Home | History | Annotate | Download | only in libjpeg
      1 #if !defined(_FX_JPEG_TURBO_)
      2 /*
      3  * jmemmgr.c
      4  *
      5  * Copyright (C) 1991-1997, Thomas G. Lane.
      6  * This file is part of the Independent JPEG Group's software.
      7  * For conditions of distribution and use, see the accompanying README file.
      8  *
      9  * This file contains the JPEG system-independent memory management
     10  * routines.  This code is usable across a wide variety of machines; most
     11  * of the system dependencies have been isolated in a separate file.
     12  * The major functions provided here are:
     13  *   * pool-based allocation and freeing of memory;
     14  *   * policy decisions about how to divide available memory among the
     15  *     virtual arrays;
     16  *   * control logic for swapping virtual arrays between main memory and
     17  *     backing storage.
     18  * The separate system-dependent file provides the actual backing-storage
     19  * access code, and it contains the policy decision about how much total
     20  * main memory to use.
     21  * This file is system-dependent in the sense that some of its functions
     22  * are unnecessary in some systems.  For example, if there is enough virtual
     23  * memory so that backing storage will never be used, much of the virtual
     24  * array control logic could be removed.  (Of course, if you have that much
     25  * memory then you shouldn't care about a little bit of unused code...)
     26  */
     27 
     28 #define JPEG_INTERNALS
     29 #define AM_MEMORY_MANAGER	/* we define jvirt_Xarray_control structs */
     30 #include "jinclude.h"
     31 #include "jpeglib.h"
     32 #include "jmemsys.h"		/* import the system-dependent declarations */
     33 
     34 #define NO_GETENV	/* XYQ: 2007-5-22 Don't use it */
     35 
     36 #ifndef NO_GETENV
     37 #ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare getenv() */
     38 extern char * getenv JPP((const char * name));
     39 #endif
     40 #endif
     41 
     42 
     43 /*
     44  * Some important notes:
     45  *   The allocation routines provided here must never return NULL.
     46  *   They should exit to error_exit if unsuccessful.
     47  *
     48  *   It's not a good idea to try to merge the sarray and barray routines,
     49  *   even though they are textually almost the same, because samples are
     50  *   usually stored as bytes while coefficients are shorts or ints.  Thus,
     51  *   in machines where byte pointers have a different representation from
     52  *   word pointers, the resulting machine code could not be the same.
     53  */
     54 
     55 
     56 /*
     57  * Many machines require storage alignment: longs must start on 4-byte
     58  * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc()
     59  * always returns pointers that are multiples of the worst-case alignment
     60  * requirement, and we had better do so too.
     61  * There isn't any really portable way to determine the worst-case alignment
     62  * requirement.  This module assumes that the alignment requirement is
     63  * multiples of sizeof(ALIGN_TYPE).
     64  * By default, we define ALIGN_TYPE as double.  This is necessary on some
     65  * workstations (where doubles really do need 8-byte alignment) and will work
     66  * fine on nearly everything.  If your machine has lesser alignment needs,
     67  * you can save a few bytes by making ALIGN_TYPE smaller.
     68  * The only place I know of where this will NOT work is certain Macintosh
     69  * 680x0 compilers that define double as a 10-byte IEEE extended float.
     70  * Doing 10-byte alignment is counterproductive because longwords won't be
     71  * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have
     72  * such a compiler.
     73  */
     74 
     75 #ifndef ALIGN_TYPE		/* so can override from jconfig.h */
     76 #define ALIGN_TYPE  double
     77 #endif
     78 
     79 
     80 /*
     81  * We allocate objects from "pools", where each pool is gotten with a single
     82  * request to jpeg_get_small() or jpeg_get_large().  There is no per-object
     83  * overhead within a pool, except for alignment padding.  Each pool has a
     84  * header with a link to the next pool of the same class.
     85  * Small and large pool headers are identical except that the latter's
     86  * link pointer must be FAR on 80x86 machines.
     87  * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
     88  * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
     89  * of the alignment requirement of ALIGN_TYPE.
     90  */
     91 
     92 typedef union small_pool_struct * small_pool_ptr;
     93 
     94 typedef union small_pool_struct {
     95   struct {
     96     small_pool_ptr next;	/* next in list of pools */
     97     size_t bytes_used;		/* how many bytes already used within pool */
     98     size_t bytes_left;		/* bytes still available in this pool */
     99   } hdr;
    100   ALIGN_TYPE dummy;		/* included in union to ensure alignment */
    101 } small_pool_hdr;
    102 
    103 typedef union large_pool_struct FAR * large_pool_ptr;
    104 
    105 typedef union large_pool_struct {
    106   struct {
    107     large_pool_ptr next;	/* next in list of pools */
    108     size_t bytes_used;		/* how many bytes already used within pool */
    109     size_t bytes_left;		/* bytes still available in this pool */
    110   } hdr;
    111   ALIGN_TYPE dummy;		/* included in union to ensure alignment */
    112 } large_pool_hdr;
    113 
    114 
    115 /*
    116  * Here is the full definition of a memory manager object.
    117  */
    118 
    119 typedef struct {
    120   struct jpeg_memory_mgr pub;	/* public fields */
    121 
    122   /* Each pool identifier (lifetime class) names a linked list of pools. */
    123   small_pool_ptr small_list[JPOOL_NUMPOOLS];
    124   large_pool_ptr large_list[JPOOL_NUMPOOLS];
    125 
    126   /* Since we only have one lifetime class of virtual arrays, only one
    127    * linked list is necessary (for each datatype).  Note that the virtual
    128    * array control blocks being linked together are actually stored somewhere
    129    * in the small-pool list.
