Home | History | Annotate | Download | only in source
      1 /*
      2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include "webrtc/modules/video_coding/main/source/session_info.h"
     12 
     13 #include "webrtc/modules/video_coding/main/source/packet.h"
     14 #include "webrtc/system_wrappers/interface/logging.h"
     15 
     16 namespace webrtc {
     17 
     18 // Used in determining whether a frame is decodable.
     19 enum {kRttThreshold = 100};  // Not decodable if Rtt is lower than this.
     20 
     21 // Do not decode frames if the number of packets is between these two
     22 // thresholds.
     23 static const float kLowPacketPercentageThreshold = 0.2f;
     24 static const float kHighPacketPercentageThreshold = 0.8f;
     25 
     26 VCMSessionInfo::VCMSessionInfo()
     27     : session_nack_(false),
     28       complete_(false),
     29       decodable_(false),
     30       frame_type_(kVideoFrameDelta),
     31       packets_(),
     32       empty_seq_num_low_(-1),
     33       empty_seq_num_high_(-1),
     34       first_packet_seq_num_(-1),
     35       last_packet_seq_num_(-1) {
     36 }
     37 
     38 void VCMSessionInfo::UpdateDataPointers(const uint8_t* old_base_ptr,
     39                                         const uint8_t* new_base_ptr) {
     40   for (PacketIterator it = packets_.begin(); it != packets_.end(); ++it)
     41     if ((*it).dataPtr != NULL) {
     42       assert(old_base_ptr != NULL && new_base_ptr != NULL);
     43       (*it).dataPtr = new_base_ptr + ((*it).dataPtr - old_base_ptr);
     44     }
     45 }
     46 
     47 int VCMSessionInfo::LowSequenceNumber() const {
     48   if (packets_.empty())
     49     return empty_seq_num_low_;
     50   return packets_.front().seqNum;
     51 }
     52 
     53 int VCMSessionInfo::HighSequenceNumber() const {
     54   if (packets_.empty())
     55     return empty_seq_num_high_;
     56   if (empty_seq_num_high_ == -1)
     57     return packets_.back().seqNum;
     58   return LatestSequenceNumber(packets_.back().seqNum, empty_seq_num_high_);
     59 }
     60 
     61 int VCMSessionInfo::PictureId() const {
     62   if (packets_.empty() ||
     63       packets_.front().codecSpecificHeader.codec != kRtpVideoVp8)
     64     return kNoPictureId;
     65   return packets_.front().codecSpecificHeader.codecHeader.VP8.pictureId;
     66 }
     67 
     68 int VCMSessionInfo::TemporalId() const {
     69   if (packets_.empty() ||
     70       packets_.front().codecSpecificHeader.codec != kRtpVideoVp8)
     71     return kNoTemporalIdx;
     72   return packets_.front().codecSpecificHeader.codecHeader.VP8.temporalIdx;
     73 }
     74 
     75 bool VCMSessionInfo::LayerSync() const {
     76   if (packets_.empty() ||
     77         packets_.front().codecSpecificHeader.codec != kRtpVideoVp8)
     78     return false;
     79   return packets_.front().codecSpecificHeader.codecHeader.VP8.layerSync;
     80 }
     81 
     82 int VCMSessionInfo::Tl0PicId() const {
     83   if (packets_.empty() ||
     84       packets_.front().codecSpecificHeader.codec != kRtpVideoVp8)
     85     return kNoTl0PicIdx;
     86   return packets_.front().codecSpecificHeader.codecHeader.VP8.tl0PicIdx;
     87 }
     88 
     89 bool VCMSessionInfo::NonReference() const {
     90   if (packets_.empty() ||
     91       packets_.front().codecSpecificHeader.codec != kRtpVideoVp8)
     92     return false;
     93   return packets_.front().codecSpecificHeader.codecHeader.VP8.nonReference;
     94 }
     95 
     96 void VCMSessionInfo::Reset() {
     97   session_nack_ = false;
     98   complete_ = false;
     99   decodable_ = false;
    100   frame_type_ = kVideoFrameDelta;
    101   packets_.clear();
    102   empty_seq_num_low_ = -1;
    103   empty_seq_num_high_ = -1;
    104   first_packet_seq_num_ = -1;
    105   last_packet_seq_num_ = -1;
    106 }
    107 
    108 int VCMSessionInfo::SessionLength() const {
    109   int length = 0;
    110   for (PacketIteratorConst it = packets_.begin(); it != packets_.end(); ++it)
    111     length += (*it).sizeBytes;
    112   return length;
    113 }
    114 
    115 int VCMSessionInfo::NumPackets() const {
    116   return packets_.size();
    117 }
    118 
    119 int VCMSessionInfo::InsertBuffer(uint8_t* frame_buffer,
    120                                  PacketIterator packet_it) {
    121   VCMPacket& packet = *packet_it;
    122   PacketIterator it;
    123 
    124   int packet_size = packet.sizeBytes;
    125   packet_size += (packet.insertStartCode ? kH264StartCodeLengthBytes : 0);
    126 
    127   // Calculate the offset into the frame buffer for this packet.
