Home | History | Annotate | Download | only in src
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the distribution.
     14 //
     15 // - Neither the name of Sun Microsystems or the names of contributors may
     16 // be used to endorse or promote products derived from this software without
     17 // specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // The original source code covered by the above license above has been
     32 // modified significantly by Google Inc.
     33 // Copyright 2012 the V8 project authors. All rights reserved.
     34 
     35 #ifndef V8_ASSEMBLER_H_
     36 #define V8_ASSEMBLER_H_
     37 
     38 #include "src/v8.h"
     39 
     40 #include "src/allocation.h"
     41 #include "src/builtins.h"
     42 #include "src/gdb-jit.h"
     43 #include "src/isolate.h"
     44 #include "src/runtime.h"
     45 #include "src/token.h"
     46 
     47 namespace v8 {
     48 
     49 class ApiFunction;
     50 
     51 namespace internal {
     52 
     53 class StatsCounter;
     54 // -----------------------------------------------------------------------------
     55 // Platform independent assembler base class.
     56 
     57 class AssemblerBase: public Malloced {
     58  public:
     59   AssemblerBase(Isolate* isolate, void* buffer, int buffer_size);
     60   virtual ~AssemblerBase();
     61 
     62   Isolate* isolate() const { return isolate_; }
     63   int jit_cookie() const { return jit_cookie_; }
     64 
     65   bool emit_debug_code() const { return emit_debug_code_; }
     66   void set_emit_debug_code(bool value) { emit_debug_code_ = value; }
     67 
     68   bool serializer_enabled() const { return serializer_enabled_; }
     69 
     70   bool predictable_code_size() const { return predictable_code_size_; }
     71   void set_predictable_code_size(bool value) { predictable_code_size_ = value; }
     72 
     73   uint64_t enabled_cpu_features() const { return enabled_cpu_features_; }
     74   void set_enabled_cpu_features(uint64_t features) {
     75     enabled_cpu_features_ = features;
     76   }
     77   bool IsEnabled(CpuFeature f) {
     78     return (enabled_cpu_features_ & (static_cast<uint64_t>(1) << f)) != 0;
     79   }
     80 
     81   // Overwrite a host NaN with a quiet target NaN.  Used by mksnapshot for
     82   // cross-snapshotting.
     83   static void QuietNaN(HeapObject* nan) { }
     84 
     85   int pc_offset() const { return static_cast<int>(pc_ - buffer_); }
     86 
     87   // This function is called when code generation is aborted, so that
     88   // the assembler could clean up internal data structures.
     89   virtual void AbortedCodeGeneration() { }
     90 
     91   static const int kMinimalBufferSize = 4*KB;
     92 
     93  protected:
     94   // The buffer into which code and relocation info are generated. It could
     95   // either be owned by the assembler or be provided externally.
     96   byte* buffer_;
     97   int buffer_size_;
     98   bool own_buffer_;
     99 
    100   // The program counter, which points into the buffer above and moves forward.
    101   byte* pc_;
    102 
    103  private:
    104   Isolate* isolate_;
    105   int jit_cookie_;
    106   uint64_t enabled_cpu_features_;
    107   bool emit_debug_code_;
    108   bool predictable_code_size_;
    109   bool serializer_enabled_;
    110 };
    111 
    112 
    113 // Avoids emitting debug code during the lifetime of this scope object.
    114 class DontEmitDebugCodeScope BASE_EMBEDDED {
    115  public:
    116   explicit DontEmitDebugCodeScope(AssemblerBase* assembler)
    117       : assembler_(assembler), old_value_(assembler->emit_debug_code()) {
    118     assembler_->set_emit_debug_code(false);
    119   }
    120   ~DontEmitDebugCodeScope() {
    121     assembler_->set_emit_debug_code(old_value_);
    122   }
    123  private:
    124   AssemblerBase* assembler_;
    125   bool old_value_;
    126 };
    127 
    128 
    129 // Avoids using instructions that vary in size in unpredictable ways between the
    130 // snapshot and the running VM.
    131 class PredictableCodeSizeScope {
    132  public:
    133   PredictableCodeSizeScope(AssemblerBase* assembler, int expected_size);
    134   ~PredictableCodeSizeScope();
    135 
    136  private:
    137   AssemblerBase* assembler_;
    138   int expected_size_;
    139   int start_offset_;
    140   bool old_value_;
    141 };
    142 
    143 
    144 // Enable a specified feature within a scope.
    145 class CpuFeatureScope BASE_EMBEDDED {
    146  public:
    147 #ifdef DEBUG
    148   CpuFeatureScope(AssemblerBase* assembler, CpuFeature f);
    149   ~CpuFeatureScope();
    150 
    151  private:
    152   AssemblerBase* assembler_;
    153   uint64_t old_enabled_;
    154 #else
    155   CpuFeatureScope(AssemblerBase* assembler, CpuFeature f) {}
    156 #endif
    157 };
    158 
    159 
    160 // CpuFeatures keeps track of which features are supported by the target CPU.
    161 // Supported features must be enabled by a CpuFeatureScope before use.
    162 // Example:
    163 //   if (assembler->IsSupported(SSE3)) {
    164 //     CpuFeatureScope fscope(assembler, SSE3);
    165 //     // Generate code containing SSE3 instructions.
    166 //   } else {
    167 //     // Generate alternative code.
    168 //   }
    169 class CpuFeatures : public AllStatic {
    170  public:
    171   static void Probe(bool cross_compile) {
    172     STATIC_ASSERT(NUMBER_OF_CPU_FEATURES <= kBitsPerInt);
    173     if (initialized_) return;
    174     initialized_ = true;
    175     ProbeImpl(cross_compile);
    176   }
    177 
    178   static bool IsSupported(CpuFeature f) {
    179     return (supported_ & (1u << f)) != 0;
    180   }
    181 
    182   static inline bool SupportsCrankshaft();
    183 
    184   static inline unsigned cache_line_size() {
    185     ASSERT(cache_line_size_ != 0);
    186     return cache_line_size_;
    187   }
    188 
    189   static void PrintTarget();
    190   static void PrintFeatures();
    191 
    192  private:
    193   // Platform-dependent implementation.