    130    */
    131   jvirt_sarray_ptr virt_sarray_list;
    132   jvirt_barray_ptr virt_barray_list;
    133 
    134   /* This counts total space obtained from jpeg_get_small/large */
    135   long total_space_allocated;
    136 
    137   /* alloc_sarray and alloc_barray set this value for use by virtual
    138    * array routines.
    139    */
    140   JDIMENSION last_rowsperchunk;	/* from most recent alloc_sarray/barray */
    141 } my_memory_mgr;
    142 
    143 typedef my_memory_mgr * my_mem_ptr;
    144 
    145 
    146 /*
    147  * The control blocks for virtual arrays.
    148  * Note that these blocks are allocated in the "small" pool area.
    149  * System-dependent info for the associated backing store (if any) is hidden
    150  * inside the backing_store_info struct.
    151  */
    152 
    153 struct jvirt_sarray_control {
    154   JSAMPARRAY mem_buffer;	/* => the in-memory buffer */
    155   JDIMENSION rows_in_array;	/* total virtual array height */
    156   JDIMENSION samplesperrow;	/* width of array (and of memory buffer) */
    157   JDIMENSION maxaccess;		/* max rows accessed by access_virt_sarray */
    158   JDIMENSION rows_in_mem;	/* height of memory buffer */
    159   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
    160   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
    161   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
    162   boolean pre_zero;		/* pre-zero mode requested? */
    163   boolean dirty;		/* do current buffer contents need written? */
    164   boolean b_s_open;		/* is backing-store data valid? */
    165   jvirt_sarray_ptr next;	/* link to next virtual sarray control block */
    166   backing_store_info b_s_info;	/* System-dependent control info */
    167 };
    168 
    169 struct jvirt_barray_control {
    170   JBLOCKARRAY mem_buffer;	/* => the in-memory buffer */
    171   JDIMENSION rows_in_array;	/* total virtual array height */
    172   JDIMENSION blocksperrow;	/* width of array (and of memory buffer) */
    173   JDIMENSION maxaccess;		/* max rows accessed by access_virt_barray */
    174   JDIMENSION rows_in_mem;	/* height of memory buffer */
    175   JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */
    176   JDIMENSION cur_start_row;	/* first logical row # in the buffer */
    177   JDIMENSION first_undef_row;	/* row # of first uninitialized row */
    178   boolean pre_zero;		/* pre-zero mode requested? */
    179   boolean dirty;		/* do current buffer contents need written? */
    180   boolean b_s_open;		/* is backing-store data valid? */
    181   jvirt_barray_ptr next;	/* link to next virtual barray control block */
    182   backing_store_info b_s_info;	/* System-dependent control info */
    183 };
    184 
    185 
    186 #ifdef MEM_STATS		/* optional extra stuff for statistics */
    187 
    188 LOCAL(void)
    189 print_mem_stats (j_common_ptr cinfo, int pool_id)
    190 {
    191   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    192   small_pool_ptr shdr_ptr;
    193   large_pool_ptr lhdr_ptr;
    194 
    195   /* Since this is only a debugging stub, we can cheat a little by using
    196    * fprintf directly rather than going through the trace message code.
    197    * This is helpful because message parm array can't handle longs.
    198    */
    199   FXSYS_fprintf(stderr, "Freeing pool %d, total space = %ld\n",
    200 	  pool_id, mem->total_space_allocated);
    201 
    202   for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
    203        lhdr_ptr = lhdr_ptr->hdr.next) {
    204     FXSYS_fprintf(stderr, "  Large chunk used %ld\n",
    205 	    (long) lhdr_ptr->hdr.bytes_used);
    206   }
    207 
    208   for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
    209        shdr_ptr = shdr_ptr->hdr.next) {
    210     FXSYS_fprintf(stderr, "  Small chunk used %ld free %ld\n",
    211 	    (long) shdr_ptr->hdr.bytes_used,
    212 	    (long) shdr_ptr->hdr.bytes_left);
    213   }
    214 }
    215 
    216 #endif /* MEM_STATS */
    217 
    218 
    219 LOCAL(void)
    220 out_of_memory (j_common_ptr cinfo, int which)
    221 /* Report an out-of-memory error and stop execution */
    222 /* If we compiled MEM_STATS support, report alloc requests before dying */
    223 {
    224 #ifdef MEM_STATS
    225   cinfo->err->trace_level = 2;	/* force self_destruct to report stats */
    226 #endif
    227   ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
    228 }
    229 
    230 
    231 /*
    232  * Allocation of "small" objects.
    233  *
    234  * For these, we use pooled storage.  When a new pool must be created,
    235  * we try to get enough space for the current request plus a "slop" factor,
    236  * where the slop will be the amount of leftover space in the new pool.
    237  * The speed vs. space tradeoff is largely determined by the slop values.
    238  * A different slop value is provided for each pool class (lifetime),
    239  * and we also distinguish the first pool of a class from later ones.
    240  * NOTE: the values given work fairly well on both 16- and 32-bit-int
    241  * machines, but may be too small if longs are 64 bits or more.
