Home | History | Annotate | Download | only in blockfile
      1 // Copyright 2014 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "net/disk_cache/blockfile/index_table_v3.h"
      6 
      7 #include <algorithm>
      8 #include <set>
      9 #include <utility>
     10 
     11 #include "base/bits.h"
     12 #include "net/base/io_buffer.h"
     13 #include "net/base/net_errors.h"
     14 #include "net/disk_cache/disk_cache.h"
     15 
     16 using base::Time;
     17 using base::TimeDelta;
     18 using disk_cache::CellInfo;
     19 using disk_cache::CellList;
     20 using disk_cache::IndexCell;
     21 using disk_cache::IndexIterator;
     22 
     23 namespace {
     24 
     25 // The following constants describe the bitfields of an IndexCell so they are
     26 // implicitly synchronized with the descrption of IndexCell on file_format_v3.h.
     27 const uint64 kCellLocationMask = (1 << 22) - 1;
     28 const uint64 kCellIdMask = (1 << 18) - 1;
     29 const uint64 kCellTimestampMask = (1 << 20) - 1;
     30 const uint64 kCellReuseMask = (1 << 4) - 1;
     31 const uint8 kCellStateMask = (1 << 3) - 1;
     32 const uint8 kCellGroupMask = (1 << 3) - 1;
     33 const uint8 kCellSumMask = (1 << 2) - 1;
     34 
     35 const uint64 kCellSmallTableLocationMask = (1 << 16) - 1;
     36 const uint64 kCellSmallTableIdMask = (1 << 24) - 1;
     37 
     38 const int kCellIdOffset = 22;
     39 const int kCellTimestampOffset = 40;
     40 const int kCellReuseOffset = 60;
     41 const int kCellGroupOffset = 3;
     42 const int kCellSumOffset = 6;
     43 
     44 const int kCellSmallTableIdOffset = 16;
     45 
     46 // The number of bits that a hash has to be shifted to grab the part that
     47 // defines the cell id.
     48 const int kHashShift = 14;
     49 const int kSmallTableHashShift = 8;
     50 
     51 // Unfortunately we have to break the abstaction a little here: the file number
     52 // where entries are stored is outside of the control of this code, and it is
     53 // usually part of the stored address. However, for small tables we only store
     54 // 16 bits of the address so the file number is never stored on a cell. We have
     55 // to infere the file number from the type of entry (normal vs evicted), and
     56 // the knowledge that given that the table will not keep more than 64k entries,
     57 // a single file of each type is enough.
     58 const int kEntriesFile = disk_cache::BLOCK_ENTRIES - 1;
     59 const int kEvictedEntriesFile = disk_cache::BLOCK_EVICTED - 1;
     60 const int kMaxLocation = 1 << 22;
     61 const int kMinFileNumber = 1 << 16;
     62 
     63 uint32 GetCellLocation(const IndexCell& cell) {
     64   return cell.first_part & kCellLocationMask;
     65 }
     66 
     67 uint32 GetCellSmallTableLocation(const IndexCell& cell) {
     68   return cell.first_part & kCellSmallTableLocationMask;
     69 }
     70 
     71 uint32 GetCellId(const IndexCell& cell) {
     72   return (cell.first_part >> kCellIdOffset) & kCellIdMask;
     73 }
     74 
     75 uint32 GetCellSmallTableId(const IndexCell& cell) {
     76   return (cell.first_part >> kCellSmallTableIdOffset) &
     77          kCellSmallTableIdMask;