    194   static void ProbeImpl(bool cross_compile);
    195 
    196   static unsigned supported_;
    197   static unsigned cache_line_size_;
    198   static bool initialized_;
    199   friend class ExternalReference;
    200   DISALLOW_COPY_AND_ASSIGN(CpuFeatures);
    201 };
    202 
    203 
    204 // -----------------------------------------------------------------------------
    205 // Labels represent pc locations; they are typically jump or call targets.
    206 // After declaration, a label can be freely used to denote known or (yet)
    207 // unknown pc location. Assembler::bind() is used to bind a label to the
    208 // current pc. A label can be bound only once.
    209 
    210 class Label BASE_EMBEDDED {
    211  public:
    212   enum Distance {
    213     kNear, kFar
    214   };
    215 
    216   INLINE(Label()) {
    217     Unuse();
    218     UnuseNear();
    219   }
    220 
    221   INLINE(~Label()) {
    222     ASSERT(!is_linked());
    223     ASSERT(!is_near_linked());
    224   }
    225 
    226   INLINE(void Unuse()) { pos_ = 0; }
    227   INLINE(void UnuseNear()) { near_link_pos_ = 0; }
    228 
    229   INLINE(bool is_bound() const) { return pos_ <  0; }
    230   INLINE(bool is_unused() const) { return pos_ == 0 && near_link_pos_ == 0; }
    231   INLINE(bool is_linked() const) { return pos_ >  0; }
    232   INLINE(bool is_near_linked() const) { return near_link_pos_ > 0; }
    233 
    234   // Returns the position of bound or linked labels. Cannot be used
    235   // for unused labels.
    236   int pos() const;
    237   int near_link_pos() const { return near_link_pos_ - 1; }
    238 
    239  private:
    240   // pos_ encodes both the binding state (via its sign)
    241   // and the binding position (via its value) of a label.
    242   //
    243   // pos_ <  0  bound label, pos() returns the jump target position
    244   // pos_ == 0  unused label
    245   // pos_ >  0  linked label, pos() returns the last reference position
    246   int pos_;
    247 
    248   // Behaves like |pos_| in the "> 0" case, but for near jumps to this label.
    249   int near_link_pos_;
    250 
    251   void bind_to(int pos)  {
    252     pos_ = -pos - 1;
    253     ASSERT(is_bound());
    254   }
    255   void link_to(int pos, Distance distance = kFar) {
    256     if (distance == kNear) {
    257       near_link_pos_ = pos + 1;
    258       ASSERT(is_near_linked());
    259     } else {
    260       pos_ = pos + 1;
    261       ASSERT(is_linked());
    262     }
    263   }
    264 
    265   friend class Assembler;
    266   friend class Displacement;
    267   friend class RegExpMacroAssemblerIrregexp;
    268 
    269 #if V8_TARGET_ARCH_ARM64
    270   // On ARM64, the Assembler keeps track of pointers to Labels to resolve
    271   // branches to distant targets. Copying labels would confuse the Assembler.
    272   DISALLOW_COPY_AND_ASSIGN(Label);  // NOLINT
    273 #endif
    274 };
    275 
    276 
    277 enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs };
    278 
    279 // Specifies whether to perform icache flush operations on RelocInfo updates.
    280 // If FLUSH_ICACHE_IF_NEEDED, the icache will always be flushed if an
    281 // instruction was modified. If SKIP_ICACHE_FLUSH the flush will always be
    282 // skipped (only use this if you will flush the icache manually before it is
    283 // executed).
    284 enum ICacheFlushMode { FLUSH_ICACHE_IF_NEEDED, SKIP_ICACHE_FLUSH };
    285 
    286 // -----------------------------------------------------------------------------
    287 // Relocation information
    288 
    289 
    290 // Relocation information consists of the address (pc) of the datum
    291 // to which the relocation information applies, the relocation mode
    292 // (rmode), and an optional data field. The relocation mode may be
    293 // "descriptive" and not indicate a need for relocation, but simply
    294 // describe a property of the datum. Such rmodes are useful for GC
    295 // and nice disassembly output.
    296 
    297 class RelocInfo {
    298  public:
    299   // The constant kNoPosition is used with the collecting of source positions
    300   // in the relocation information. Two types of source positions are collected
    301   // "position" (RelocMode position) and "statement position" (RelocMode
    302   // statement_position). The "position" is collected at places in the source
    303   // code which are of interest when making stack traces to pin-point the source
    304   // location of a stack frame as close as possible. The "statement position" is
    305   // collected at the beginning at each statement, and is used to indicate
    306   // possible break locations. kNoPosition is used to indicate an
    307   // invalid/uninitialized position value.
    308   static const int kNoPosition = -1;
    309 
    310   // This string is used to add padding comments to the reloc info in cases
    311   // where we are not sure to have enough space for patching in during
    312   // lazy deoptimization. This is the case if we have indirect calls for which
    313   // we do not normally record relocation info.
    314   static const char* const kFillerCommentString;
    315 
    316   // The minimum size of a comment is equal to three bytes for the extra tagged
    317   // pc + the tag for the data, and kPointerSize for the actual pointer to the
    318   // comment.
    319   static const int kMinRelocCommentSize = 3 + kPointerSize;
    320 
    321   // The maximum size for a call instruction including pc-jump.
    322   static const int kMaxCallSize = 6;
    323 
    324   // The maximum pc delta that will use the short encoding.
    325   static const int kMaxSmallPCDelta;
    326 
    327   enum Mode {
    328     // Please note the order is important (see IsCodeTarget, IsGCRelocMode).
