Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_UTILS_H_
     18 #define ART_RUNTIME_UTILS_H_
     19 
     20 #include <pthread.h>
     21 
     22 #include <limits>
     23 #include <memory>
     24 #include <string>
     25 #include <vector>
     26 
     27 #include "base/logging.h"
     28 #include "base/mutex.h"
     29 #include "globals.h"
     30 #include "instruction_set.h"
     31 #include "primitive.h"
     32 
     33 #ifdef HAVE_ANDROID_OS
     34 #include "cutils/properties.h"
     35 #endif
     36 
     37 namespace art {
     38 
     39 class DexFile;
     40 
     41 namespace mirror {
     42 class ArtField;
     43 class ArtMethod;
     44 class Class;
     45 class Object;
     46 class String;
     47 }  // namespace mirror
     48 
     49 enum TimeUnit {
     50   kTimeUnitNanosecond,
     51   kTimeUnitMicrosecond,
     52   kTimeUnitMillisecond,
     53   kTimeUnitSecond,
     54 };
     55 
     56 template <typename T>
     57 bool ParseUint(const char *in, T* out) {
     58   char* end;
     59   unsigned long long int result = strtoull(in, &end, 0);  // NOLINT(runtime/int)
     60   if (in == end || *end != '\0') {
     61     return false;
     62   }
     63   if (std::numeric_limits<T>::max() < result) {
     64     return false;
     65   }
     66   *out = static_cast<T>(result);
     67   return true;
     68 }
     69 
     70 template <typename T>
     71 bool ParseInt(const char* in, T* out) {
     72   char* end;
     73   long long int result = strtoll(in, &end, 0);  // NOLINT(runtime/int)
     74   if (in == end || *end != '\0') {
     75     return false;
     76   }
     77   if (result < std::numeric_limits<T>::min() || std::numeric_limits<T>::max() < result) {
     78     return false;
     79   }
     80   *out = static_cast<T>(result);
     81   return true;
     82 }
     83 
     84 template<typename T>
     85 static constexpr bool IsPowerOfTwo(T x) {
     86   return (x & (x - 1)) == 0;
     87 }
     88 
     89 template<int n, typename T>
     90 static inline bool IsAligned(T x) {
     91   COMPILE_ASSERT((n & (n - 1)) == 0, n_not_power_of_two);
     92   return (x & (n - 1)) == 0;
     93 }
     94 
     95 template<int n, typename T>
     96 static inline bool IsAligned(T* x) {
     97   return IsAligned<n>(reinterpret_cast<const uintptr_t>(x));
     98 }
     99 
    100 template<typename T>
    101 static inline bool IsAlignedParam(T x, int n) {
    102   return (x & (n - 1)) == 0;
    103 }
    104 
    105 #define CHECK_ALIGNED(value, alignment) \
    106   CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
    107 
    108 #define DCHECK_ALIGNED(value, alignment) \
    109   DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
    110 
    111 #define DCHECK_ALIGNED_PARAM(value, alignment) \
    112   DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)
    113 
    114 // Check whether an N-bit two's-complement representation can hold value.
    115 static inline bool IsInt(int N, word value) {
    116   CHECK_LT(0, N);
    117   CHECK_LT(N, kBitsPerWord);
    118   word limit = static_cast<word>(1) << (N - 1);
    119   return (-limit <= value) && (value < limit);
    120 }
    121 
    122 static inline bool IsUint(int N, word value) {
    123   CHECK_LT(0, N);
    124   CHECK_LT(N, kBitsPerWord);
    125   word limit = static_cast<word>(1) << N;
    126   return (0 <= value) && (value < limit);
    127 }
    128 
    129 static inline bool IsAbsoluteUint(int N, word value) {
    130   CHECK_LT(0, N);
    131   CHECK_LT(N, kBitsPerWord);
    132   if (value < 0) value = -value;
    133   return IsUint(N, value);
    134 }
    135 
    136 static inline uint16_t Low16Bits(uint32_t value) {
    137   return static_cast<uint16_t>(value);
    138 }
    139 
    140 static inline uint16_t High16Bits(uint32_t value) {
    141   return static_cast<uint16_t>(value >> 16);
    142 }
    143 
    144 static inline uint32_t Low32Bits(uint64_t value) {
    145   return static_cast<uint32_t>(value);
    146 }
    147 
    148 static inline uint32_t High32Bits(uint64_t value) {
    149   return static_cast<uint32_t>(value >> 32);
    150 }
    151 
    152 // A static if which determines whether to return type A or B based on the condition boolean.