    128   int offset = 0;
    129   for (it = packets_.begin(); it != packet_it; ++it)
    130     offset += (*it).sizeBytes;
    131 
    132   // Set the data pointer to pointing to the start of this packet in the
    133   // frame buffer.
    134   const uint8_t* data = packet.dataPtr;
    135   packet.dataPtr = frame_buffer + offset;
    136   packet.sizeBytes = packet_size;
    137 
    138   ShiftSubsequentPackets(packet_it, packet_size);
    139 
    140   const unsigned char startCode[] = {0, 0, 0, 1};
    141   if (packet.insertStartCode) {
    142     memcpy(const_cast<uint8_t*>(packet.dataPtr), startCode,
    143            kH264StartCodeLengthBytes);
    144   }
    145   memcpy(const_cast<uint8_t*>(packet.dataPtr
    146       + (packet.insertStartCode ? kH264StartCodeLengthBytes : 0)),
    147       data,
    148       packet.sizeBytes);
    149 
    150   return packet_size;
    151 }
    152 
    153 void VCMSessionInfo::ShiftSubsequentPackets(PacketIterator it,
    154                                             int steps_to_shift) {
    155   ++it;
    156   if (it == packets_.end())
    157     return;
    158   uint8_t* first_packet_ptr = const_cast<uint8_t*>((*it).dataPtr);
    159   int shift_length = 0;
    160   // Calculate the total move length and move the data pointers in advance.
    161   for (; it != packets_.end(); ++it) {
    162     shift_length += (*it).sizeBytes;
    163     if ((*it).dataPtr != NULL)
    164       (*it).dataPtr += steps_to_shift;
    165   }
    166   memmove(first_packet_ptr + steps_to_shift, first_packet_ptr, shift_length);
    167 }
    168 
    169 void VCMSessionInfo::UpdateCompleteSession() {
    170   if (HaveFirstPacket() && HaveLastPacket()) {
    171     // Do we have all the packets in this session?
    172     bool complete_session = true;
    173     PacketIterator it = packets_.begin();
    174     PacketIterator prev_it = it;
    175     ++it;
    176     for (; it != packets_.end(); ++it) {
    177       if (!InSequence(it, prev_it)) {
    178         complete_session = false;
    179         break;
    180       }
    181       prev_it = it;
    182     }
    183     complete_ = complete_session;
    184   }
    185 }
    186 
    187 void VCMSessionInfo::UpdateDecodableSession(const FrameData& frame_data) {
    188   // Irrelevant if session is already complete or decodable
    189   if (complete_ || decodable_)
    190     return;
    191   // TODO(agalusza): Account for bursty loss.
    192   // TODO(agalusza): Refine these values to better approximate optimal ones.
    193   if (frame_data.rtt_ms < kRttThreshold
    194       || frame_type_ == kVideoFrameKey
    195       || !HaveFirstPacket()
    196       || (NumPackets() <= kHighPacketPercentageThreshold
    197                           * frame_data.rolling_average_packets_per_frame
    198           && NumPackets() > kLowPacketPercentageThreshold
    199                             * frame_data.rolling_average_packets_per_frame))
    200     return;
    201 
    202   decodable_ = true;
    203 }
    204 
    205 bool VCMSessionInfo::complete() const {
    206   return complete_;
    207 }
    208 
    209 bool VCMSessionInfo::decodable() const {
    210   return decodable_;
    211 }
    212 
    213 // Find the end of the NAL unit which the packet pointed to by |packet_it|
    214 // belongs to. Returns an iterator to the last packet of the frame if the end
    215 // of the NAL unit wasn't found.