     78 }
     79 
     80 int GetCellTimestamp(const IndexCell& cell) {
     81   return (cell.first_part >> kCellTimestampOffset) & kCellTimestampMask;
     82 }
     83 
     84 int GetCellReuse(const IndexCell& cell) {
     85   return (cell.first_part >> kCellReuseOffset) & kCellReuseMask;
     86 }
     87 
     88 int GetCellState(const IndexCell& cell) {
     89   return cell.last_part & kCellStateMask;
     90 }
     91 
     92 int GetCellGroup(const IndexCell& cell) {
     93   return (cell.last_part >> kCellGroupOffset) & kCellGroupMask;
     94 }
     95 
     96 int GetCellSum(const IndexCell& cell) {
     97   return (cell.last_part >> kCellSumOffset) & kCellSumMask;
     98 }
     99 
    100 void SetCellLocation(IndexCell* cell, uint32 address) {
    101   DCHECK_LE(address, static_cast<uint32>(kCellLocationMask));
    102   cell->first_part &= ~kCellLocationMask;
    103   cell->first_part |= address;
    104 }
    105 
    106 void SetCellSmallTableLocation(IndexCell* cell, uint32 address) {
    107   DCHECK_LE(address, static_cast<uint32>(kCellSmallTableLocationMask));
    108   cell->first_part &= ~kCellSmallTableLocationMask;
    109   cell->first_part |= address;
    110 }
    111 
    112 void SetCellId(IndexCell* cell, uint32 hash) {
    113   DCHECK_LE(hash, static_cast<uint32>(kCellIdMask));
    114   cell->first_part &= ~(kCellIdMask << kCellIdOffset);
    115   cell->first_part |= static_cast<int64>(hash) << kCellIdOffset;
    116 }
    117 
    118 void SetCellSmallTableId(IndexCell* cell, uint32 hash) {
    119   DCHECK_LE(hash, static_cast<uint32>(kCellSmallTableIdMask));
    120   cell->first_part &= ~(kCellSmallTableIdMask << kCellSmallTableIdOffset);
    121   cell->first_part |= static_cast<int64>(hash) << kCellSmallTableIdOffset;
    122 }
    123 
    124 void SetCellTimestamp(IndexCell* cell, int timestamp) {
    125   DCHECK_LT(timestamp, 1 << 20);
    126   DCHECK_GE(timestamp, 0);
    127   cell->first_part &= ~(kCellTimestampMask << kCellTimestampOffset);
    128   cell->first_part |= static_cast<int64>(timestamp) << kCellTimestampOffset;
    129 }
    130 
    131 void SetCellReuse(IndexCell* cell, int count) {
    132   DCHECK_LT(count, 16);
    133   DCHECK_GE(count, 0);
    134   cell->first_part &= ~(kCellReuseMask << kCellReuseOffset);
    135   cell->first_part |= static_cast<int64>(count) << kCellReuseOffset;
    136 }
    137 
    138 void SetCellState(IndexCell* cell, disk_cache::EntryState state) {
    139   cell->last_part &= ~kCellStateMask;
    140   cell->last_part |= state;
    141 }
    142 
    143 void SetCellGroup(IndexCell* cell, disk_cache::EntryGroup group) {
    144   cell->last_part &= ~(kCellGroupMask << kCellGroupOffset);
    145   cell->last_part |= group << kCellGroupOffset;
    146 }
    147 
    148 void SetCellSum(IndexCell* cell, int sum) {
    149   DCHECK_LT(sum, 4);
    150   DCHECK_GE(sum, 0);
    151   cell->last_part &= ~(kCellSumMask << kCellSumOffset);
    152   cell->last_part |= sum << kCellSumOffset;
    153 }
    154 
    155 // This is a very particular way to calculate the sum, so it will not match if
    156 // compared a gainst a pure 2 bit, modulo 2 sum.