    153 template <bool condition, typename A, typename B>
    154 struct TypeStaticIf {
    155   typedef A type;
    156 };
    157 
    158 // Specialization to handle the false case.
    159 template <typename A, typename B>
    160 struct TypeStaticIf<false, A,  B> {
    161   typedef B type;
    162 };
    163 
    164 // Type identity.
    165 template <typename T>
    166 struct TypeIdentity {
    167   typedef T type;
    168 };
    169 
    170 // For rounding integers.
    171 template<typename T>
    172 static constexpr T RoundDown(T x, typename TypeIdentity<T>::type n) WARN_UNUSED;
    173 
    174 template<typename T>
    175 static constexpr T RoundDown(T x, typename TypeIdentity<T>::type n) {
    176   return
    177       DCHECK_CONSTEXPR(IsPowerOfTwo(n), , T(0))
    178       (x & -n);
    179 }
    180 
    181 template<typename T>
    182 static constexpr T RoundUp(T x, typename TypeIdentity<T>::type n) WARN_UNUSED;
    183 
    184 template<typename T>
    185 static constexpr T RoundUp(T x, typename TypeIdentity<T>::type n) {
    186   return RoundDown(x + n - 1, n);
    187 }
    188 
    189 // For aligning pointers.
    190 template<typename T>
    191 static inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED;
    192 
    193 template<typename T>
    194 static inline T* AlignDown(T* x, uintptr_t n) {
    195   return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n));
    196 }
    197 
    198 template<typename T>
    199 static inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED;
    200 
    201 template<typename T>
    202 static inline T* AlignUp(T* x, uintptr_t n) {
    203   return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n));
    204 }
    205 
    206 // Implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
    207 // figure 3-3, page 48, where the function is called clp2.
    208 static inline uint32_t RoundUpToPowerOfTwo(uint32_t x) {
    209   x = x - 1;
    210   x = x | (x >> 1);
    211   x = x | (x >> 2);
    212   x = x | (x >> 4);
    213   x = x | (x >> 8);
    214   x = x | (x >> 16);
    215   return x + 1;
    216 }
    217 
    218 template<typename T>
    219 static constexpr int CLZ(T x) {
    220   return (sizeof(T) == sizeof(uint32_t))
    221       ? __builtin_clz(x)
    222       : __builtin_clzll(x);
    223 }
    224 
    225 template<typename T>
    226 static constexpr int CTZ(T x) {
    227   return (sizeof(T) == sizeof(uint32_t))
    228       ? __builtin_ctz(x)
    229       : __builtin_ctzll(x);
    230 }
    231 
    232 template<typename T>
    233 static constexpr int POPCOUNT(T x) {
    234   return (sizeof(T) == sizeof(uint32_t))
    235       ? __builtin_popcount(x)
    236       : __builtin_popcountll(x);
    237 }
    238 
    239 static inline uint32_t PointerToLowMemUInt32(const void* p) {
    240   uintptr_t intp = reinterpret_cast<uintptr_t>(p);
    241   DCHECK_LE(intp, 0xFFFFFFFFU);
    242   return intp & 0xFFFFFFFFU;
    243 }
    244 
    245 static inline bool NeedsEscaping(uint16_t ch) {
    246   return (ch < ' ' || ch > '~');
    247 }
    248 
    249 // Interpret the bit pattern of input (type U) as type V. Requires the size
    250 // of V >= size of U (compile-time checked).
