkUnPreMultiply::PMColorToColor(in[x]), hsl_shift));
    278   }
    279 }
    280 
    281 // Line processor: no-op (i.e., copy).
    282 void LineProcCopy(const color_utils::HSL& hsl_shift,
    283                   const SkPMColor* in,
    284                   SkPMColor* out,
    285                   int width) {
    286   DCHECK(hsl_shift.h < 0);
    287   DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
    288   DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon);
    289   memcpy(out, in, static_cast<size_t>(width) * sizeof(out[0]));
    290 }
    291 
    292 // Line processor: H no-op, S no-op, L decrease.
    293 void LineProcHnopSnopLdec(const color_utils::HSL& hsl_shift,
    294                           const SkPMColor* in,
    295                           SkPMColor* out,
    296                           int width) {
    297   const uint32_t den = 65536;
    298 
    299   DCHECK(hsl_shift.h < 0);
    300   DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
    301   DCHECK(hsl_shift.l <= 0.5 - HSLShift::epsilon && hsl_shift.l >= 0);
    302 
    303   uint32_t ldec_num = static_cast<uint32_t>(hsl_shift.l * 2 * den);
    304   for (int x = 0; x < width; x++) {
    305     uint32_t a = SkGetPackedA32(in[x]);
    306     uint32_t r = SkGetPackedR32(in[x]);
    307     uint32_t g = SkGetPackedG32(in[x]);
    308     uint32_t b = SkGetPackedB32(in[x]);
    309     r = r * ldec_num / den;
    310     g = g * ldec_num / den;
    311     b = b * ldec_num / den;
    312     out[x] = SkPackARGB32(a, r, g, b);
    313   }
    314 }
    315 
    316 // Line processor: H no-op, S no-op, L increase.
    317 void LineProcHnopSnopLinc(const color_utils::HSL& hsl_shift,
    318                           const SkPMColor* in,
    319                           SkPMColor* out,
    320                           int width) {
    321   const uint32_t den = 65536;
    322 
    323   DCHECK(hsl_shift.h < 0);
    324   DCHECK(hsl_shift.s < 0 || fabs(hsl_shift.s - 0.5) < HSLShift::epsilon);
    325   DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1);
    326 
    327   uint32_t linc_num = static_cast<uint32_t>((hsl_shift.l - 0.5) * 2 * den);
    328   for (int x = 0; x < width; x++) {
    329     uint32_t a = SkGetPackedA32(in[x]);
    330     uint32_t r = SkGetPackedR32(in[x]);
    331     uint32_t g = SkGetPackedG32(in[x]);
    332     uint32_t b = SkGetPackedB32(in[x]);
    333     r += (a - r) * linc_num / den;
    334     g += (a - g) * linc_num / den;
    335     b += (a - b) * linc_num / den;
    336     out[x] = SkPackARGB32(a, r, g, b);
    337   }
    338 }
    339 
    340 // Saturation changes modifications in RGB
    341 //
    342 // (Note that as a further complication, the values we deal in are
    343 // premultiplied, so R/G/B values must be in the range 0..A. For mathematical
    344 // purposes, one may as well use r=R/A, g=G/A, b=B/A. Without loss of
    345 // generality, assume that R/G/B values are in the range 0..1.)
    346 //
    347 // Let Max = max(R,G,B), Min = min(R,G,B), and Med be the median value. Then L =
    348 // (Max+Min)/2. If L is to remain constant, Max+Min must also remain constant.
    349 //
    350 // For H to remain constant, first, the (numerical) order of R/G/B (from
    351 // smallest to largest) must remain the same. Second, all the ratios
    352 // (R-G)/(Max-Min), (R-B)/(Max-Min), (G-B)/(Max-Min) must remain constant (of
    353 // course, if Max = Min, then S = 0 and no saturation change is well-defined,
    354 // since H is not well-defined).
    355 //
    356 // Let C_max be a colour with value Max, C_min be one with value Min, and C_med
    357 // the remaining colour. Increasing saturation (to the maximum) is accomplished
    358 // by increasing the value of C_max while simultaneously decreasing C_min and
    359 // changing C_med so that the ratios are maintained; for the latter, it suffices
    360 // to keep (C_med-C_min)/(C_max-C_min) constant (and equal to
    361 // (Med-Min)/(Max-Min)).