    157 int CalculateCellSum(const IndexCell& cell) {
    158   uint32* words = bit_cast<uint32*>(&cell);
    159   uint8* bytes = bit_cast<uint8*>(&cell);
    160   uint32 result = words[0] + words[1];
    161   result += result >> 16;
    162   result += (result >> 8) + (bytes[8] & 0x3f);
    163   result += result >> 4;
    164   result += result >> 2;
    165   return result & 3;
    166 }
    167 
    168 bool SanityCheck(const IndexCell& cell) {
    169   if (GetCellSum(cell) != CalculateCellSum(cell))
    170     return false;
    171 
    172   if (GetCellState(cell) > disk_cache::ENTRY_USED ||
    173       GetCellGroup(cell) == disk_cache::ENTRY_RESERVED ||
    174       GetCellGroup(cell) > disk_cache::ENTRY_EVICTED) {
    175     return false;
    176   }
    177 
    178   return true;
    179 }
    180 
    181 int FileNumberFromLocation(int location) {
    182   return location / kMinFileNumber;
    183 }
    184 
    185 int StartBlockFromLocation(int location) {
    186   return location % kMinFileNumber;
    187 }
    188 
    189 bool IsValidAddress(disk_cache::Addr address) {
    190   if (!address.is_initialized() ||
    191       (address.file_type() != disk_cache::BLOCK_EVICTED &&
    192        address.file_type() != disk_cache::BLOCK_ENTRIES)) {
    193     return false;
    194   }
    195 
    196   return address.FileNumber() < FileNumberFromLocation(kMaxLocation);
    197 }
    198 
    199 bool IsNormalState(const IndexCell& cell) {
    200   disk_cache::EntryState state =
    201       static_cast<disk_cache::EntryState>(GetCellState(cell));
    202   DCHECK_NE(state, disk_cache::ENTRY_FREE);
    203   return state != disk_cache::ENTRY_DELETED &&
    204          state != disk_cache::ENTRY_FIXING;
    205 }
    206 
    207 inline int GetNextBucket(int min_bucket_num, int max_bucket_num,
    208                          disk_cache::IndexBucket* table,
    209                          disk_cache::IndexBucket** bucket) {
    210   if (!(*bucket)->next)
    211     return 0;
    212 
    213   int bucket_num = (*bucket)->next / disk_cache::kCellsPerBucket;
    214   if (bucket_num < min_bucket_num || bucket_num > max_bucket_num) {
    215     // The next bucket must fall within the extra table. Note that this is not
    216     // an uncommon path as growing the table may not cleanup the link from the
    217     // main table to the extra table, and that cleanup is performed here when
    218     // accessing that bucket for the first time. This behavior has to change if
    219     // the tables are ever shrinked.
    220     (*bucket)->next = 0;
    221     return 0;
    222   }
    223   *bucket = &table[bucket_num - min_bucket_num];
    224   return bucket_num;
    225 }
    226 
    227 // Updates the |iterator| with the current |cell|. This cell may cause all
    228 // previous cells to be deleted (when a new target timestamp is found), the cell
    229 // may be added to the list (if it matches the target timestamp), or may it be
    230 // ignored.
    231 void UpdateIterator(const disk_cache::EntryCell& cell,
    232                     int limit_time,
    233                     IndexIterator* iterator) {
    234   int time = cell.GetTimestamp();
    235   // Look for not interesting times.
    236   if (iterator->forward && time <= limit_time)
    237     return;
    238   if (!iterator->forward && time >= limit_time)
    239     return;
    240 
    241   if ((iterator->forward && time < iterator->timestamp) ||
    242       (!iterator->forward && time > iterator->timestamp)) {
    243     // This timestamp is better than the one we had.
    244     iterator->timestamp = time;
    245     iterator->cells.clear();
    246   }
    247   if (time == iterator->timestamp) {
    248     CellInfo cell_info = { cell.hash(), cell.GetAddress() };
    249     iterator->cells.push_back(cell_info);
    250   }
    251 }
    252 
    253 void InitIterator(IndexIterator* iterator) {
    254   iterator->cells.clear();
    255   iterator->timestamp = iterator->forward ? kint32max : 0;
    256 }
    257 
    258 }  // namespace
    259 
    260 namespace disk_cache {
    261 
    262 EntryCell::~EntryCell() {
    263 }
    264 
    265 bool EntryCell::IsValid() const {
    266   return GetCellLocation(cell_) != 0;
    267 }
    268 
    269 // This code has to map the cell address (up to 22 bits) to a general cache Addr
    270 // (up to 24 bits of general addressing). It also set the implied file_number
    271 // in the case of small tables. See also the comment by the definition of
    272 // kEntriesFile.