    251 template<typename U, typename V>
    252 static inline V bit_cast(U in) {
    253   COMPILE_ASSERT(sizeof(U) <= sizeof(V), size_of_u_not_le_size_of_v);
    254   union {
    255     U u;
    256     V v;
    257   } tmp;
    258   tmp.u = in;
    259   return tmp.v;
    260 }
    261 
    262 std::string PrintableChar(uint16_t ch);
    263 
    264 // Returns an ASCII string corresponding to the given UTF-8 string.
    265 // Java escapes are used for non-ASCII characters.
    266 std::string PrintableString(const char* utf8);
    267 
    268 // Tests whether 's' starts with 'prefix'.
    269 bool StartsWith(const std::string& s, const char* prefix);
    270 
    271 // Tests whether 's' starts with 'suffix'.
    272 bool EndsWith(const std::string& s, const char* suffix);
    273 
    274 // Used to implement PrettyClass, PrettyField, PrettyMethod, and PrettyTypeOf,
    275 // one of which is probably more useful to you.
    276 // Returns a human-readable equivalent of 'descriptor'. So "I" would be "int",
    277 // "[[I" would be "int[][]", "[Ljava/lang/String;" would be
    278 // "java.lang.String[]", and so forth.
    279 std::string PrettyDescriptor(mirror::String* descriptor)
    280     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    281 std::string PrettyDescriptor(const char* descriptor);
    282 std::string PrettyDescriptor(mirror::Class* klass)
    283     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    284 std::string PrettyDescriptor(Primitive::Type type);
    285 
    286 // Returns a human-readable signature for 'f'. Something like "a.b.C.f" or
    287 // "int a.b.C.f" (depending on the value of 'with_type').
    288 std::string PrettyField(mirror::ArtField* f, bool with_type = true)
    289     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    290 std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type = true);
    291 
    292 // Returns a human-readable signature for 'm'. Something like "a.b.C.m" or
    293 // "a.b.C.m(II)V" (depending on the value of 'with_signature').
    294 std::string PrettyMethod(mirror::ArtMethod* m, bool with_signature = true)
    295     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    296 std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature = true);
    297 
    298 // Returns a human-readable form of the name of the *class* of the given object.
    299 // So given an instance of java.lang.String, the output would
    300 // be "java.lang.String". Given an array of int, the output would be "int[]".
    301 // Given String.class, the output would be "java.lang.Class<java.lang.String>".
    302 std::string PrettyTypeOf(mirror::Object* obj)
    303     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    304 
    305 // Returns a human-readable form of the type at an index in the specified dex file.
    306 // Example outputs: char[], java.lang.String.
    307 std::string PrettyType(uint32_t type_idx, const DexFile& dex_file);
    308 
    309 // Returns a human-readable form of the name of the given class.
    310 // Given String.class, the output would be "java.lang.Class<java.lang.String>".
    311 std::string PrettyClass(mirror::Class* c)
    312     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    313 
    314 // Returns a human-readable form of the name of the given class with its class loader.
    315 std::string PrettyClassAndClassLoader(mirror::Class* c)
    316     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    317 
    318 // Returns a human-readable size string such as "1MB".
    319 std::string PrettySize(int64_t size_in_bytes);
    320 
    321 // Returns a human-readable time string which prints every nanosecond while trying to limit the
    322 // number of trailing zeros. Prints using the largest human readable unit up to a second.
    323 // e.g. "1ms", "1.000000001s", "1.001us"
    324 std::string PrettyDuration(uint64_t nano_duration, size_t max_fraction_digits = 3);
    325 
    326 // Format a nanosecond time to specified units.
    327 std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit,
    328                            size_t max_fraction_digits);
    329 
    330 // Get the appropriate unit for a nanosecond duration.
    331 TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration);
    332 
    333 // Get the divisor to convert from a nanoseconds to a time unit.
    334 uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit);
    335 
    336 // Performs JNI name mangling as described in section 11.3 "Linking Native Methods"
    337 // of the JNI spec.
    338 std::string MangleForJni(const std::string& s);
    339 
    340 // Turn "java.lang.String" into "Ljava/lang/String;".