    362 
    363 // Line processor: H no-op, S decrease, L no-op.
    364 void LineProcHnopSdecLnop(const color_utils::HSL& hsl_shift,
    365                           const SkPMColor* in,
    366                           SkPMColor* out,
    367                           int width) {
    368   DCHECK(hsl_shift.h < 0);
    369   DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
    370   DCHECK(hsl_shift.l < 0 || fabs(hsl_shift.l - 0.5) < HSLShift::epsilon);
    371 
    372   const int32_t denom = 65536;
    373   int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
    374   for (int x = 0; x < width; x++) {
    375     int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
    376     int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
    377     int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
    378     int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
    379 
    380     int32_t vmax, vmin;
    381     if (r > g) {  // This uses 3 compares rather than 4.
    382       vmax = std::max(r, b);
    383       vmin = std::min(g, b);
    384     } else {
    385       vmax = std::max(g, b);
    386       vmin = std::min(r, b);
    387     }
    388 
    389     // Use denom * L to avoid rounding.
    390     int32_t denom_l = (vmax + vmin) * (denom / 2);
    391     int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
    392 
    393     r = (denom_l + r * s_numer - s_numer_l) / denom;
    394     g = (denom_l + g * s_numer - s_numer_l) / denom;
    395     b = (denom_l + b * s_numer - s_numer_l) / denom;
    396     out[x] = SkPackARGB32(a, r, g, b);
    397   }
    398 }
    399 
    400 // Line processor: H no-op, S decrease, L decrease.
    401 void LineProcHnopSdecLdec(const color_utils::HSL& hsl_shift,
    402                           const SkPMColor* in,
    403                           SkPMColor* out,
    404                           int width) {
    405   DCHECK(hsl_shift.h < 0);
    406   DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
    407   DCHECK(hsl_shift.l >= 0 && hsl_shift.l <= 0.5 - HSLShift::epsilon);
    408 
    409   // Can't be too big since we need room for denom*denom and a bit for sign.
    410   const int32_t denom = 1024;
    411   int32_t l_numer = static_cast<int32_t>(hsl_shift.l * 2 * denom);
    412   int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
    413   for (int x = 0; x < width; x++) {
    414     int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
    415     int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
    416     int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
    417     int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
    418 
    419     int32_t vmax, vmin;
    420     if (r > g) {  // This uses 3 compares rather than 4.
    421       vmax = std::max(r, b);
    422       vmin = std::min(g, b);
    423     } else {
    424       vmax = std::max(g, b);
    425       vmin = std::min(r, b);
    426     }
    427 
    428     // Use denom * L to avoid rounding.
    429     int32_t denom_l = (vmax + vmin) * (denom / 2);
    430     int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
    431 
    432     r = (denom_l + r * s_numer - s_numer_l) * l_numer / (denom * denom);
    433     g = (denom_l + g * s_numer - s_numer_l) * l_numer / (denom * denom);
    434     b = (denom_l + b * s_numer - s_numer_l) * l_numer / (denom * denom);
    435     out[x] = SkPackARGB32(a, r, g, b);
    436   }
    437 }
    438 
    439 // Line processor: H no-op, S decrease, L increase.
    440 void LineProcHnopSdecLinc(const color_utils::HSL& hsl_shift,
    441                           const SkPMColor* in,
    442                           SkPMColor* out,
    443                           int width) {
    444   DCHECK(hsl_shift.h < 0);
    445   DCHECK(hsl_shift.s >= 0 && hsl_shift.s <= 0.5 - HSLShift::epsilon);
    446   DCHECK(hsl_shift.l >= 0.5 + HSLShift::epsilon && hsl_shift.l <= 1);
    447 
    448   // Can't be too big since we need room for denom*denom and a bit for sign.
    449   const int32_t denom = 1024;
    450   int32_t l_numer = static_cast<int32_t>((hsl_shift.l - 0.5) * 2 * denom);
    451   int32_t s_numer = static_cast<int32_t>(hsl_shift.s * 2 * denom);
    452   for (int x = 0; x < width; x++) {
    453     int32_t a = static_cast<int32_t>(SkGetPackedA32(in[x]));
    454     int32_t r = static_cast<int32_t>(SkGetPackedR32(in[x]));
    455     int32_t g = static_cast<int32_t>(SkGetPackedG32(in[x]));
    456     int32_t b = static_cast<int32_t>(SkGetPackedB32(in[x]));
    457 
    458     int32_t vmax, vmin;
    459     if (r > g) {  // This uses 3 compares rather than 4.