    273 Addr EntryCell::GetAddress() const {
    274   uint32 location = GetLocation();
    275   int file_number = FileNumberFromLocation(location);
    276   if (small_table_) {
    277     DCHECK_EQ(0, file_number);
    278     file_number = (GetGroup() == ENTRY_EVICTED) ? kEvictedEntriesFile :
    279                                                   kEntriesFile;
    280   }
    281   DCHECK_NE(0, file_number);
    282   FileType file_type = (GetGroup() == ENTRY_EVICTED) ? BLOCK_EVICTED :
    283                                                        BLOCK_ENTRIES;
    284   return Addr(file_type, 1, file_number, StartBlockFromLocation(location));
    285 }
    286 
    287 EntryState EntryCell::GetState() const {
    288   return static_cast<EntryState>(GetCellState(cell_));
    289 }
    290 
    291 EntryGroup EntryCell::GetGroup() const {
    292   return static_cast<EntryGroup>(GetCellGroup(cell_));
    293 }
    294 
    295 int EntryCell::GetReuse() const {
    296   return GetCellReuse(cell_);
    297 }
    298 
    299 int EntryCell::GetTimestamp() const {
    300   return GetCellTimestamp(cell_);
    301 }
    302 
    303 void EntryCell::SetState(EntryState state) {
    304   SetCellState(&cell_, state);
    305 }
    306 
    307 void EntryCell::SetGroup(EntryGroup group) {
    308   SetCellGroup(&cell_, group);
    309 }
    310 
    311 void EntryCell::SetReuse(int count) {
    312   SetCellReuse(&cell_, count);
    313 }
    314 
    315 void EntryCell::SetTimestamp(int timestamp) {
    316   SetCellTimestamp(&cell_, timestamp);
    317 }
    318 
    319 // Static.
    320 EntryCell EntryCell::GetEntryCellForTest(int32 cell_num,
    321                                          uint32 hash,
    322                                          Addr address,
    323                                          IndexCell* cell,
    324                                          bool small_table) {
    325   if (cell) {
    326     EntryCell entry_cell(cell_num, hash, *cell, small_table);
    327     return entry_cell;
    328   }
    329 
    330   return EntryCell(cell_num, hash, address, small_table);
    331 }
    332 
    333 void EntryCell::SerializaForTest(IndexCell* destination) {
    334   FixSum();
    335   Serialize(destination);
    336 }
    337 
    338 EntryCell::EntryCell() : cell_num_(0), hash_(0), small_table_(false) {
    339   cell_.Clear();
    340 }
    341 
    342 EntryCell::EntryCell(int32 cell_num,
    343                      uint32 hash,
    344                      Addr address,
    345                      bool small_table)
    346     : cell_num_(cell_num),
    347       hash_(hash),
    348       small_table_(small_table) {
    349   DCHECK(IsValidAddress(address) || !address.value());
    350 
    351   cell_.Clear();
    352   SetCellState(&cell_, ENTRY_NEW);
    353   SetCellGroup(&cell_, ENTRY_NO_USE);
    354   if (small_table) {
    355     DCHECK(address.FileNumber() == kEntriesFile ||
    356            address.FileNumber() == kEvictedEntriesFile);
    357     SetCellSmallTableLocation(&cell_, address.start_block());
    358     SetCellSmallTableId(&cell_, hash >> kSmallTableHashShift);
    359   } else {
    360     uint32 location = address.FileNumber() << 16 | address.start_block();
    361     SetCellLocation(&cell_, location);
    362     SetCellId(&cell_, hash >> kHashShift);
    363   }
    364 }
    365 
    366 EntryCell::EntryCell(int32 cell_num,
    367                      uint32 hash,
    368                      const IndexCell& cell,
    369                      bool small_table)
    370     : cell_num_(cell_num),
    371       hash_(hash),
    372       cell_(cell),
    373       small_table_(small_table) {
    374 }
    375 
    376 void EntryCell::FixSum() {
    377   SetCellSum(&cell_, CalculateCellSum(cell_));
    378 }
    379 
    380 uint32 EntryCell::GetLocation() const {
    381   if (small_table_)
    382     return GetCellSmallTableLocation(cell_);
    383 
    384   return GetCellLocation(cell_);
    385 }
    386 
    387 uint32 EntryCell::RecomputeHash() {
    388   if (small_table_) {
    389     hash_ &= (1 << kSmallTableHashShift) - 1;