    242  */
    243 
    244 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
    245 {
    246 	1600,			/* first PERMANENT pool */
    247 	16000			/* first IMAGE pool */
    248 };
    249 
    250 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
    251 {
    252 	0,			/* additional PERMANENT pools */
    253 	5000			/* additional IMAGE pools */
    254 };
    255 
    256 #define MIN_SLOP  50		/* greater than 0 to avoid futile looping */
    257 
    258 
    259 METHODDEF(void *)
    260 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
    261 /* Allocate a "small" object */
    262 {
    263   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    264   small_pool_ptr hdr_ptr, prev_hdr_ptr;
    265   char * data_ptr;
    266   size_t odd_bytes, min_request, slop;
    267 
    268   /* Check for unsatisfiable request (do now to ensure no overflow below) */
    269   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
    270     out_of_memory(cinfo, 1);	/* request exceeds malloc's ability */
    271 
    272   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
    273   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
    274   if (odd_bytes > 0)
    275     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
    276 
    277   /* See if space is available in any existing pool */
    278   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    279     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    280   prev_hdr_ptr = NULL;
    281   hdr_ptr = mem->small_list[pool_id];
    282   while (hdr_ptr != NULL) {
    283     if (hdr_ptr->hdr.bytes_left >= sizeofobject)
    284       break;			/* found pool with enough space */
    285     prev_hdr_ptr = hdr_ptr;
    286     hdr_ptr = hdr_ptr->hdr.next;
    287   }
    288 
    289   /* Time to make a new pool? */
    290   if (hdr_ptr == NULL) {
    291     /* min_request is what we need now, slop is what will be leftover */
    292     min_request = sizeofobject + SIZEOF(small_pool_hdr);
    293     if (prev_hdr_ptr == NULL)	/* first pool in class? */
    294       slop = first_pool_slop[pool_id];
    295     else
    296       slop = extra_pool_slop[pool_id];
    297     /* Don't ask for more than MAX_ALLOC_CHUNK */
    298     if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
    299       slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
    300     /* Try to get space, if fail reduce slop and try again */
    301     for (;;) {
    302       hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
    303       if (hdr_ptr != NULL)
    304 	break;
    305       slop /= 2;
    306       if (slop < MIN_SLOP)	/* give up when it gets real small */
    307 	out_of_memory(cinfo, 2); /* jpeg_get_small failed */
    308     }
    309     mem->total_space_allocated += min_request + slop;
    310     /* Success, initialize the new pool header and add to end of list */
    311     hdr_ptr->hdr.next = NULL;
    312     hdr_ptr->hdr.bytes_used = 0;
    313     hdr_ptr->hdr.bytes_left = sizeofobject + slop;
    314     if (prev_hdr_ptr == NULL)	/* first pool in class? */
    315       mem->small_list[pool_id] = hdr_ptr;
    316     else
    317       prev_hdr_ptr->hdr.next = hdr_ptr;
    318   }
    319 
    320   /* OK, allocate the object from the current pool */
    321   data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
    322   data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
    323   hdr_ptr->hdr.bytes_used += sizeofobject;
    324   hdr_ptr->hdr.bytes_left -= sizeofobject;
    325 
    326   return (void *) data_ptr;
    327 }
    328 
    329 
    330 /*
    331  * Allocation of "large" objects.
    332  *
    333  * The external semantics of these are the same as "small" objects,
    334  * except that FAR pointers are used on 80x86.  However the pool
    335  * management heuristics are quite different.  We assume that each
    336  * request is large enough that it may as well be passed directly to
    337  * jpeg_get_large; the pool management just links everything together
    338  * so that we can free it all on demand.
    339  * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
    340  * structures.  The routines that create these structures (see below)
    341  * deliberately bunch rows together to ensure a large request size.
    342  */
    343 
    344 METHODDEF(void FAR *)
    345 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
    346 /* Allocate a "large" object */
    347 {
    348   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    349   large_pool_ptr hdr_ptr;
    350   size_t odd_bytes;
    351 
    352   /* Check for unsatisfiable request (do now to ensure no overflow below) */
    353   if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
    354     out_of_memory(cinfo, 3);	/* request exceeds malloc's ability */
    355 
    356   /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
    357   odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
    358   if (odd_bytes > 0)
    359     sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
    360 
    361   /* Always make a new pool */
    362   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    363     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    364 
    365   hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
    366 					    SIZEOF(large_pool_hdr));
    367   if (hdr_ptr == NULL)
    368     out_of_memory(cinfo, 4);	/* jpeg_get_large failed */
    369   mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
    370 
    371   /* Success, initialize the new pool header and add to list */
    372   hdr_ptr->hdr.next = mem->large_list[pool_id];
    373   /* We maintain space counts in each pool header for statistical purposes,
    374    * even though they are not needed for allocation.
    375    */
    376   hdr_ptr->hdr.bytes_used = sizeofobject;
    377   hdr_ptr->hdr.bytes_left = 0;
    378   mem->large_list[pool_id] = hdr_ptr;
    379 
    380   return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
    381 }
    382 
    383 
    384 /*
    385  * Creation of 2-D sample arrays.
    386  * The pointers are in near heap, the samples themselves in FAR heap.
    387  *
    388  * To minimize allocation overhead and to allow I/O of large contiguous
    389  * blocks, we allocate the sample rows in groups of as many rows as possible
    390  * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
    391  * NB: the virtual array control routines, later in this file, know about
    392  * this chunking of rows.  The rowsperchunk value is left in the mem manager
    393  * object so that it can be saved away if this sarray is the workspace for
    394  * a virtual array.