    341 std::string DotToDescriptor(const char* class_name);
    342 
    343 // Turn "Ljava/lang/String;" into "java.lang.String" using the conventions of
    344 // java.lang.Class.getName().
    345 std::string DescriptorToDot(const char* descriptor);
    346 
    347 // Turn "Ljava/lang/String;" into "java/lang/String" using the opposite conventions of
    348 // java.lang.Class.getName().
    349 std::string DescriptorToName(const char* descriptor);
    350 
    351 // Tests for whether 's' is a valid class name in the three common forms:
    352 bool IsValidBinaryClassName(const char* s);  // "java.lang.String"
    353 bool IsValidJniClassName(const char* s);     // "java/lang/String"
    354 bool IsValidDescriptor(const char* s);       // "Ljava/lang/String;"
    355 
    356 // Returns whether the given string is a valid field or method name,
    357 // additionally allowing names that begin with '<' and end with '>'.
    358 bool IsValidMemberName(const char* s);
    359 
    360 // Returns the JNI native function name for the non-overloaded method 'm'.
    361 std::string JniShortName(mirror::ArtMethod* m)
    362     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    363 // Returns the JNI native function name for the overloaded method 'm'.
    364 std::string JniLongName(mirror::ArtMethod* m)
    365     SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
    366 
    367 bool ReadFileToString(const std::string& file_name, std::string* result);
    368 
    369 // Returns the current date in ISO yyyy-mm-dd hh:mm:ss format.
    370 std::string GetIsoDate();
    371 
    372 // Returns the monotonic time since some unspecified starting point in milliseconds.
    373 uint64_t MilliTime();
    374 
    375 // Returns the monotonic time since some unspecified starting point in microseconds.
    376 uint64_t MicroTime();
    377 
    378 // Returns the monotonic time since some unspecified starting point in nanoseconds.
    379 uint64_t NanoTime();
    380 
    381 // Returns the thread-specific CPU-time clock in nanoseconds or -1 if unavailable.
    382 uint64_t ThreadCpuNanoTime();
    383 
    384 // Converts the given number of nanoseconds to milliseconds.
    385 static constexpr inline uint64_t NsToMs(uint64_t ns) {
    386   return ns / 1000 / 1000;
    387 }
    388 
    389 // Converts the given number of milliseconds to nanoseconds
    390 static constexpr inline uint64_t MsToNs(uint64_t ns) {
    391   return ns * 1000 * 1000;
    392 }
    393 
    394 #if defined(__APPLE__)
    395 // No clocks to specify on OS/X, fake value to pass to routines that require a clock.
    396 #define CLOCK_REALTIME 0xebadf00d
    397 #endif
    398 
    399 // Sleep for the given number of nanoseconds, a bad way to handle contention.
    400 void NanoSleep(uint64_t ns);
    401 
    402 // Initialize a timespec to either an absolute or relative time.
    403 void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts);
    404 
    405 // Splits a string using the given separator character into a vector of
    406 // strings. Empty strings will be omitted.
    407 void Split(const std::string& s, char separator, std::vector<std::string>& result);
    408 
    409 // Trims whitespace off both ends of the given string.
    410 std::string Trim(std::string s);
    411 
    412 // Joins a vector of strings into a single string, using the given separator.
    413 template <typename StringT> std::string Join(std::vector<StringT>& strings, char separator);
    414 
    415 // Returns the calling thread's tid. (The C libraries don't expose this.)
    416 pid_t GetTid();
    417 
    418 // Returns the given thread's name.
    419 std::string GetThreadName(pid_t tid);
    420 
    421 // Returns details of the given thread's stack.
    422 void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size);
    423 
    424 // Reads data from "/proc/self/task/${tid}/stat".
    425 void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu);
    426 
    427 // Returns the name of the scheduler group for the given thread the current process, or the empty string.
    428 std::string GetSchedulerGroupName(pid_t tid);
    429 
    430 // Sets the name of the current thread. The name may be truncated to an
    431 // implementation-defined limit.