    329     CODE_TARGET,  // Code target which is not any of the above.
    330     CODE_TARGET_WITH_ID,
    331     CONSTRUCT_CALL,  // code target that is a call to a JavaScript constructor.
    332     DEBUG_BREAK,  // Code target for the debugger statement.
    333     EMBEDDED_OBJECT,
    334     CELL,
    335 
    336     // Everything after runtime_entry (inclusive) is not GC'ed.
    337     RUNTIME_ENTRY,
    338     JS_RETURN,  // Marks start of the ExitJSFrame code.
    339     COMMENT,
    340     POSITION,  // See comment for kNoPosition above.
    341     STATEMENT_POSITION,  // See comment for kNoPosition above.
    342     DEBUG_BREAK_SLOT,  // Additional code inserted for debug break slot.
    343     EXTERNAL_REFERENCE,  // The address of an external C++ function.
    344     INTERNAL_REFERENCE,  // An address inside the same function.
    345 
    346     // Marks constant and veneer pools. Only used on ARM and ARM64.
    347     // They use a custom noncompact encoding.
    348     CONST_POOL,
    349     VENEER_POOL,
    350 
    351     // add more as needed
    352     // Pseudo-types
    353     NUMBER_OF_MODES,  // There are at most 15 modes with noncompact encoding.
    354     NONE32,  // never recorded 32-bit value
    355     NONE64,  // never recorded 64-bit value
    356     CODE_AGE_SEQUENCE,  // Not stored in RelocInfo array, used explictly by
    357                         // code aging.
    358     FIRST_REAL_RELOC_MODE = CODE_TARGET,
    359     LAST_REAL_RELOC_MODE = VENEER_POOL,
    360     FIRST_PSEUDO_RELOC_MODE = CODE_AGE_SEQUENCE,
    361     LAST_PSEUDO_RELOC_MODE = CODE_AGE_SEQUENCE,
    362     LAST_CODE_ENUM = DEBUG_BREAK,
    363     LAST_GCED_ENUM = CELL,
    364     // Modes <= LAST_COMPACT_ENUM are guaranteed to have compact encoding.
    365     LAST_COMPACT_ENUM = CODE_TARGET_WITH_ID,
    366     LAST_STANDARD_NONCOMPACT_ENUM = INTERNAL_REFERENCE
    367   };
    368 
    369   RelocInfo() {}
    370 
    371   RelocInfo(byte* pc, Mode rmode, intptr_t data, Code* host)
    372       : pc_(pc), rmode_(rmode), data_(data), host_(host) {
    373   }
    374   RelocInfo(byte* pc, double data64)
    375       : pc_(pc), rmode_(NONE64), data64_(data64), host_(NULL) {
    376   }
    377 
    378   static inline bool IsRealRelocMode(Mode mode) {
    379     return mode >= FIRST_REAL_RELOC_MODE &&
    380         mode <= LAST_REAL_RELOC_MODE;
    381   }
    382   static inline bool IsPseudoRelocMode(Mode mode) {
    383     ASSERT(!IsRealRelocMode(mode));
    384     return mode >= FIRST_PSEUDO_RELOC_MODE &&
    385         mode <= LAST_PSEUDO_RELOC_MODE;
    386   }
    387   static inline bool IsConstructCall(Mode mode) {
    388     return mode == CONSTRUCT_CALL;
    389   }
    390   static inline bool IsCodeTarget(Mode mode) {
    391     return mode <= LAST_CODE_ENUM;
    392   }
    393   static inline bool IsEmbeddedObject(Mode mode) {
    394     return mode == EMBEDDED_OBJECT;
    395   }
    396   static inline bool IsRuntimeEntry(Mode mode) {
    397     return mode == RUNTIME_ENTRY;
    398   }
    399   // Is the relocation mode affected by GC?
    400   static inline bool IsGCRelocMode(Mode mode) {
    401     return mode <= LAST_GCED_ENUM;
    402   }
    403   static inline bool IsJSReturn(Mode mode) {
    404     return mode == JS_RETURN;
    405   }
    406   static inline bool IsComment(Mode mode) {
    407     return mode == COMMENT;
    408   }
    409   static inline bool IsConstPool(Mode mode) {
    410     return mode == CONST_POOL;
    411   }
    412   static inline bool IsVeneerPool(Mode mode) {
    413     return mode == VENEER_POOL;
    414   }
    415   static inline bool IsPosition(Mode mode) {
    416     return mode == POSITION || mode == STATEMENT_POSITION;
    417   }
    418   static inline bool IsStatementPosition(Mode mode) {
    419     return mode == STATEMENT_POSITION;
    420   }
    421   static inline bool IsExternalReference(Mode mode) {
    422     return mode == EXTERNAL_REFERENCE;
    423   }
    424   static inline bool IsInternalReference(Mode mode) {
    425     return mode == INTERNAL_REFERENCE;
    426   }
    427   static inline bool IsDebugBreakSlot(Mode mode) {
    428     return mode == DEBUG_BREAK_SLOT;
    429   }
    430   static inline bool IsNone(Mode mode) {
    431     return mode == NONE32 || mode == NONE64;
    432   }
    433   static inline bool IsCodeAgeSequence(Mode mode) {
    434     return mode == CODE_AGE_SEQUENCE;
    435   }
    436   static inline int ModeMask(Mode mode) { return 1 << mode; }
    437 
    438   // Returns true if the first RelocInfo has the same mode and raw data as the
    439   // second one.
    440   static inline bool IsEqual(RelocInfo first, RelocInfo second) {
    441     return first.rmode() == second.rmode() &&
    442            (first.rmode() == RelocInfo::NONE64 ?