    390     hash_ |= GetCellSmallTableId(cell_) << kSmallTableHashShift;
    391     return hash_;
    392   }
    393 
    394   hash_ &= (1 << kHashShift) - 1;
    395   hash_ |= GetCellId(cell_) << kHashShift;
    396   return hash_;
    397 }
    398 
    399 void EntryCell::Serialize(IndexCell* destination) const {
    400   *destination = cell_;
    401 }
    402 
    403 EntrySet::EntrySet() : evicted_count(0), current(0) {
    404 }
    405 
    406 EntrySet::~EntrySet() {
    407 }
    408 
    409 IndexIterator::IndexIterator() {
    410 }
    411 
    412 IndexIterator::~IndexIterator() {
    413 }
    414 
    415 IndexTableInitData::IndexTableInitData() {
    416 }
    417 
    418 IndexTableInitData::~IndexTableInitData() {
    419 }
    420 
    421 // -----------------------------------------------------------------------
    422 
    423 IndexTable::IndexTable(IndexTableBackend* backend)
    424     : backend_(backend),
    425       header_(NULL),
    426       main_table_(NULL),
    427       extra_table_(NULL),
    428       modified_(false),
    429       small_table_(false) {
    430 }
    431 
    432 IndexTable::~IndexTable() {
    433 }
    434 
    435 // For a general description of the index tables see:
    436 // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/disk-cache-v3#TOC-Index
    437 //
    438 // The index is split between two tables: the main_table_ and the extra_table_.
    439 // The main table can grow only by doubling its number of cells, while the
    440 // extra table can grow slowly, because it only contain cells that overflow
    441 // from the main table. In order to locate a given cell, part of the hash is
    442 // used directly as an index into the main table; once that bucket is located,
    443 // all cells with that partial hash (i.e., belonging to that bucket) are
    444 // inspected, and if present, the next bucket (located on the extra table) is
    445 // then located. For more information on bucket chaining see:
    446 // http://www.chromium.org/developers/design-documents/network-stack/disk-cache/disk-cache-v3#TOC-Buckets
    447 //
    448 // There are two cases when increasing the size:
    449 //  - Doubling the size of the main table
    450 //  - Adding more entries to the extra table
    451 //
    452 // For example, consider a 64k main table with 8k cells on the extra table (for
    453 // a total of 72k cells). Init can be called to add another 8k cells at the end
    454 // (grow to 80k cells). When the size of the extra table approaches 64k, Init
    455 // can be called to double the main table (to 128k) and go back to a small extra
    456 // table.
    457 void IndexTable::Init(IndexTableInitData* params) {
    458   bool growing = header_ != NULL;
    459   scoped_ptr<IndexBucket[]> old_extra_table;
    460   header_ = &params->index_bitmap->header;
    461 
    462   if (params->main_table) {
    463     if (main_table_) {
    464       // This is doubling the size of main table.
    465       DCHECK_EQ(base::bits::Log2Floor(header_->table_len),
    466                 base::bits::Log2Floor(backup_header_->table_len) + 1);
    467       int extra_size = (header()->max_bucket - mask_) * kCellsPerBucket;
    468       DCHECK_GE(extra_size, 0);
    469 
    470       // Doubling the size implies deleting the extra table and moving as many
    471       // cells as we can to the main table, so we first copy the old one. This
    472       // is not required when just growing the extra table because we don't
    473       // move any cell in that case.
    474       old_extra_table.reset(new IndexBucket[extra_size]);
    475       memcpy(old_extra_table.get(), extra_table_,
    476              extra_size * sizeof(IndexBucket));
    477       memset(params->extra_table, 0, extra_size * sizeof(IndexBucket));
    478     }
    479     main_table_ = params->main_table;
    480   }
    481   DCHECK(main_table_);
    482   extra_table_ = params->extra_table;
    483 
    484   // extra_bits_ is really measured against table-size specific values.
    485   const int kMaxAbsoluteExtraBits = 12;  // From smallest to largest table.
    486   const int kMaxExtraBitsSmallTable = 6;  // From smallest to 64K table.