    460       vmax = std::max(r, b);
    461       vmin = std::min(g, b);
    462     } else {
    463       vmax = std::max(g, b);
    464       vmin = std::min(r, b);
    465     }
    466 
    467     // Use denom * L to avoid rounding.
    468     int32_t denom_l = (vmax + vmin) * (denom / 2);
    469     int32_t s_numer_l = (vmax + vmin) * s_numer / 2;
    470 
    471     r = denom_l + r * s_numer - s_numer_l;
    472     g = denom_l + g * s_numer - s_numer_l;
    473     b = denom_l + b * s_numer - s_numer_l;
    474 
    475     r = (r * denom + (a * denom - r) * l_numer) / (denom * denom);
    476     g = (g * denom + (a * denom - g) * l_numer) / (denom * denom);
    477     b = (b * denom + (a * denom - b) * l_numer) / (denom * denom);
    478     out[x] = SkPackARGB32(a, r, g, b);
    479   }
    480 }
    481 
    482 const LineProcessor kLineProcessors[kNumHOps][kNumSOps][kNumLOps] = {
    483   { // H: kOpHNone
    484     { // S: kOpSNone
    485       LineProcCopy,         // L: kOpLNone
    486       LineProcHnopSnopLdec, // L: kOpLDec
    487       LineProcHnopSnopLinc  // L: kOpLInc
    488     },
    489     { // S: kOpSDec
    490       LineProcHnopSdecLnop, // L: kOpLNone
    491       LineProcHnopSdecLdec, // L: kOpLDec
    492       LineProcHnopSdecLinc  // L: kOpLInc
    493     },
    494     { // S: kOpSInc
    495       LineProcDefault, // L: kOpLNone
    496       LineProcDefault, // L: kOpLDec
    497       LineProcDefault  // L: kOpLInc
    498     }
    499   },
    500   { // H: kOpHShift
    501     { // S: kOpSNone
    502       LineProcDefault, // L: kOpLNone
    503       LineProcDefault, // L: kOpLDec
    504       LineProcDefault  // L: kOpLInc
    505     },
    506     { // S: kOpSDec
    507       LineProcDefault, // L: kOpLNone
    508       LineProcDefault, // L: kOpLDec
    509       LineProcDefault  // L: kOpLInc
    510     },
    511     { // S: kOpSInc
    512       LineProcDefault, // L: kOpLNone
    513       LineProcDefault, // L: kOpLDec
    514       LineProcDefault  // L: kOpLInc
    515     }
    516   }
    517 };
    518 
    519 }  // namespace HSLShift
    520 }  // namespace
    521 
    522 // static
    523 SkBitmap SkBitmapOperations::CreateHSLShiftedBitmap(
    524     const SkBitmap& bitmap,
    525     const color_utils::HSL& hsl_shift) {
    526   // Default to NOPs.
    527   HSLShift::OperationOnH H_op = HSLShift::kOpHNone;
    528   HSLShift::OperationOnS S_op = HSLShift::kOpSNone;
    529   HSLShift::OperationOnL L_op = HSLShift::kOpLNone;
    530 
    531   if (hsl_shift.h >= 0 && hsl_shift.h <= 1)
    532     H_op = HSLShift::kOpHShift;
    533 
    534   // Saturation shift: 0 -> fully desaturate, 0.5 -> NOP, 1 -> fully saturate.
    535   if (hsl_shift.s >= 0 && hsl_shift.s <= (0.5 - HSLShift::epsilon))
    536     S_op = HSLShift::kOpSDec;
    537   else if (hsl_shift.s >= (0.5 + HSLShift::epsilon))
    538     S_op = HSLShift::kOpSInc;
    539 
    540   // Lightness shift: 0 -> black, 0.5 -> NOP, 1 -> white.