    443               first.raw_data64() == second.raw_data64() :
    444               first.data() == second.data());
    445   }
    446 
    447   // Accessors
    448   byte* pc() const { return pc_; }
    449   void set_pc(byte* pc) { pc_ = pc; }
    450   Mode rmode() const {  return rmode_; }
    451   intptr_t data() const { return data_; }
    452   double data64() const { return data64_; }
    453   uint64_t raw_data64() {
    454     return BitCast<uint64_t>(data64_);
    455   }
    456   Code* host() const { return host_; }
    457   void set_host(Code* host) { host_ = host; }
    458 
    459   // Apply a relocation by delta bytes
    460   INLINE(void apply(intptr_t delta,
    461                     ICacheFlushMode icache_flush_mode =
    462                         FLUSH_ICACHE_IF_NEEDED));
    463 
    464   // Is the pointer this relocation info refers to coded like a plain pointer
    465   // or is it strange in some way (e.g. relative or patched into a series of
    466   // instructions).
    467   bool IsCodedSpecially();
    468 
    469   // If true, the pointer this relocation info refers to is an entry in the
    470   // constant pool, otherwise the pointer is embedded in the instruction stream.
    471   bool IsInConstantPool();
    472 
    473   // Read/modify the code target in the branch/call instruction
    474   // this relocation applies to;
    475   // can only be called if IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)
    476   INLINE(Address target_address());
    477   INLINE(void set_target_address(Address target,
    478                                  WriteBarrierMode write_barrier_mode =
    479                                      UPDATE_WRITE_BARRIER,
    480                                  ICacheFlushMode icache_flush_mode =
    481                                      FLUSH_ICACHE_IF_NEEDED));
    482   INLINE(Object* target_object());
    483   INLINE(Handle<Object> target_object_handle(Assembler* origin));
    484   INLINE(void set_target_object(Object* target,
    485                                 WriteBarrierMode write_barrier_mode =
    486                                     UPDATE_WRITE_BARRIER,
    487                                 ICacheFlushMode icache_flush_mode =
    488                                     FLUSH_ICACHE_IF_NEEDED));
    489   INLINE(Address target_runtime_entry(Assembler* origin));
    490   INLINE(void set_target_runtime_entry(Address target,
    491                                        WriteBarrierMode write_barrier_mode =
    492                                            UPDATE_WRITE_BARRIER,
    493                                        ICacheFlushMode icache_flush_mode =
    494                                            FLUSH_ICACHE_IF_NEEDED));
    495   INLINE(Cell* target_cell());
    496   INLINE(Handle<Cell> target_cell_handle());
    497   INLINE(void set_target_cell(Cell* cell,
    498                               WriteBarrierMode write_barrier_mode =
    499                                   UPDATE_WRITE_BARRIER,
    500                               ICacheFlushMode icache_flush_mode =
    501                                   FLUSH_ICACHE_IF_NEEDED));
    502   INLINE(Handle<Object> code_age_stub_handle(Assembler* origin));
    503   INLINE(Code* code_age_stub());
    504   INLINE(void set_code_age_stub(Code* stub,
    505                                 ICacheFlushMode icache_flush_mode =
    506                                     FLUSH_ICACHE_IF_NEEDED));
    507 
    508   // Returns the address of the constant pool entry where the target address
    509   // is held.  This should only be called if IsInConstantPool returns true.
    510   INLINE(Address constant_pool_entry_address());
    511 
    512   // Read the address of the word containing the target_address in an
    513   // instruction stream.  What this means exactly is architecture-independent.
    514   // The only architecture-independent user of this function is the serializer.
    515   // The serializer uses it to find out how many raw bytes of instruction to
    516   // output before the next target.  Architecture-independent code shouldn't
    517   // dereference the pointer it gets back from this.
    518   INLINE(Address target_address_address());
    519 
    520   // This indicates how much space a target takes up when deserializing a code
    521   // stream.  For most architectures this is just the size of a pointer.  For
    522   // an instruction like movw/movt where the target bits are mixed into the
    523   // instruction bits the size of the target will be zero, indicating that the
    524   // serializer should not step forwards in memory after a target is resolved
    525   // and written.  In this case the target_address_address function above
    526   // should return the end of the instructions to be patched, allowing the
    527   // deserializer to deserialize the instructions as raw bytes and put them in
    528   // place, ready to be patched with the target.
    529   INLINE(int target_address_size());
    530 
    531   // Read/modify the reference in the instruction this relocation
    532   // applies to; can only be called if rmode_ is external_reference
    533   INLINE(Address target_reference());
    534 
    535   // Read/modify the address of a call instruction. This is used to relocate
    536   // the break points where straight-line code is patched with a call
    537   // instruction.
    538   INLINE(Address call_address());
    539   INLINE(void set_call_address(Address target));
    540   INLINE(Object* call_object());
    541   INLINE(void set_call_object(Object* target));
    542   INLINE(Object** call_object_address());
    543 
    544   // Wipe out a relocation to a fixed value, used for making snapshots
    545   // reproducible.
    546   INLINE(void WipeOut());
    547 
    548   template<typename StaticVisitor> inline void Visit(Heap* heap);
    549   inline void Visit(Isolate* isolate, ObjectVisitor* v);
    550 
    551   // Patch the code with some other code.
    552   void PatchCode(byte* instructions, int instruction_count);
    553 
    554   // Patch the code with a call.
    555   void PatchCodeWithCall(Address target, int guard_bytes);
    556 
    557   // Check whether this return sequence has been patched
    558   // with a call to the debugger.
    559   INLINE(bool IsPatchedReturnSequence());
    560 
    561   // Check whether this debug break slot has been patched with a call to the
    562   // debugger.
    563   INLINE(bool IsPatchedDebugBreakSlotSequence());
    564 
    565 #ifdef DEBUG
    566   // Check whether the given code contains relocation information that
    567   // either is position-relative or movable by the garbage collector.