    216 VCMSessionInfo::PacketIterator VCMSessionInfo::FindNaluEnd(
    217     PacketIterator packet_it) const {
    218   if ((*packet_it).completeNALU == kNaluEnd ||
    219       (*packet_it).completeNALU == kNaluComplete) {
    220     return packet_it;
    221   }
    222   // Find the end of the NAL unit.
    223   for (; packet_it != packets_.end(); ++packet_it) {
    224     if (((*packet_it).completeNALU == kNaluComplete &&
    225         (*packet_it).sizeBytes > 0) ||
    226         // Found next NALU.
    227         (*packet_it).completeNALU == kNaluStart)
    228       return --packet_it;
    229     if ((*packet_it).completeNALU == kNaluEnd)
    230       return packet_it;
    231   }
    232   // The end wasn't found.
    233   return --packet_it;
    234 }
    235 
    236 int VCMSessionInfo::DeletePacketData(PacketIterator start,
    237                                      PacketIterator end) {
    238   int bytes_to_delete = 0;  // The number of bytes to delete.
    239   PacketIterator packet_after_end = end;
    240   ++packet_after_end;
    241 
    242   // Get the number of bytes to delete.
    243   // Clear the size of these packets.
    244   for (PacketIterator it = start; it != packet_after_end; ++it) {
    245     bytes_to_delete += (*it).sizeBytes;
    246     (*it).sizeBytes = 0;
    247     (*it).dataPtr = NULL;
    248   }
    249   if (bytes_to_delete > 0)
    250     ShiftSubsequentPackets(end, -bytes_to_delete);
    251   return bytes_to_delete;
    252 }
    253 
    254 int VCMSessionInfo::BuildVP8FragmentationHeader(
    255     uint8_t* frame_buffer,
    256     int frame_buffer_length,
    257     RTPFragmentationHeader* fragmentation) {
    258   int new_length = 0;
    259   // Allocate space for max number of partitions
    260   fragmentation->VerifyAndAllocateFragmentationHeader(kMaxVP8Partitions);
    261   fragmentation->fragmentationVectorSize = 0;
    262   memset(fragmentation->fragmentationLength, 0,
    263          kMaxVP8Partitions * sizeof(uint32_t));
    264   if (packets_.empty())
    265       return new_length;
    266   PacketIterator it = FindNextPartitionBeginning(packets_.begin());
    267   while (it != packets_.end()) {
    268     const int partition_id =
    269         (*it).codecSpecificHeader.codecHeader.VP8.partitionId;
    270     PacketIterator partition_end = FindPartitionEnd(it);
    271     fragmentation->fragmentationOffset[partition_id] =
    272         (*it).dataPtr - frame_buffer;
    273     assert(fragmentation->fragmentationOffset[partition_id] <
    274            static_cast<uint32_t>(frame_buffer_length));
    275     fragmentation->fragmentationLength[partition_id] =
    276         (*partition_end).dataPtr + (*partition_end).sizeBytes - (*it).dataPtr;
    277     assert(fragmentation->fragmentationLength[partition_id] <=
    278            static_cast<uint32_t>(frame_buffer_length));
    279     new_length += fragmentation->fragmentationLength[partition_id];
    280     ++partition_end;
    281     it = FindNextPartitionBeginning(partition_end);
    282     if (partition_id + 1 > fragmentation->fragmentationVectorSize)
    283       fragmentation->fragmentationVectorSize = partition_id + 1;
    284   }
    285   // Set all empty fragments to start where the previous fragment ends,
    286   // and have zero length.