    395  */
    396 
    397 METHODDEF(JSAMPARRAY)
    398 alloc_sarray (j_common_ptr cinfo, int pool_id,
    399 	      JDIMENSION samplesperrow, JDIMENSION numrows)
    400 /* Allocate a 2-D sample array */
    401 {
    402   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    403   JSAMPARRAY result;
    404   JSAMPROW workspace;
    405   JDIMENSION rowsperchunk, currow, i;
    406   long ltemp;
    407 
    408   /* Calculate max # of rows allowed in one allocation chunk */
    409   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
    410 	  ((long) samplesperrow * SIZEOF(JSAMPLE));
    411   if (ltemp <= 0)
    412     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
    413   if (ltemp < (long) numrows)
    414     rowsperchunk = (JDIMENSION) ltemp;
    415   else
    416     rowsperchunk = numrows;
    417   mem->last_rowsperchunk = rowsperchunk;
    418 
    419   /* Get space for row pointers (small object) */
    420   result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
    421 				    (size_t) (numrows * SIZEOF(JSAMPROW)));
    422 
    423   /* Get the rows themselves (large objects) */
    424   currow = 0;
    425   while (currow < numrows) {
    426     rowsperchunk = MIN(rowsperchunk, numrows - currow);
    427     workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
    428 	(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
    429 		  * SIZEOF(JSAMPLE)));
    430     for (i = rowsperchunk; i > 0; i--) {
    431       result[currow++] = workspace;
    432       workspace += samplesperrow;
    433     }
    434   }
    435 
    436   return result;
    437 }
    438 
    439 
    440 /*
    441  * Creation of 2-D coefficient-block arrays.
    442  * This is essentially the same as the code for sample arrays, above.
    443  */
    444 
    445 METHODDEF(JBLOCKARRAY)
    446 alloc_barray (j_common_ptr cinfo, int pool_id,
    447 	      JDIMENSION blocksperrow, JDIMENSION numrows)
    448 /* Allocate a 2-D coefficient-block array */
    449 {
    450   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    451   JBLOCKARRAY result;
    452   JBLOCKROW workspace;
    453   JDIMENSION rowsperchunk, currow, i;
    454   long ltemp;
    455 
    456   /* Calculate max # of rows allowed in one allocation chunk */
    457   ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
    458 	  ((long) blocksperrow * SIZEOF(JBLOCK));
    459   if (ltemp <= 0)
    460     ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
    461   if (ltemp < (long) numrows)
    462     rowsperchunk = (JDIMENSION) ltemp;
    463   else
    464     rowsperchunk = numrows;
    465   mem->last_rowsperchunk = rowsperchunk;
    466 
    467   /* Get space for row pointers (small object) */
    468   result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
    469 				     (size_t) (numrows * SIZEOF(JBLOCKROW)));
    470 
    471   /* Get the rows themselves (large objects) */
    472   currow = 0;
    473   while (currow < numrows) {
    474     rowsperchunk = MIN(rowsperchunk, numrows - currow);
    475     workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
    476 	(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
    477 		  * SIZEOF(JBLOCK)));
    478     for (i = rowsperchunk; i > 0; i--) {
    479       result[currow++] = workspace;
    480       workspace += blocksperrow;
    481     }
    482   }
    483 
    484   return result;
    485 }
    486 
    487 
    488 /*
    489  * About virtual array management:
    490  *
    491  * The above "normal" array routines are only used to allocate strip buffers
    492  * (as wide as the image, but just a few rows high).  Full-image-sized buffers
    493  * are handled as "virtual" arrays.  The array is still accessed a strip at a
    494  * time, but the memory manager must save the whole array for repeated
    495  * accesses.  The intended implementation is that there is a strip buffer in
    496  * memory (as high as is possible given the desired memory limit), plus a
    497  * backing file that holds the rest of the array.
    498  *
    499  * The request_virt_array routines are told the total size of the image and
    500  * the maximum number of rows that will be accessed at once.  The in-memory
    501  * buffer must be at least as large as the maxaccess value.
    502  *
    503  * The request routines create control blocks but not the in-memory buffers.
    504  * That is postponed until realize_virt_arrays is called.  At that time the
    505  * total amount of space needed is known (approximately, anyway), so free
    506  * memory can be divided up fairly.
    507  *
    508  * The access_virt_array routines are responsible for making a specific strip
    509  * area accessible (after reading or writing the backing file, if necessary).
    510  * Note that the access routines are told whether the caller intends to modify
    511  * the accessed strip; during a read-only pass this saves having to rewrite
    512  * data to disk.  The access routines are also responsible for pre-zeroing
    513  * any newly accessed rows, if pre-zeroing was requested.
    514  *
    515  * In current usage, the access requests are usually for nonoverlapping
    516  * strips; that is, successive access start_row numbers differ by exactly
    517  * num_rows = maxaccess.  This means we can get good performance with simple
    518  * buffer dump/reload logic, by making the in-memory buffer be a multiple
    519  * of the access height; then there will never be accesses across bufferload
    520  * boundaries.  The code will still work with overlapping access requests,
    521  * but it doesn't handle bufferload overlaps very efficiently.