    568   static bool RequiresRelocation(const CodeDesc& desc);
    569 #endif
    570 
    571 #ifdef ENABLE_DISASSEMBLER
    572   // Printing
    573   static const char* RelocModeName(Mode rmode);
    574   void Print(Isolate* isolate, FILE* out);
    575 #endif  // ENABLE_DISASSEMBLER
    576 #ifdef VERIFY_HEAP
    577   void Verify(Isolate* isolate);
    578 #endif
    579 
    580   static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1;
    581   static const int kPositionMask = 1 << POSITION | 1 << STATEMENT_POSITION;
    582   static const int kDataMask =
    583       (1 << CODE_TARGET_WITH_ID) | kPositionMask | (1 << COMMENT);
    584   static const int kApplyMask;  // Modes affected by apply. Depends on arch.
    585 
    586  private:
    587   // On ARM, note that pc_ is the address of the constant pool entry
    588   // to be relocated and not the address of the instruction
    589   // referencing the constant pool entry (except when rmode_ ==
    590   // comment).
    591   byte* pc_;
    592   Mode rmode_;
    593   union {
    594     intptr_t data_;
    595     double data64_;
    596   };
    597   Code* host_;
    598   // External-reference pointers are also split across instruction-pairs
    599   // on some platforms, but are accessed via indirect pointers. This location
    600   // provides a place for that pointer to exist naturally. Its address
    601   // is returned by RelocInfo::target_reference_address().
    602   Address reconstructed_adr_ptr_;
    603   friend class RelocIterator;
    604 };
    605 
    606 
    607 // RelocInfoWriter serializes a stream of relocation info. It writes towards
    608 // lower addresses.
    609 class RelocInfoWriter BASE_EMBEDDED {
    610  public:
    611   RelocInfoWriter() : pos_(NULL),
    612                       last_pc_(NULL),
    613                       last_id_(0),
    614                       last_position_(0) {}
    615   RelocInfoWriter(byte* pos, byte* pc) : pos_(pos),
    616                                          last_pc_(pc),
    617                                          last_id_(0),
    618                                          last_position_(0) {}
    619 
    620   byte* pos() const { return pos_; }
    621   byte* last_pc() const { return last_pc_; }
    622 
    623   void Write(const RelocInfo* rinfo);
    624 
    625   // Update the state of the stream after reloc info buffer
    626   // and/or code is moved while the stream is active.
    627   void Reposition(byte* pos, byte* pc) {
    628     pos_ = pos;
    629     last_pc_ = pc;
    630   }
    631 
    632   // Max size (bytes) of a written RelocInfo. Longest encoding is
    633   // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, ExtraTag, data_delta.
    634   // On ia32 and arm this is 1 + 4 + 1 + 1 + 1 + 4 = 12.
    635   // On x64 this is 1 + 4 + 1 + 1 + 1 + 8 == 16;
    636   // Here we use the maximum of the two.
    637   static const int kMaxSize = 16;
    638 
    639  private:
    640   inline uint32_t WriteVariableLengthPCJump(uint32_t pc_delta);
    641   inline void WriteTaggedPC(uint32_t pc_delta, int tag);
    642   inline void WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag);
    643   inline void WriteExtraTaggedIntData(int data_delta, int top_tag);
    644   inline void WriteExtraTaggedPoolData(int data, int pool_type);
    645   inline void WriteExtraTaggedData(intptr_t data_delta, int top_tag);
    646   inline void WriteTaggedData(intptr_t data_delta, int tag);
    647   inline void WriteExtraTag(int extra_tag, int top_tag);
    648 
    649   byte* pos_;
    650   byte* last_pc_;
    651   int last_id_;
    652   int last_position_;
    653   DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter);
    654 };
    655 
    656 
    657 // A RelocIterator iterates over relocation information.
    658 // Typical use:
    659 //
    660 //   for (RelocIterator it(code); !it.done(); it.next()) {
    661 //     // do something with it.rinfo() here
    662 //   }
    663 //
    664 // A mask can be specified to skip unwanted modes.
    665 class RelocIterator: public Malloced {
    666  public:
    667   // Create a new iterator positioned at
    668   // the beginning of the reloc info.
    669   // Relocation information with mode k is included in the
    670   // iteration iff bit k of mode_mask is set.
    671   explicit RelocIterator(Code* code, int mode_mask = -1);
    672   explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1);
    673 
    674   // Iteration
    675   bool done() const { return done_; }
    676   void next();
    677 
    678   // Return pointer valid until next next().
    679   RelocInfo* rinfo() {
    680     ASSERT(!done());
    681     return &rinfo_;
    682   }
    683 
    684  private:
    685   // Advance* moves the position before/after reading.
    686   // *Read* reads from current byte(s) into rinfo_.
    687   // *Get* just reads and returns info on current byte.
    688   void Advance(int bytes = 1) { pos_ -= bytes; }
    689   int AdvanceGetTag();
    690   int GetExtraTag();
    691   int GetTopTag();
    692   void ReadTaggedPC();
    693   void AdvanceReadPC();
    694   void AdvanceReadId();
    695   void AdvanceReadPoolData();
    696   void AdvanceReadPosition();
    697   void AdvanceReadData();
    698   void AdvanceReadVariableLengthPCJump();
    699   int GetLocatableTypeTag();
    700   void ReadTaggedId();
    701   void ReadTaggedPosition();
    702 
    703   // If the given mode is wanted, set it in rinfo_ and return true.
    704   // Else return false. Used for efficiently skipping unwanted modes.
    705   bool SetMode(RelocInfo::Mode mode) {
    706     return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false;
    707   }
    708 
    709   byte* pos_;
    710   byte* end_;
    711   byte* code_age_sequence_;
    712   RelocInfo rinfo_;
    713   bool done_;
    714   int mode_mask_;
    715   int last_id_;
    716   int last_position_;
    717   DISALLOW_COPY_AND_ASSIGN(RelocIterator);
    718 };
    719 
    720 
    721 //------------------------------------------------------------------------------
    722 // External function
    723 
    724 //----------------------------------------------------------------------------
    725 class IC_Utility;
    726 class SCTableReference;
    727 class Debug_Address;
    728 
    729 
    730 // An ExternalReference represents a C++ address used in the generated
    731 // code. All references to C++ functions and variables must be encapsulated in
    732 // an ExternalReference instance. This is done in order to track the origin of
    733 // all external references in the code so that they can be bound to the correct
    734 // addresses when deserializing a heap.