    487 
    488   extra_bits_ = base::bits::Log2Floor(header_->table_len) -
    489                 base::bits::Log2Floor(kBaseTableLen);
    490   DCHECK_GE(extra_bits_, 0);
    491   DCHECK_LT(extra_bits_, kMaxAbsoluteExtraBits);
    492 
    493   // Note that following the previous code the constants could be derived as
    494   // kMaxAbsoluteExtraBits = base::bits::Log2Floor(max table len) -
    495   //                         base::bits::Log2Floor(kBaseTableLen);
    496   //                       = 22 - base::bits::Log2Floor(1024) = 22 - 10;
    497   // kMaxExtraBitsSmallTable = base::bits::Log2Floor(max 16 bit table) - 10.
    498 
    499   mask_ = ((kBaseTableLen / kCellsPerBucket) << extra_bits_) - 1;
    500   small_table_ = extra_bits_ < kMaxExtraBitsSmallTable;
    501   if (!small_table_)
    502     extra_bits_ -= kMaxExtraBitsSmallTable;
    503 
    504   // table_len keeps the max number of cells stored by the index. We need a
    505   // bitmap with 1 bit per cell, and that bitmap has num_words 32-bit words.
    506   int num_words = (header_->table_len + 31) / 32;
    507 
    508   if (old_extra_table) {
    509     // All the cells from the extra table are moving to the new tables so before
    510     // creating the bitmaps, clear the part of the bitmap referring to the extra
    511     // table.
    512     int old_main_table_bit_words = ((mask_ >> 1) + 1) * kCellsPerBucket / 32;
    513     DCHECK_GT(num_words, old_main_table_bit_words);
    514     memset(params->index_bitmap->bitmap + old_main_table_bit_words, 0,
    515            (num_words - old_main_table_bit_words) * sizeof(int32));
    516 
    517     DCHECK(growing);
    518     int old_num_words = (backup_header_.get()->table_len + 31) / 32;
    519     DCHECK_GT(old_num_words, old_main_table_bit_words);
    520     memset(backup_bitmap_storage_.get() + old_main_table_bit_words, 0,
    521            (old_num_words - old_main_table_bit_words) * sizeof(int32));
    522   }
    523   bitmap_.reset(new Bitmap(params->index_bitmap->bitmap, header_->table_len,
    524                            num_words));
    525 
    526   if (growing) {
    527     int old_num_words = (backup_header_.get()->table_len + 31) / 32;
    528     DCHECK_GE(num_words, old_num_words);
    529     scoped_ptr<uint32[]> storage(new uint32[num_words]);
    530     memcpy(storage.get(), backup_bitmap_storage_.get(),
    531            old_num_words * sizeof(int32));
    532     memset(storage.get() + old_num_words, 0,
    533            (num_words - old_num_words) * sizeof(int32));
    534 
    535     backup_bitmap_storage_.swap(storage);
    536     backup_header_->table_len = header_->table_len;
    537   } else {
    538     backup_bitmap_storage_.reset(params->backup_bitmap.release());
    539     backup_header_.reset(params->backup_header.release());
    540   }
    541 
    542   num_words = (backup_header_->table_len + 31) / 32;
    543   backup_bitmap_.reset(new Bitmap(backup_bitmap_storage_.get(),
    544                                   backup_header_->table_len, num_words));
    545   if (old_extra_table)
    546     MoveCells(old_extra_table.get());
    547 
    548   if (small_table_)
    549     DCHECK(header_->flags & SMALL_CACHE);
    550 
    551   // All tables and backups are needed for operation.
    552   DCHECK(main_table_);
    553   DCHECK(extra_table_);
    554   DCHECK(bitmap_.get());
    555 }
    556 
    557 void IndexTable::Shutdown() {
    558   header_ = NULL;
    559   main_table_ = NULL;
    560   extra_table_ = NULL;
    561   bitmap_.reset();
    562   backup_bitmap_.reset();
    563   backup_header_.reset();
    564   backup_bitmap_storage_.reset();
    565   modified_ = false;
    566 }
    567 
    568 // The general method for locating cells is to:
    569 // 1. Get the first bucket. This usually means directly indexing the table (as
    570 //     this method does), or iterating through all possible buckets.
    571 // 2. Iterate through all the cells in that first bucket.
    572 // 3. If there is a linked bucket, locate it directly in the extra table.
    573 // 4. Go back to 2, as needed.