    432 void SetThreadName(const char* thread_name);
    433 
    434 // Dumps the native stack for thread 'tid' to 'os'.
    435 void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix = "",
    436     mirror::ArtMethod* current_method = nullptr)
    437     NO_THREAD_SAFETY_ANALYSIS;
    438 
    439 // Dumps the kernel stack for thread 'tid' to 'os'. Note that this is only available on linux-x86.
    440 void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix = "", bool include_count = true);
    441 
    442 // Find $ANDROID_ROOT, /system, or abort.
    443 const char* GetAndroidRoot();
    444 
    445 // Find $ANDROID_DATA, /data, or abort.
    446 const char* GetAndroidData();
    447 // Find $ANDROID_DATA, /data, or return nullptr.
    448 const char* GetAndroidDataSafe(std::string* error_msg);
    449 
    450 // Returns the dalvik-cache location, or dies trying. subdir will be
    451 // appended to the cache location.
    452 std::string GetDalvikCacheOrDie(const char* subdir, bool create_if_absent = true);
    453 // Return true if we found the dalvik cache and stored it in the dalvik_cache argument.
    454 // have_android_data will be set to true if we have an ANDROID_DATA that exists,
    455 // dalvik_cache_exists will be true if there is a dalvik-cache directory that is present.
    456 // The flag is_global_cache tells whether this cache is /data/dalvik-cache.
    457 void GetDalvikCache(const char* subdir, bool create_if_absent, std::string* dalvik_cache,
    458                     bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache);
    459 
    460 // Returns the absolute dalvik-cache path for a DexFile or OatFile. The path returned will be
    461 // rooted at cache_location.
    462 bool GetDalvikCacheFilename(const char* file_location, const char* cache_location,
    463                             std::string* filename, std::string* error_msg);
    464 // Returns the absolute dalvik-cache path for a DexFile or OatFile, or
    465 // dies trying. The path returned will be rooted at cache_location.
    466 std::string GetDalvikCacheFilenameOrDie(const char* file_location,
    467                                         const char* cache_location);
    468 
    469 // Returns the system location for an image
    470 std::string GetSystemImageFilename(const char* location, InstructionSet isa);
    471 
    472 // Returns an .odex file name next adjacent to the dex location.
    473 // For example, for "/foo/bar/baz.jar", return "/foo/bar/<isa>/baz.odex".
    474 // Note: does not support multidex location strings.
    475 std::string DexFilenameToOdexFilename(const std::string& location, InstructionSet isa);
    476 
    477 // Check whether the given magic matches a known file type.
    478 bool IsZipMagic(uint32_t magic);
    479 bool IsDexMagic(uint32_t magic);
    480 bool IsOatMagic(uint32_t magic);
    481 
    482 // Wrapper on fork/execv to run a command in a subprocess.
    483 bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg);
    484 
    485 class VoidFunctor {
    486  public:
    487   template <typename A>
    488   inline void operator() (A a) const {
    489     UNUSED(a);
    490   }
    491 
    492   template <typename A, typename B>
    493   inline void operator() (A a, B b) const {
    494     UNUSED(a);
    495     UNUSED(b);
    496   }
    497 
    498   template <typename A, typename B, typename C>
    499   inline void operator() (A a, B b, C c) const {
    500     UNUSED(a);
    501     UNUSED(b);
    502     UNUSED(c);
    503   }
    504 };
    505 
    506 // Deleter using free() for use with std::unique_ptr<>. See also UniqueCPtr<> below.
    507 struct FreeDelete {
    508   // NOTE: Deleting a const object is valid but free() takes a non-const pointer.
    509   void operator()(const void* ptr) const {
    510     free(const_cast<void*>(ptr));
    511   }
    512 };
    513 
    514 // Alias for std::unique_ptr<> that uses the C function free() to delete objects.
    515 template <typename T>
    516 using UniqueCPtr = std::unique_ptr<T, FreeDelete>;
    517 
    518 }  // namespace art
    519 
    520 #endif  // ART_RUNTIME_UTILS_H_
    521