    522  */
    523 
    524 
    525 METHODDEF(jvirt_sarray_ptr)
    526 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
    527 		     JDIMENSION samplesperrow, JDIMENSION numrows,
    528 		     JDIMENSION maxaccess)
    529 /* Request a virtual 2-D sample array */
    530 {
    531   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    532   jvirt_sarray_ptr result;
    533 
    534   /* Only IMAGE-lifetime virtual arrays are currently supported */
    535   if (pool_id != JPOOL_IMAGE)
    536     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    537 
    538   /* get control block */
    539   result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
    540 					  SIZEOF(struct jvirt_sarray_control));
    541 
    542   result->mem_buffer = NULL;	/* marks array not yet realized */
    543   result->rows_in_array = numrows;
    544   result->samplesperrow = samplesperrow;
    545   result->maxaccess = maxaccess;
    546   result->pre_zero = pre_zero;
    547   result->b_s_open = FALSE;	/* no associated backing-store object */
    548   result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
    549   mem->virt_sarray_list = result;
    550 
    551   return result;
    552 }
    553 
    554 
    555 METHODDEF(jvirt_barray_ptr)
    556 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
    557 		     JDIMENSION blocksperrow, JDIMENSION numrows,
    558 		     JDIMENSION maxaccess)
    559 /* Request a virtual 2-D coefficient-block array */
    560 {
    561   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    562   jvirt_barray_ptr result;
    563 
    564   /* Only IMAGE-lifetime virtual arrays are currently supported */
    565   if (pool_id != JPOOL_IMAGE)
    566     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    567 
    568   /* get control block */
    569   result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
    570 					  SIZEOF(struct jvirt_barray_control));
    571 
    572   result->mem_buffer = NULL;	/* marks array not yet realized */
    573   result->rows_in_array = numrows;
    574   result->blocksperrow = blocksperrow;
    575   result->maxaccess = maxaccess;
    576   result->pre_zero = pre_zero;
    577   result->b_s_open = FALSE;	/* no associated backing-store object */
    578   result->next = mem->virt_barray_list; /* add to list of virtual arrays */
    579   mem->virt_barray_list = result;
    580 
    581   return result;
    582 }
    583 
    584 
    585 METHODDEF(void)
    586 realize_virt_arrays (j_common_ptr cinfo)
    587 /* Allocate the in-memory buffers for any unrealized virtual arrays */
    588 {
    589   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    590   long space_per_minheight, maximum_space, avail_mem;
    591   long minheights, max_minheights;
    592   jvirt_sarray_ptr sptr;
    593   jvirt_barray_ptr bptr;
    594 
    595   /* Compute the minimum space needed (maxaccess rows in each buffer)
    596    * and the maximum space needed (full image height in each buffer).
    597    * These may be of use to the system-dependent jpeg_mem_available routine.
    598    */
    599   space_per_minheight = 0;
    600   maximum_space = 0;
    601   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    602     if (sptr->mem_buffer == NULL) { /* if not realized yet */
    603       space_per_minheight += (long) sptr->maxaccess *
    604 			     (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
    605       maximum_space += (long) sptr->rows_in_array *
    606 		       (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
    607     }
    608   }
    609   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    610     if (bptr->mem_buffer == NULL) { /* if not realized yet */
    611       space_per_minheight += (long) bptr->maxaccess *
    612 			     (long) bptr->blocksperrow * SIZEOF(JBLOCK);
    613       maximum_space += (long) bptr->rows_in_array *
    614 		       (long) bptr->blocksperrow * SIZEOF(JBLOCK);
    615     }
    616   }
    617 
    618   if (space_per_minheight <= 0)
    619     return;			/* no unrealized arrays, no work */
    620 
    621   /* Determine amount of memory to actually use; this is system-dependent. */
    622   avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
    623 				 mem->total_space_allocated);
    624 
    625   /* If the maximum space needed is available, make all the buffers full
    626    * height; otherwise parcel it out with the same number of minheights
    627    * in each buffer.
    628    */
    629   if (avail_mem >= maximum_space)
    630     max_minheights = 1000000000L;
    631   else {
    632     max_minheights = avail_mem / space_per_minheight;
    633     /* If there doesn't seem to be enough space, try to get the minimum
    634      * anyway.  This allows a "stub" implementation of jpeg_mem_available().
    635      */
    636     if (max_minheights <= 0)
    637       max_minheights = 1;
    638   }
    639 
    640   /* Allocate the in-memory buffers and initialize backing store as needed. */
    641 
    642   for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    643     if (sptr->mem_buffer == NULL) { /* if not realized yet */
    644       minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
    645       if (minheights <= max_minheights) {
    646 	/* This buffer fits in memory */
    647 	sptr->rows_in_mem = sptr->rows_in_array;
    648       } else {
    649 	/* It doesn't fit in memory, create backing store. */
    650 	sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
    651 	jpeg_open_backing_store(cinfo, & sptr->b_s_info,
    652 				(long) sptr->rows_in_array *
    653 				(long) sptr->samplesperrow *
    654 				(long) SIZEOF(JSAMPLE));
    655 	sptr->b_s_open = TRUE;
    656       }
    657       sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
    658 				      sptr->samplesperrow, sptr->rows_in_mem);
    659       sptr->rowsperchunk = mem->last_rowsperchunk;
    660       sptr->cur_start_row = 0;
    661       sptr->first_undef_row = 0;
    662       sptr->dirty = FALSE;
    663     }
    664   }
    665 
    666   for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    667     if (bptr->mem_buffer == NULL) { /* if not realized yet */
    668       minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
    669       if (minheights <= max_minheights) {
    670 	/* This buffer fits in memory */