    287   if (fragmentation->fragmentationLength[0] == 0)
    288       fragmentation->fragmentationOffset[0] = 0;
    289   for (int i = 1; i < fragmentation->fragmentationVectorSize; ++i) {
    290     if (fragmentation->fragmentationLength[i] == 0)
    291       fragmentation->fragmentationOffset[i] =
    292           fragmentation->fragmentationOffset[i - 1] +
    293           fragmentation->fragmentationLength[i - 1];
    294     assert(i == 0 ||
    295            fragmentation->fragmentationOffset[i] >=
    296            fragmentation->fragmentationOffset[i - 1]);
    297   }
    298   assert(new_length <= frame_buffer_length);
    299   return new_length;
    300 }
    301 
    302 VCMSessionInfo::PacketIterator VCMSessionInfo::FindNextPartitionBeginning(
    303     PacketIterator it) const {
    304   while (it != packets_.end()) {
    305     if ((*it).codecSpecificHeader.codecHeader.VP8.beginningOfPartition) {
    306       return it;
    307     }
    308     ++it;
    309   }
    310   return it;
    311 }
    312 
    313 VCMSessionInfo::PacketIterator VCMSessionInfo::FindPartitionEnd(
    314     PacketIterator it) const {
    315   assert((*it).codec == kVideoCodecVP8);
    316   PacketIterator prev_it = it;
    317   const int partition_id =
    318       (*it).codecSpecificHeader.codecHeader.VP8.partitionId;
    319   while (it != packets_.end()) {
    320     bool beginning =
    321         (*it).codecSpecificHeader.codecHeader.VP8.beginningOfPartition;
    322     int current_partition_id =
    323         (*it).codecSpecificHeader.codecHeader.VP8.partitionId;
    324     bool packet_loss_found = (!beginning && !InSequence(it, prev_it));
    325     if (packet_loss_found ||
    326         (beginning && current_partition_id != partition_id)) {
    327       // Missing packet, the previous packet was the last in sequence.
    328       return prev_it;
    329     }
    330     prev_it = it;
    331     ++it;
    332   }
    333   return prev_it;
    334 }
    335 
    336 bool VCMSessionInfo::InSequence(const PacketIterator& packet_it,
    337                                 const PacketIterator& prev_packet_it) {
    338   // If the two iterators are pointing to the same packet they are considered
    339   // to be in sequence.
    340   return (packet_it == prev_packet_it ||
    341       (static_cast<uint16_t>((*prev_packet_it).seqNum + 1) ==
    342           (*packet_it).seqNum));
    343 }
    344 
    345 int VCMSessionInfo::MakeDecodable() {
    346   int return_length = 0;
    347   if (packets_.empty()) {
    348     return 0;
    349   }
    350   PacketIterator it = packets_.begin();
    351   // Make sure we remove the first NAL unit if it's not decodable.
    352   if ((*it).completeNALU == kNaluIncomplete ||
    353       (*it).completeNALU == kNaluEnd) {
    354     PacketIterator nalu_end = FindNaluEnd(it);
    355     return_length += DeletePacketData(it, nalu_end);
    356     it = nalu_end;
    357   }
    358   PacketIterator prev_it = it;
    359   // Take care of the rest of the NAL units.
    360   for (; it != packets_.end(); ++it) {
    361     bool start_of_nalu = ((*it).completeNALU == kNaluStart ||
    362         (*it).completeNALU == kNaluComplete);
    363     if (!start_of_nalu && !InSequence(it, prev_it)) {
    364       // Found a sequence number gap due to packet loss.
    365       PacketIterator nalu_end = FindNaluEnd(it);
    366       return_length += DeletePacketData(it, nalu_end);
    367       it = nalu_end;
    368     }
    369     prev_it = it;
    370   }
    371   return return_length;
    372 }
    373 
    374 void VCMSessionInfo::SetNotDecodableIfIncomplete() {
    375   // We don't need to check for completeness first because the two are
    376   // orthogonal. If complete_ is true, decodable_ is irrelevant.
    377   decodable_ = false;
    378 }
    379 
    380 bool
    381 VCMSessionInfo::HaveFirstPacket() const {
    382   return !packets_.empty() && (first_packet_seq_num_ != -1);
    383 }
    384 
    385 bool
    386 VCMSessionInfo::HaveLastPacket() const {
    387   return !packets_.empty() && (last_packet_seq_num_ != -1);
    388 }
    389 
    390 bool
    391 VCMSessionInfo::session_nack() const {
    392   return session_nack_;
    393 }
    394 
    395 int VCMSessionInfo::InsertPacket(const VCMPacket& packet,
    396                                  uint8_t* frame_buffer,
    397                                  VCMDecodeErrorMode decode_error_mode,
    398                                  const FrameData& frame_data) {
    399   if (packet.frameType == kFrameEmpty) {
    400     // Update sequence number of an empty packet.