    541   if (hsl_shift.l >= 0 && hsl_shift.l <= (0.5 - HSLShift::epsilon))
    542     L_op = HSLShift::kOpLDec;
    543   else if (hsl_shift.l >= (0.5 + HSLShift::epsilon))
    544     L_op = HSLShift::kOpLInc;
    545 
    546   HSLShift::LineProcessor line_proc =
    547       HSLShift::kLineProcessors[H_op][S_op][L_op];
    548 
    549   DCHECK(bitmap.empty() == false);
    550   DCHECK(bitmap.colorType() == kPMColor_SkColorType);
    551 
    552   SkBitmap shifted;
    553   shifted.allocN32Pixels(bitmap.width(), bitmap.height());
    554   shifted.eraseARGB(0, 0, 0, 0);
    555 
    556   SkAutoLockPixels lock_bitmap(bitmap);
    557   SkAutoLockPixels lock_shifted(shifted);
    558 
    559   // Loop through the pixels of the original bitmap.
    560   for (int y = 0; y < bitmap.height(); ++y) {
    561     SkPMColor* pixels = bitmap.getAddr32(0, y);
    562     SkPMColor* tinted_pixels = shifted.getAddr32(0, y);
    563 
    564     (*line_proc)(hsl_shift, pixels, tinted_pixels, bitmap.width());
    565   }
    566 
    567   return shifted;
    568 }
    569 
    570 // static
    571 SkBitmap SkBitmapOperations::CreateTiledBitmap(const SkBitmap& source,
    572                                                int src_x, int src_y,
    573                                                int dst_w, int dst_h) {
    574   DCHECK(source.colorType() == kPMColor_SkColorType);
    575 
    576   SkBitmap cropped;
    577   cropped.allocN32Pixels(dst_w, dst_h);
    578   cropped.eraseARGB(0, 0, 0, 0);
    579 
    580   SkAutoLockPixels lock_source(source);
    581   SkAutoLockPixels lock_cropped(cropped);
    582 
    583   // Loop through the pixels of the original bitmap.
    584   for (int y = 0; y < dst_h; ++y) {
    585     int y_pix = (src_y + y) % source.height();
    586     while (y_pix < 0)
    587       y_pix += source.height();
    588 
    589     uint32* source_row = source.getAddr32(0, y_pix);
    590     uint32* dst_row = cropped.getAddr32(0, y);
    591 
    592     for (int x = 0; x < dst_w; ++x) {
    593       int x_pix = (src_x + x) % source.width();
    594       while (x_pix < 0)
    595         x_pix += source.width();
    596 
    597       dst_row[x] = source_row[x_pix];
    598     }
    599   }
    600 
    601   return cropped;
    602 }
    603 
    604 // static
    605 SkBitmap SkBitmapOperations::DownsampleByTwoUntilSize(const SkBitmap& bitmap,
    606                                                       int min_w, int min_h) {
    607   if ((bitmap.width() <= min_w) || (bitmap.height() <= min_h) ||
    608       (min_w < 0) || (min_h < 0))
    609     return bitmap;
    610 
    611   // Since bitmaps are refcounted, this copy will be fast.
    612   SkBitmap current = bitmap;
    613   while ((current.width() >= min_w * 2) && (current.height() >= min_h * 2) &&
    614          (current.width() > 1) && (current.height() > 1))
    615     current = DownsampleByTwo(current);
    616   return current;
    617 }
    618 
    619 // static
    620 SkBitmap SkBitmapOperations::DownsampleByTwo(const SkBitmap& bitmap) {
    621   // Handle the nop case.
    622   if ((bitmap.width() <= 1) || (bitmap.height() <= 1))
    623     return bitmap;
    624 
    625   SkBitmap result;
    626   result.allocN32Pixels((bitmap.width() + 1) / 2, (bitmap.height() + 1) / 2);
    627 
    628   SkAutoLockPixels lock(bitmap);
    629 
    630   const int resultLastX = result.width() - 1;
    631   const int srcLastX = bitmap.width() - 1;
    632 
    633   for (int dest_y = 0; dest_y < result.height(); ++dest_y) {
    634     const int src_y = dest_y << 1;
    635     const SkPMColor* SK_RESTRICT cur_src0 = bitmap.getAddr32(0, src_y);
    636     const SkPMColor* SK_RESTRICT cur_src1 = cur_src0;
    637     if (src_y + 1 < bitmap.height())
    638       cur_src1 = bitmap.getAddr32(0, src_y + 1);
    639 
    640     SkPMColor* SK_RESTRICT cur_dst = result.getAddr32(0, dest_y);
    641 
    642     for (int dest_x = 0; dest_x <= resultLastX; ++dest_x) {
    643       // This code is based on downsampleby2_proc32 in SkBitmap.cpp. It is very
    644       // clever in that it does two channels at once: alpha and green ("ag")
    645       // and red and blue ("rb"). Each channel gets averaged across 4 pixels
    646       // to get the result.