    671 	bptr->rows_in_mem = bptr->rows_in_array;
    672       } else {
    673 	/* It doesn't fit in memory, create backing store. */
    674 	bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
    675 	jpeg_open_backing_store(cinfo, & bptr->b_s_info,
    676 				(long) bptr->rows_in_array *
    677 				(long) bptr->blocksperrow *
    678 				(long) SIZEOF(JBLOCK));
    679 	bptr->b_s_open = TRUE;
    680       }
    681       bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
    682 				      bptr->blocksperrow, bptr->rows_in_mem);
    683       bptr->rowsperchunk = mem->last_rowsperchunk;
    684       bptr->cur_start_row = 0;
    685       bptr->first_undef_row = 0;
    686       bptr->dirty = FALSE;
    687     }
    688   }
    689 }
    690 
    691 
    692 LOCAL(void)
    693 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
    694 /* Do backing store read or write of a virtual sample array */
    695 {
    696   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
    697 
    698   bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
    699   file_offset = ptr->cur_start_row * bytesperrow;
    700   /* Loop to read or write each allocation chunk in mem_buffer */
    701   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
    702     /* One chunk, but check for short chunk at end of buffer */
    703     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
    704     /* Transfer no more than is currently defined */
    705     thisrow = (long) ptr->cur_start_row + i;
    706     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
    707     /* Transfer no more than fits in file */
    708     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
    709     if (rows <= 0)		/* this chunk might be past end of file! */
    710       break;
    711     byte_count = rows * bytesperrow;
    712     if (writing)
    713       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
    714 					    (void FAR *) ptr->mem_buffer[i],
    715 					    file_offset, byte_count);
    716     else
    717       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
    718 					   (void FAR *) ptr->mem_buffer[i],
    719 					   file_offset, byte_count);
    720     file_offset += byte_count;
    721   }
    722 }
    723 
    724 
    725 LOCAL(void)
    726 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
    727 /* Do backing store read or write of a virtual coefficient-block array */
    728 {
    729   long bytesperrow, file_offset, byte_count, rows, thisrow, i;
    730 
    731   bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
    732   file_offset = ptr->cur_start_row * bytesperrow;
    733   /* Loop to read or write each allocation chunk in mem_buffer */
    734   for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
    735     /* One chunk, but check for short chunk at end of buffer */
    736     rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
    737     /* Transfer no more than is currently defined */
    738     thisrow = (long) ptr->cur_start_row + i;
    739     rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
    740     /* Transfer no more than fits in file */
    741     rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
    742     if (rows <= 0)		/* this chunk might be past end of file! */
    743       break;
    744     byte_count = rows * bytesperrow;
    745     if (writing)
    746       (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
    747 					    (void FAR *) ptr->mem_buffer[i],
    748 					    file_offset, byte_count);
    749     else
    750       (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
    751 					   (void FAR *) ptr->mem_buffer[i],
    752 					   file_offset, byte_count);
    753     file_offset += byte_count;
    754   }
    755 }
    756 
    757 
    758 METHODDEF(JSAMPARRAY)
    759 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
    760 		    JDIMENSION start_row, JDIMENSION num_rows,
    761 		    boolean writable)
    762 /* Access the part of a virtual sample array starting at start_row */
    763 /* and extending for num_rows rows.  writable is true if  */
    764 /* caller intends to modify the accessed area. */
    765 {
    766   JDIMENSION end_row = start_row + num_rows;
    767   JDIMENSION undef_row;
    768 
    769   /* debugging check */
    770   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
    771       ptr->mem_buffer == NULL)
    772     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    773 
    774   /* Make the desired part of the virtual array accessible */
    775   if (start_row < ptr->cur_start_row ||
    776       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
    777     if (! ptr->b_s_open)
    778       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
    779     /* Flush old buffer contents if necessary */
    780     if (ptr->dirty) {
    781       do_sarray_io(cinfo, ptr, TRUE);
    782       ptr->dirty = FALSE;
    783     }
    784     /* Decide what part of virtual array to access.
    785      * Algorithm: if target address > current window, assume forward scan,
    786      * load starting at target address.  If target address < current window,
    787      * assume backward scan, load so that target area is top of window.
    788      * Note that when switching from forward write to forward read, will have
    789      * start_row = 0, so the limiting case applies and we load from 0 anyway.
    790      */
    791     if (start_row > ptr->cur_start_row) {
    792       ptr->cur_start_row = start_row;
    793     } else {
    794       /* use long arithmetic here to avoid overflow & unsigned problems */
    795       long ltemp;
    796 
    797       ltemp = (long) end_row - (long) ptr->rows_in_mem;
    798       if (ltemp < 0)
    799 	ltemp = 0;		/* don't fall off front end of file */
    800       ptr->cur_start_row = (JDIMENSION) ltemp;
    801     }
    802     /* Read in the selected part of the array.
    803      * During the initial write pass, we will do no actual read
    804      * because the selected part is all undefined.
    805      */
    806     do_sarray_io(cinfo, ptr, FALSE);
    807   }
    808   /* Ensure the accessed part of the array is defined; prezero if needed.
    809    * To improve locality of access, we only prezero the part of the array
    810    * that the caller is about to access, not the entire in-memory array.