    735 class ExternalReference BASE_EMBEDDED {
    736  public:
    737   // Used in the simulator to support different native api calls.
    738   enum Type {
    739     // Builtin call.
    740     // Object* f(v8::internal::Arguments).
    741     BUILTIN_CALL,  // default
    742 
    743     // Builtin that takes float arguments and returns an int.
    744     // int f(double, double).
    745     BUILTIN_COMPARE_CALL,
    746 
    747     // Builtin call that returns floating point.
    748     // double f(double, double).
    749     BUILTIN_FP_FP_CALL,
    750 
    751     // Builtin call that returns floating point.
    752     // double f(double).
    753     BUILTIN_FP_CALL,
    754 
    755     // Builtin call that returns floating point.
    756     // double f(double, int).
    757     BUILTIN_FP_INT_CALL,
    758 
    759     // Direct call to API function callback.
    760     // void f(v8::FunctionCallbackInfo&)
    761     DIRECT_API_CALL,
    762 
    763     // Call to function callback via InvokeFunctionCallback.
    764     // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback)
    765     PROFILING_API_CALL,
    766 
    767     // Direct call to accessor getter callback.
    768     // void f(Local<String> property, PropertyCallbackInfo& info)
    769     DIRECT_GETTER_CALL,
    770 
    771     // Call to accessor getter callback via InvokeAccessorGetterCallback.
    772     // void f(Local<String> property, PropertyCallbackInfo& info,
    773     //     AccessorGetterCallback callback)
    774     PROFILING_GETTER_CALL
    775   };
    776 
    777   static void SetUp();
    778   static void InitializeMathExpData();
    779   static void TearDownMathExpData();
    780 
    781   typedef void* ExternalReferenceRedirector(void* original, Type type);
    782 
    783   ExternalReference() : address_(NULL) {}
    784 
    785   ExternalReference(Builtins::CFunctionId id, Isolate* isolate);
    786 
    787   ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate);
    788 
    789   ExternalReference(Builtins::Name name, Isolate* isolate);
    790 
    791   ExternalReference(Runtime::FunctionId id, Isolate* isolate);
    792 
    793   ExternalReference(const Runtime::Function* f, Isolate* isolate);
    794 
    795   ExternalReference(const IC_Utility& ic_utility, Isolate* isolate);
    796 
    797   explicit ExternalReference(StatsCounter* counter);
    798 
    799   ExternalReference(Isolate::AddressId id, Isolate* isolate);
    800 
    801   explicit ExternalReference(const SCTableReference& table_ref);
    802 
    803   // Isolate as an external reference.
    804   static ExternalReference isolate_address(Isolate* isolate);
    805 
    806   // One-of-a-kind references. These references are not part of a general
    807   // pattern. This means that they have to be added to the
    808   // ExternalReferenceTable in serialize.cc manually.
    809 
    810   static ExternalReference incremental_marking_record_write_function(
    811       Isolate* isolate);
    812   static ExternalReference store_buffer_overflow_function(
    813       Isolate* isolate);
    814   static ExternalReference flush_icache_function(Isolate* isolate);
    815   static ExternalReference delete_handle_scope_extensions(Isolate* isolate);
    816 
    817   static ExternalReference get_date_field_function(Isolate* isolate);
    818   static ExternalReference date_cache_stamp(Isolate* isolate);
    819 
    820   static ExternalReference get_make_code_young_function(Isolate* isolate);
    821   static ExternalReference get_mark_code_as_executed_function(Isolate* isolate);
    822 
    823   // Deoptimization support.
    824   static ExternalReference new_deoptimizer_function(Isolate* isolate);
    825   static ExternalReference compute_output_frames_function(Isolate* isolate);
    826 
    827   // Log support.
    828   static ExternalReference log_enter_external_function(Isolate* isolate);
    829   static ExternalReference log_leave_external_function(Isolate* isolate);
    830 
    831   // Static data in the keyed lookup cache.
    832   static ExternalReference keyed_lookup_cache_keys(Isolate* isolate);
    833   static ExternalReference keyed_lookup_cache_field_offsets(Isolate* isolate);
    834 
    835   // Static variable Heap::roots_array_start()
    836   static ExternalReference roots_array_start(Isolate* isolate);
    837 
    838   // Static variable Heap::allocation_sites_list_address()
    839   static ExternalReference allocation_sites_list_address(Isolate* isolate);
    840 
    841   // Static variable StackGuard::address_of_jslimit()
    842   static ExternalReference address_of_stack_limit(Isolate* isolate);
    843 
    844   // Static variable StackGuard::address_of_real_jslimit()
    845   static ExternalReference address_of_real_stack_limit(Isolate* isolate);
    846 
    847   // Static variable RegExpStack::limit_address()
    848   static ExternalReference address_of_regexp_stack_limit(Isolate* isolate);
    849 
    850   // Static variables for RegExp.
    851   static ExternalReference address_of_static_offsets_vector(Isolate* isolate);
    852   static ExternalReference address_of_regexp_stack_memory_address(
    853       Isolate* isolate);
    854   static ExternalReference address_of_regexp_stack_memory_size(
    855       Isolate* isolate);
    856 
    857   // Static variable Heap::NewSpaceStart()
    858   static ExternalReference new_space_start(Isolate* isolate);
    859   static ExternalReference new_space_mask(Isolate* isolate);
    860   static ExternalReference heap_always_allocate_scope_depth(Isolate* isolate);
    861   static ExternalReference new_space_mark_bits(Isolate* isolate);
    862 
    863   // Write barrier.