    401     // Only media packets are inserted into the packet list.
    402     InformOfEmptyPacket(packet.seqNum);
    403     return 0;
    404   }
    405 
    406   if (packets_.size() == kMaxPacketsInSession) {
    407     LOG(LS_ERROR) << "Max number of packets per frame has been reached.";
    408     return -1;
    409   }
    410 
    411   // Find the position of this packet in the packet list in sequence number
    412   // order and insert it. Loop over the list in reverse order.
    413   ReversePacketIterator rit = packets_.rbegin();
    414   for (; rit != packets_.rend(); ++rit)
    415     if (LatestSequenceNumber(packet.seqNum, (*rit).seqNum) == packet.seqNum)
    416       break;
    417 
    418   // Check for duplicate packets.
    419   if (rit != packets_.rend() &&
    420       (*rit).seqNum == packet.seqNum && (*rit).sizeBytes > 0)
    421     return -2;
    422 
    423   // Only insert media packets between first and last packets (when available).
    424   // Placing check here, as to properly account for duplicate packets.
    425   // Check if this is first packet (only valid for some codecs)
    426   // Should only be set for one packet per session.
    427   if (packet.isFirstPacket && first_packet_seq_num_ == -1) {
    428     // The first packet in a frame signals the frame type.
    429     frame_type_ = packet.frameType;
    430     // Store the sequence number for the first packet.
    431     first_packet_seq_num_ = static_cast<int>(packet.seqNum);
    432   } else if (first_packet_seq_num_ != -1 &&
    433         !IsNewerSequenceNumber(packet.seqNum, first_packet_seq_num_)) {
    434     LOG(LS_WARNING) << "Received packet with a sequence number which is out of"
    435                        "frame boundaries";
    436     return -3;
    437   } else if (frame_type_ == kFrameEmpty && packet.frameType != kFrameEmpty) {
    438     // Update the frame type with the type of the first media packet.
    439     // TODO(mikhal): Can this trigger?
    440     frame_type_ = packet.frameType;
    441   }
    442 
    443   // Track the marker bit, should only be set for one packet per session.
    444   if (packet.markerBit && last_packet_seq_num_ == -1) {
    445     last_packet_seq_num_ = static_cast<int>(packet.seqNum);
    446   } else if (last_packet_seq_num_ != -1 &&
    447       IsNewerSequenceNumber(packet.seqNum, last_packet_seq_num_)) {
    448     LOG(LS_WARNING) << "Received packet with a sequence number which is out of"
    449                        "frame boundaries";
    450     return -3;
    451   }
    452 
    453   // The insert operation invalidates the iterator |rit|.
    454   PacketIterator packet_list_it = packets_.insert(rit.base(), packet);
    455 
    456   int returnLength = InsertBuffer(frame_buffer, packet_list_it);
    457   UpdateCompleteSession();
    458   if (decode_error_mode == kWithErrors)
    459     decodable_ = true;
    460   else if (decode_error_mode == kSelectiveErrors)
    461     UpdateDecodableSession(frame_data);
    462   return returnLength;
    463 }
    464 
    465 void VCMSessionInfo::InformOfEmptyPacket(uint16_t seq_num) {
    466   // Empty packets may be FEC or filler packets. They are sequential and
    467   // follow the data packets, therefore, we should only keep track of the high
    468   // and low sequence numbers and may assume that the packets in between are
    469   // empty packets belonging to the same frame (timestamp).
    470   if (empty_seq_num_high_ == -1)
    471     empty_seq_num_high_ = seq_num;
    472   else
    473     empty_seq_num_high_ = LatestSequenceNumber(seq_num, empty_seq_num_high_);
    474   if (empty_seq_num_low_ == -1 || IsNewerSequenceNumber(empty_seq_num_low_,
    475                                                         seq_num))
    476     empty_seq_num_low_ = seq_num;
    477 }
    478 
    479 }  // namespace webrtc
    480