    811    */
    812   if (ptr->first_undef_row < end_row) {
    813     if (ptr->first_undef_row < start_row) {
    814       if (writable)		/* writer skipped over a section of array */
    815 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    816       undef_row = start_row;	/* but reader is allowed to read ahead */
    817     } else {
    818       undef_row = ptr->first_undef_row;
    819     }
    820     if (writable)
    821       ptr->first_undef_row = end_row;
    822     if (ptr->pre_zero) {
    823       size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
    824       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
    825       end_row -= ptr->cur_start_row;
    826       while (undef_row < end_row) {
    827 	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
    828 	undef_row++;
    829       }
    830     } else {
    831       if (! writable)		/* reader looking at undefined data */
    832 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    833     }
    834   }
    835   /* Flag the buffer dirty if caller will write in it */
    836   if (writable)
    837     ptr->dirty = TRUE;
    838   /* Return address of proper part of the buffer */
    839   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
    840 }
    841 
    842 
    843 METHODDEF(JBLOCKARRAY)
    844 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
    845 		    JDIMENSION start_row, JDIMENSION num_rows,
    846 		    boolean writable)
    847 /* Access the part of a virtual block array starting at start_row */
    848 /* and extending for num_rows rows.  writable is true if  */
    849 /* caller intends to modify the accessed area. */
    850 {
    851   JDIMENSION end_row = start_row + num_rows;
    852   JDIMENSION undef_row;
    853 
    854   /* debugging check */
    855   if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
    856       ptr->mem_buffer == NULL)
    857     ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    858 
    859   /* Make the desired part of the virtual array accessible */
    860   if (start_row < ptr->cur_start_row ||
    861       end_row > ptr->cur_start_row+ptr->rows_in_mem) {
    862     if (! ptr->b_s_open)
    863       ERREXIT(cinfo, JERR_VIRTUAL_BUG);
    864     /* Flush old buffer contents if necessary */
    865     if (ptr->dirty) {
    866       do_barray_io(cinfo, ptr, TRUE);
    867       ptr->dirty = FALSE;
    868     }
    869     /* Decide what part of virtual array to access.
    870      * Algorithm: if target address > current window, assume forward scan,
    871      * load starting at target address.  If target address < current window,
    872      * assume backward scan, load so that target area is top of window.
    873      * Note that when switching from forward write to forward read, will have
    874      * start_row = 0, so the limiting case applies and we load from 0 anyway.
    875      */
    876     if (start_row > ptr->cur_start_row) {
    877       ptr->cur_start_row = start_row;
    878     } else {
    879       /* use long arithmetic here to avoid overflow & unsigned problems */
    880       long ltemp;
    881 
    882       ltemp = (long) end_row - (long) ptr->rows_in_mem;
    883       if (ltemp < 0)
    884 	ltemp = 0;		/* don't fall off front end of file */
    885       ptr->cur_start_row = (JDIMENSION) ltemp;
    886     }
    887     /* Read in the selected part of the array.
    888      * During the initial write pass, we will do no actual read
    889      * because the selected part is all undefined.
    890      */
    891     do_barray_io(cinfo, ptr, FALSE);
    892   }
    893   /* Ensure the accessed part of the array is defined; prezero if needed.
    894    * To improve locality of access, we only prezero the part of the array
    895    * that the caller is about to access, not the entire in-memory array.
    896    */
    897   if (ptr->first_undef_row < end_row) {
    898     if (ptr->first_undef_row < start_row) {
    899       if (writable)		/* writer skipped over a section of array */
    900 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    901       undef_row = start_row;	/* but reader is allowed to read ahead */
    902     } else {
    903       undef_row = ptr->first_undef_row;
    904     }
    905     if (writable)
    906       ptr->first_undef_row = end_row;
    907     if (ptr->pre_zero) {
    908       size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
    909       undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
    910       end_row -= ptr->cur_start_row;
    911       while (undef_row < end_row) {
    912 	jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
    913 	undef_row++;
    914       }
    915     } else {
    916       if (! writable)		/* reader looking at undefined data */
    917 	ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
    918     }
    919   }
    920   /* Flag the buffer dirty if caller will write in it */
    921   if (writable)
    922     ptr->dirty = TRUE;
    923   /* Return address of proper part of the buffer */
    924   return ptr->mem_buffer + (start_row - ptr->cur_start_row);
    925 }
    926 
    927 
    928 /*
    929  * Release all objects belonging to a specified pool.
    930  */
    931 
    932 METHODDEF(void)
    933 free_pool (j_common_ptr cinfo, int pool_id)
    934 {
    935   my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
    936   small_pool_ptr shdr_ptr;
    937   large_pool_ptr lhdr_ptr;
    938   size_t space_freed;
    939 
    940   if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
    941     ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */
    942 
    943 #ifdef MEM_STATS
    944   if (cinfo->err->trace_level > 1)
    945     print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
    946 #endif
    947 
    948   /* If freeing IMAGE pool, close any virtual arrays first */
    949   if (pool_id == JPOOL_IMAGE) {
    950     jvirt_sarray_ptr sptr;
    951     jvirt_barray_ptr bptr;
    952 
    953     for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
    954       if (sptr->b_s_open) {	/* there may be no backing store */
    955 	sptr->b_s_open = FALSE;	/* prevent recursive close if error */
    956 	(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
    957       }
    958     }
    959     mem->virt_sarray_list = NULL;
    960     for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
    961       if (bptr->b_s_open) {	/* there may be no backing store */
    962 	bptr->b_s_open = FALSE;	/* prevent recursive close if error */
    963 	(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
    964       }
    965     }
    966     mem->virt_barray_list = NULL;
    967   }
    968 
    969   /* Release large objects */
    970   lhdr_ptr = mem->large_list[pool_id];
    971   mem->large_list[pool_id] = NULL;
    972 
    973   while (lhdr_ptr != NULL) {
    974     large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
    975     space_freed = lhdr_ptr->hdr.bytes_used +
    976 		  lhdr_ptr->hdr.bytes_left +
    977 		  SIZEOF(large_pool_hdr);
    978     jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
    979     mem->total_space_allocated -= space_freed;
    980     lhdr_ptr = next_lhdr_ptr;
    981   }
    982 
    983   /* Release small objects */
    984   shdr_ptr = mem->small_list[pool_id];
    985   mem->small_list[pool_id] = NULL;
    986 
    987   while (shdr_ptr != NULL) {
    988     small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
    989     space_freed = shdr_ptr->hdr.bytes_used +
    990 		  shdr_ptr->hdr.bytes_left +
    991 		  SIZEOF(small_pool_hdr);
    992     jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
    993     mem->total_space_allocated -= space_freed;
    994     shdr_ptr = next_shdr_ptr;
    995   }
    996 }
    997 
    998 
    999 /*
   1000  * Close up shop entirely.