    647       int bump_x = (dest_x << 1) < srcLastX;
    648       SkPMColor tmp, ag, rb;
    649 
    650       // Top left pixel of the 2x2 block.
    651       tmp = cur_src0[0];
    652       ag = (tmp >> 8) & 0xFF00FF;
    653       rb = tmp & 0xFF00FF;
    654 
    655       // Top right pixel of the 2x2 block.
    656       tmp = cur_src0[bump_x];
    657       ag += (tmp >> 8) & 0xFF00FF;
    658       rb += tmp & 0xFF00FF;
    659 
    660       // Bottom left pixel of the 2x2 block.
    661       tmp = cur_src1[0];
    662       ag += (tmp >> 8) & 0xFF00FF;
    663       rb += tmp & 0xFF00FF;
    664 
    665       // Bottom right pixel of the 2x2 block.
    666       tmp = cur_src1[bump_x];
    667       ag += (tmp >> 8) & 0xFF00FF;
    668       rb += tmp & 0xFF00FF;
    669 
    670       // Put the channels back together, dividing each by 4 to get the average.
    671       // |ag| has the alpha and green channels shifted right by 8 bits from
    672       // there they should end up, so shifting left by 6 gives them in the
    673       // correct position divided by 4.
    674       *cur_dst++ = ((rb >> 2) & 0xFF00FF) | ((ag << 6) & 0xFF00FF00);
    675 
    676       cur_src0 += 2;
    677       cur_src1 += 2;
    678     }
    679   }
    680 
    681   return result;
    682 }
    683 
    684 // static
    685 SkBitmap SkBitmapOperations::UnPreMultiply(const SkBitmap& bitmap) {
    686   if (bitmap.isNull())
    687     return bitmap;
    688   if (bitmap.isOpaque())
    689     return bitmap;
    690 
    691   SkImageInfo info = bitmap.info();
    692   info.fAlphaType = kOpaque_SkAlphaType;
    693   SkBitmap opaque_bitmap;
    694   opaque_bitmap.allocPixels(info);
    695 
    696   {
    697     SkAutoLockPixels bitmap_lock(bitmap);
    698     SkAutoLockPixels opaque_bitmap_lock(opaque_bitmap);
    699     for (int y = 0; y < opaque_bitmap.height(); y++) {
    700       for (int x = 0; x < opaque_bitmap.width(); x++) {
    701         uint32 src_pixel = *bitmap.getAddr32(x, y);
    702         uint32* dst_pixel = opaque_bitmap.getAddr32(x, y);
    703         SkColor unmultiplied = SkUnPreMultiply::PMColorToColor(src_pixel);
    704         *dst_pixel = unmultiplied;
    705       }
    706     }
    707   }
    708 
    709   return opaque_bitmap;
    710 }
    711 
    712 // static
    713 SkBitmap SkBitmapOperations::CreateTransposedBitmap(const SkBitmap& image) {
    714   DCHECK(image.colorType() == kPMColor_SkColorType);
    715 
    716   SkBitmap transposed;
    717   transposed.allocN32Pixels(image.height(), image.width());
    718 
    719   SkAutoLockPixels lock_image(image);
    720   SkAutoLockPixels lock_transposed(transposed);
    721 
    722   for (int y = 0; y < image.height(); ++y) {
    723     uint32* image_row = image.getAddr32(0, y);
    724     for (int x = 0; x < image.width(); ++x) {
    725       uint32* dst = transposed.getAddr32(y, x);
    726       *dst = image_row[x];
    727     }
    728   }
    729 
    730   return transposed;
    731 }
    732 
    733 // static
    734 SkBitmap SkBitmapOperations::CreateColorMask(const SkBitmap& bitmap,
    735                                              SkColor c) {
    736   DCHECK(bitmap.colorType() == kPMColor_SkColorType);
    737 
    738   SkBitmap color_mask;
    739   color_mask.allocN32Pixels(bitmap.width(), bitmap.height());
    740   color_mask.eraseARGB(0, 0, 0, 0);
    741 
    742   SkCanvas canvas(color_mask);
    743 
    744   skia::RefPtr<SkColorFilter> color_filter = skia::AdoptRef(
    745       SkColorFilter::CreateModeFilter(c, SkXfermode::kSrcIn_Mode));
    746   SkPaint paint;
    747   paint.setColorFilter(color_filter.get());
    748   canvas.drawBitmap(bitmap, SkIntToScalar(0), SkIntToScalar(0), &paint);
    749   return color_mask;
    750 }
    751 
    752 // static
    753 SkBitmap SkBitmapOperations::CreateDropShadow(
    754     const SkBitmap& bitmap,
    755     const gfx::ShadowValues& shadows) {
    756   DCHECK(bitmap.colorType() == kPMColor_SkColorType);
    757 
    758   // Shadow margin insets are negative values because they grow outside.