    864   static ExternalReference store_buffer_top(Isolate* isolate);
    865 
    866   // Used for fast allocation in generated code.
    867   static ExternalReference new_space_allocation_top_address(Isolate* isolate);
    868   static ExternalReference new_space_allocation_limit_address(Isolate* isolate);
    869   static ExternalReference old_pointer_space_allocation_top_address(
    870       Isolate* isolate);
    871   static ExternalReference old_pointer_space_allocation_limit_address(
    872       Isolate* isolate);
    873   static ExternalReference old_data_space_allocation_top_address(
    874       Isolate* isolate);
    875   static ExternalReference old_data_space_allocation_limit_address(
    876       Isolate* isolate);
    877 
    878   static ExternalReference mod_two_doubles_operation(Isolate* isolate);
    879   static ExternalReference power_double_double_function(Isolate* isolate);
    880   static ExternalReference power_double_int_function(Isolate* isolate);
    881 
    882   static ExternalReference handle_scope_next_address(Isolate* isolate);
    883   static ExternalReference handle_scope_limit_address(Isolate* isolate);
    884   static ExternalReference handle_scope_level_address(Isolate* isolate);
    885 
    886   static ExternalReference scheduled_exception_address(Isolate* isolate);
    887   static ExternalReference address_of_pending_message_obj(Isolate* isolate);
    888   static ExternalReference address_of_has_pending_message(Isolate* isolate);
    889   static ExternalReference address_of_pending_message_script(Isolate* isolate);
    890 
    891   // Static variables containing common double constants.
    892   static ExternalReference address_of_min_int();
    893   static ExternalReference address_of_one_half();
    894   static ExternalReference address_of_minus_one_half();
    895   static ExternalReference address_of_minus_zero();
    896   static ExternalReference address_of_zero();
    897   static ExternalReference address_of_uint8_max_value();
    898   static ExternalReference address_of_negative_infinity();
    899   static ExternalReference address_of_canonical_non_hole_nan();
    900   static ExternalReference address_of_the_hole_nan();
    901   static ExternalReference address_of_uint32_bias();
    902 
    903   static ExternalReference math_log_double_function(Isolate* isolate);
    904 
    905   static ExternalReference math_exp_constants(int constant_index);
    906   static ExternalReference math_exp_log_table();
    907 
    908   static ExternalReference page_flags(Page* page);
    909 
    910   static ExternalReference ForDeoptEntry(Address entry);
    911 
    912   static ExternalReference cpu_features();
    913 
    914   static ExternalReference debug_after_break_target_address(Isolate* isolate);
    915   static ExternalReference debug_restarter_frame_function_pointer_address(
    916       Isolate* isolate);
    917 
    918   static ExternalReference is_profiling_address(Isolate* isolate);
    919   static ExternalReference invoke_function_callback(Isolate* isolate);
    920   static ExternalReference invoke_accessor_getter_callback(Isolate* isolate);
    921 
    922   Address address() const { return reinterpret_cast<Address>(address_); }
    923 
    924   // Function Debug::Break()
    925   static ExternalReference debug_break(Isolate* isolate);
    926 
    927   // Used to check if single stepping is enabled in generated code.
    928   static ExternalReference debug_step_in_fp_address(Isolate* isolate);
    929 
    930 #ifndef V8_INTERPRETED_REGEXP
    931   // C functions called from RegExp generated code.
    932 
    933   // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()
    934   static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate);
    935 
    936   // Function RegExpMacroAssembler*::CheckStackGuardState()
    937   static ExternalReference re_check_stack_guard_state(Isolate* isolate);
    938 
    939   // Function NativeRegExpMacroAssembler::GrowStack()
    940   static ExternalReference re_grow_stack(Isolate* isolate);
    941 
    942   // byte NativeRegExpMacroAssembler::word_character_bitmap
    943   static ExternalReference re_word_character_map();
    944 
    945 #endif
    946 
    947   // This lets you register a function that rewrites all external references.
    948   // Used by the ARM simulator to catch calls to external references.
    949   static void set_redirector(Isolate* isolate,
    950                              ExternalReferenceRedirector* redirector) {
    951     // We can't stack them.
    952     ASSERT(isolate->external_reference_redirector() == NULL);
    953     isolate->set_external_reference_redirector(
    954         reinterpret_cast<ExternalReferenceRedirectorPointer*>(redirector));
    955   }
    956 
    957   static ExternalReference stress_deopt_count(Isolate* isolate);
    958 
    959   bool operator==(const ExternalReference& other) const {
    960     return address_ == other.address_;
    961   }
    962 
    963   bool operator!=(const ExternalReference& other) const {
    964     return !(*this == other);
    965   }
    966 
    967  private:
    968   explicit ExternalReference(void* address)
    969       : address_(address) {}
    970 
    971   static void* Redirect(Isolate* isolate,
    972                         void* address,
    973                         Type type = ExternalReference::BUILTIN_CALL) {
    974     ExternalReferenceRedirector* redirector =
    975         reinterpret_cast<ExternalReferenceRedirector*>(
    976             isolate->external_reference_redirector());
    977     if (redirector == NULL) return address;
    978     void* answer = (*redirector)(address, type);
    979     return answer;
    980   }
    981 
    982   static void* Redirect(Isolate* isolate,
    983                         Address address_arg,
    984                         Type type = ExternalReference::BUILTIN_CALL) {
    985     ExternalReferenceRedirector* redirector =
    986         reinterpret_cast<ExternalReferenceRedirector*>(
    987             isolate->external_reference_redirector());
    988     void* address = reinterpret_cast<void*>(address_arg);
    989     void* answer = (redirector == NULL) ?