   1001  * Note that this cannot be called unless cinfo->mem is non-NULL.
   1002  */
   1003 
   1004 METHODDEF(void)
   1005 self_destruct (j_common_ptr cinfo)
   1006 {
   1007   int pool;
   1008 
   1009   /* Close all backing store, release all memory.
   1010    * Releasing pools in reverse order might help avoid fragmentation
   1011    * with some (brain-damaged) malloc libraries.
   1012    */
   1013   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
   1014     free_pool(cinfo, pool);
   1015   }
   1016 
   1017   /* Release the memory manager control block too. */
   1018   jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
   1019   cinfo->mem = NULL;		/* ensures I will be called only once */
   1020 
   1021   jpeg_mem_term(cinfo);		/* system-dependent cleanup */
   1022 }
   1023 
   1024 
   1025 /*
   1026  * Memory manager initialization.
   1027  * When this is called, only the error manager pointer is valid in cinfo!
   1028  */
   1029 
   1030 GLOBAL(void)
   1031 jinit_memory_mgr (j_common_ptr cinfo)
   1032 {
   1033   my_mem_ptr mem;
   1034   long max_to_use;
   1035   int pool;
   1036   size_t test_mac;
   1037 
   1038   cinfo->mem = NULL;		/* for safety if init fails */
   1039 
   1040   /* Check for configuration errors.
   1041    * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
   1042    * doesn't reflect any real hardware alignment requirement.
   1043    * The test is a little tricky: for X>0, X and X-1 have no one-bits
   1044    * in common if and only if X is a power of 2, ie has only one one-bit.
   1045    * Some compilers may give an "unreachable code" warning here; ignore it.
   1046    */
   1047   if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
   1048     ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
   1049   /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
   1050    * a multiple of SIZEOF(ALIGN_TYPE).
   1051    * Again, an "unreachable code" warning may be ignored here.
   1052    * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
   1053    */
   1054   test_mac = (size_t) MAX_ALLOC_CHUNK;
   1055   if ((long) test_mac != MAX_ALLOC_CHUNK ||
   1056       (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
   1057     ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
   1058 
   1059   max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
   1060 
   1061   /* Attempt to allocate memory manager's control block */
   1062   mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
   1063 
   1064   if (mem == NULL) {
   1065     jpeg_mem_term(cinfo);	/* system-dependent cleanup */
   1066     ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
   1067   }
   1068 
   1069   /* OK, fill in the method pointers */
   1070   mem->pub.alloc_small = alloc_small;
   1071   mem->pub.alloc_large = alloc_large;
   1072   mem->pub.alloc_sarray = alloc_sarray;
   1073   mem->pub.alloc_barray = alloc_barray;
   1074   mem->pub.request_virt_sarray = request_virt_sarray;
   1075   mem->pub.request_virt_barray = request_virt_barray;
   1076   mem->pub.realize_virt_arrays = realize_virt_arrays;
   1077   mem->pub.access_virt_sarray = access_virt_sarray;
   1078   mem->pub.access_virt_barray = access_virt_barray;
   1079   mem->pub.free_pool = free_pool;
   1080   mem->pub.self_destruct = self_destruct;
   1081 
   1082   /* Make MAX_ALLOC_CHUNK accessible to other modules */
   1083   mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
   1084 
   1085   /* Initialize working state */
   1086   mem->pub.max_memory_to_use = max_to_use;
   1087 
   1088   for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
   1089     mem->small_list[pool] = NULL;
   1090     mem->large_list[pool] = NULL;
   1091   }
   1092   mem->virt_sarray_list = NULL;
   1093   mem->virt_barray_list = NULL;
   1094 
   1095   mem->total_space_allocated = SIZEOF(my_memory_mgr);
   1096 
   1097   /* Declare ourselves open for business */
   1098   cinfo->mem = & mem->pub;
   1099 
   1100   /* Check for an environment variable JPEGMEM; if found, override the
   1101    * default max_memory setting from jpeg_mem_init.  Note that the
   1102    * surrounding application may again override this value.
   1103    * If your system doesn't support getenv(), define NO_GETENV to disable
   1104    * this feature.
   1105    */
   1106 #ifndef NO_GETENV
   1107   { char * memenv;
   1108 
   1109     if ((memenv = getenv("JPEGMEM")) != NULL) {
   1110       char ch = 'x';
   1111 
   1112       if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
   1113 	if (ch == 'm' || ch == 'M')
   1114 	  max_to_use *= 1000L;
   1115 	mem->pub.max_memory_to_use = max_to_use * 1000L;
   1116       }
   1117     }
   1118   }
   1119 #endif
   1120 
   1121 }
   1122 
   1123 #endif //_FX_JPEG_TURBO_
   1124