    759   // Negate them here as grow direction is not important and only pixel value
    760   // is of interest here.
    761   gfx::Insets shadow_margin = -gfx::ShadowValue::GetMargin(shadows);
    762 
    763   SkBitmap image_with_shadow;
    764   image_with_shadow.allocN32Pixels(bitmap.width() + shadow_margin.width(),
    765                                    bitmap.height() + shadow_margin.height());
    766   image_with_shadow.eraseARGB(0, 0, 0, 0);
    767 
    768   SkCanvas canvas(image_with_shadow);
    769   canvas.translate(SkIntToScalar(shadow_margin.left()),
    770                    SkIntToScalar(shadow_margin.top()));
    771 
    772   SkPaint paint;
    773   for (size_t i = 0; i < shadows.size(); ++i) {
    774     const gfx::ShadowValue& shadow = shadows[i];
    775     SkBitmap shadow_image = SkBitmapOperations::CreateColorMask(bitmap,
    776                                                                 shadow.color());
    777 
    778     skia::RefPtr<SkBlurImageFilter> filter =
    779         skia::AdoptRef(SkBlurImageFilter::Create(
    780             SkDoubleToScalar(shadow.blur()), SkDoubleToScalar(shadow.blur())));
    781     paint.setImageFilter(filter.get());
    782 
    783     canvas.saveLayer(0, &paint);
    784     canvas.drawBitmap(shadow_image,
    785                       SkIntToScalar(shadow.x()),
    786                       SkIntToScalar(shadow.y()));
    787     canvas.restore();
    788   }
    789 
    790   canvas.drawBitmap(bitmap, SkIntToScalar(0), SkIntToScalar(0));
    791   return image_with_shadow;
    792 }
    793 
    794 // static
    795 SkBitmap SkBitmapOperations::Rotate(const SkBitmap& source,
    796                                     RotationAmount rotation) {
    797   SkBitmap result;
    798   SkScalar angle = SkFloatToScalar(0.0f);
    799 
    800   switch (rotation) {
    801    case ROTATION_90_CW:
    802      angle = SkFloatToScalar(90.0f);
    803      result.setConfig(
    804          SkBitmap::kARGB_8888_Config, source.height(), source.width());
    805      break;
    806    case ROTATION_180_CW:
    807      angle = SkFloatToScalar(180.0f);
    808      result.setConfig(
    809          SkBitmap::kARGB_8888_Config, source.width(), source.height());
    810      break;
    811    case ROTATION_270_CW:
    812      angle = SkFloatToScalar(270.0f);
    813      result.setConfig(
    814          SkBitmap::kARGB_8888_Config, source.height(), source.width());
    815      break;
    816   }
    817   result.allocPixels();
    818   SkCanvas canvas(result);
    819   canvas.clear(SkColorSetARGB(0, 0, 0, 0));
    820 
    821   canvas.translate(SkFloatToScalar(result.width() * 0.5f),
    822                    SkFloatToScalar(result.height() * 0.5f));
    823   canvas.rotate(angle);
    824   canvas.translate(-SkFloatToScalar(source.width() * 0.5f),
    825                    -SkFloatToScalar(source.height() * 0.5f));
    826   canvas.drawBitmap(source, 0, 0);
    827   canvas.flush();
    828 
    829   return result;
    830 }
    831