    990                    address :
    991                    (*redirector)(address, type);
    992     return answer;
    993   }
    994 
    995   void* address_;
    996 };
    997 
    998 
    999 // -----------------------------------------------------------------------------
   1000 // Position recording support
   1001 
   1002 struct PositionState {
   1003   PositionState() : current_position(RelocInfo::kNoPosition),
   1004                     written_position(RelocInfo::kNoPosition),
   1005                     current_statement_position(RelocInfo::kNoPosition),
   1006                     written_statement_position(RelocInfo::kNoPosition) {}
   1007 
   1008   int current_position;
   1009   int written_position;
   1010 
   1011   int current_statement_position;
   1012   int written_statement_position;
   1013 };
   1014 
   1015 
   1016 class PositionsRecorder BASE_EMBEDDED {
   1017  public:
   1018   explicit PositionsRecorder(Assembler* assembler)
   1019       : assembler_(assembler) {
   1020 #ifdef ENABLE_GDB_JIT_INTERFACE
   1021     gdbjit_lineinfo_ = NULL;
   1022 #endif
   1023     jit_handler_data_ = NULL;
   1024   }
   1025 
   1026 #ifdef ENABLE_GDB_JIT_INTERFACE
   1027   ~PositionsRecorder() {
   1028     delete gdbjit_lineinfo_;
   1029   }
   1030 
   1031   void StartGDBJITLineInfoRecording() {
   1032     if (FLAG_gdbjit) {
   1033       gdbjit_lineinfo_ = new GDBJITLineInfo();
   1034     }
   1035   }
   1036 
   1037   GDBJITLineInfo* DetachGDBJITLineInfo() {
   1038     GDBJITLineInfo* lineinfo = gdbjit_lineinfo_;
   1039     gdbjit_lineinfo_ = NULL;  // To prevent deallocation in destructor.
   1040     return lineinfo;
   1041   }
   1042 #endif
   1043   void AttachJITHandlerData(void* user_data) {
   1044     jit_handler_data_ = user_data;
   1045   }
   1046 
   1047   void* DetachJITHandlerData() {
   1048     void* old_data = jit_handler_data_;
   1049     jit_handler_data_ = NULL;
   1050     return old_data;
   1051   }
   1052   // Set current position to pos.
   1053   void RecordPosition(int pos);
   1054 
   1055   // Set current statement position to pos.
   1056   void RecordStatementPosition(int pos);
   1057 
   1058   // Write recorded positions to relocation information.
   1059   bool WriteRecordedPositions();
   1060 
   1061   int current_position() const { return state_.current_position; }
   1062 
   1063   int current_statement_position() const {
   1064     return state_.current_statement_position;
   1065   }
   1066 
   1067  private:
   1068   Assembler* assembler_;
   1069   PositionState state_;
   1070 #ifdef ENABLE_GDB_JIT_INTERFACE
   1071   GDBJITLineInfo* gdbjit_lineinfo_;
   1072 #endif
   1073 
   1074   // Currently jit_handler_data_ is used to store JITHandler-specific data
   1075   // over the lifetime of a PositionsRecorder
   1076   void* jit_handler_data_;
   1077   friend class PreservePositionScope;
   1078 
   1079   DISALLOW_COPY_AND_ASSIGN(PositionsRecorder);
   1080 };
   1081 
   1082 
   1083 class PreservePositionScope BASE_EMBEDDED {
   1084  public:
   1085   explicit PreservePositionScope(PositionsRecorder* positions_recorder)
   1086       : positions_recorder_(positions_recorder),
   1087         saved_state_(positions_recorder->state_) {}
   1088 
   1089   ~PreservePositionScope() {
   1090     positions_recorder_->state_ = saved_state_;
   1091   }
   1092 
   1093  private:
   1094   PositionsRecorder* positions_recorder_;
   1095   const PositionState saved_state_;
   1096 
   1097   DISALLOW_COPY_AND_ASSIGN(PreservePositionScope);
   1098 };
   1099 
   1100 
   1101 // -----------------------------------------------------------------------------
   1102 // Utility functions
   1103 
   1104 inline int NumberOfBitsSet(uint32_t x) {
   1105   unsigned int num_bits_set;
   1106   for (num_bits_set = 0; x; x >>= 1) {
   1107     num_bits_set += x & 1;
   1108   }
   1109   return num_bits_set;
   1110 }
   1111 
   1112 bool EvalComparison(Token::Value op, double op1, double op2);
   1113 
   1114 // Computes pow(x, y) with the special cases in the spec for Math.pow.
   1115 double power_helper(double x, double y);
   1116 double power_double_int(double x, int y);
   1117 double power_double_double(double x, double y);
   1118 
   1119 // Helper class for generating code or data associated with the code
   1120 // right after a call instruction. As an example this can be used to
   1121 // generate safepoint data after calls for crankshaft.
   1122 class CallWrapper {
   1123  public:
   1124   CallWrapper() { }
   1125   virtual ~CallWrapper() { }
   1126   // Called just before emitting a call. Argument is the size of the generated
   1127   // call code.
   1128   virtual void BeforeCall(int call_size) const = 0;
   1129   // Called just after emitting a call, i.e., at the return site for the call.
   1130   virtual void AfterCall() const = 0;
   1131 };
   1132 
   1133 class NullCallWrapper : public CallWrapper {
   1134  public:
   1135   NullCallWrapper() { }
   1136   virtual ~NullCallWrapper() { }
   1137   virtual void BeforeCall(int call_size) const { }
   1138   virtual void AfterCall() const { }
   1139 };
   1140 
   1141 
   1142 // The multiplier and shift for signed division via multiplication, see Warren's
   1143 // "Hacker's Delight", chapter 10.
   1144 class MultiplierAndShift {
   1145  public:
   1146   explicit MultiplierAndShift(int32_t d);
   1147   int32_t multiplier() const { return multiplier_; }
   1148   int32_t shift() const { return shift_; }
   1149 
   1150  private:
   1151   int32_t multiplier_;
   1152   int32_t shift_;
   1153 };
   1154 
   1155 
   1156 } }  // namespace v8::internal
   1157 
   1158 #endif  // V8_ASSEMBLER_H_
   1159