    574 //
    575 // One consequence of this pattern is that we never start looking at buckets in
    576 // the extra table, unless we are following a link from the main table.
    577 EntrySet IndexTable::LookupEntries(uint32 hash) {
    578   EntrySet entries;
    579   int bucket_num = static_cast<int>(hash & mask_);
    580   IndexBucket* bucket = &main_table_[bucket_num];
    581   do {
    582     for (int i = 0; i < kCellsPerBucket; i++) {
    583       IndexCell* current_cell = &bucket->cells[i];
    584       if (!GetLocation(*current_cell))
    585         continue;
    586       if (!SanityCheck(*current_cell)) {
    587         NOTREACHED();
    588         int cell_num = bucket_num * kCellsPerBucket + i;
    589         current_cell->Clear();
    590         bitmap_->Set(cell_num, false);
    591         backup_bitmap_->Set(cell_num, false);
    592         modified_ = true;
    593         continue;
    594       }
    595       int cell_num = bucket_num * kCellsPerBucket + i;
    596       if (MisplacedHash(*current_cell, hash)) {
    597         HandleMisplacedCell(current_cell, cell_num, hash & mask_);
    598       } else if (IsHashMatch(*current_cell, hash)) {
    599         EntryCell entry_cell(cell_num, hash, *current_cell, small_table_);
    600         CheckState(entry_cell);
    601         if (entry_cell.GetState() != ENTRY_DELETED) {
    602           entries.cells.push_back(entry_cell);
    603           if (entry_cell.GetGroup() == ENTRY_EVICTED)
    604             entries.evicted_count++;
    605         }
    606       }
    607     }
    608     bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
    609                                &bucket);
    610   } while (bucket_num);
    611   return entries;
    612 }
    613 
    614 EntryCell IndexTable::CreateEntryCell(uint32 hash, Addr address) {
    615   DCHECK(IsValidAddress(address));
    616   DCHECK(address.FileNumber() || address.start_block());
    617 
    618   int bucket_num = static_cast<int>(hash & mask_);
    619   int cell_num = 0;
    620   IndexBucket* bucket = &main_table_[bucket_num];
    621   IndexCell* current_cell = NULL;
    622   bool found = false;
    623   do {
    624     for (int i = 0; i < kCellsPerBucket && !found; i++) {
    625       current_cell = &bucket->cells[i];
    626       if (!GetLocation(*current_cell)) {
    627         cell_num = bucket_num * kCellsPerBucket + i;
    628         found = true;
    629       }
    630     }
    631     if (found)
    632       break;
    633     bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
    634                                &bucket);
    635   } while (bucket_num);
    636 
    637   if (!found) {
    638     bucket_num = NewExtraBucket();
    639     if (bucket_num) {
    640       cell_num = bucket_num * kCellsPerBucket;
    641       bucket->next = cell_num;
    642       bucket = &extra_table_[bucket_num - (mask_ + 1)];
    643       bucket->hash = hash & mask_;
    644       found = true;
    645     } else {
    646       // address 0 is a reserved value, and the caller interprets it as invalid.
    647       address.set_value(0);
    648     }
    649   }
    650 
    651   EntryCell entry_cell(cell_num, hash, address, small_table_);
    652   if (address.file_type() == BLOCK_EVICTED)
    653     entry_cell.SetGroup(ENTRY_EVICTED);
    654   else
    655     entry_cell.SetGroup(ENTRY_NO_USE);
    656   Save(&entry_cell);
    657 
    658   if (found) {
    659     bitmap_->Set(cell_num, true);
    660     backup_bitmap_->Set(cell_num, true);
    661     header()->used_cells++;
    662     modified_ = true;
    663   }
    664 
    665   return entry_cell;
    666 }
    667 
    668 EntryCell IndexTable::FindEntryCell(uint32 hash, Addr address) {
    669   return FindEntryCellImpl(hash, address, false);
    670 }
    671 
    672 int IndexTable::CalculateTimestamp(Time time) {
    673   TimeDelta delta = time - Time::FromInternalValue(header_->base_time);
    674   return std::max(delta.InMinutes(), 0);
    675 }
    676 
    677 base::Time IndexTable::TimeFromTimestamp(int timestamp) {
    678   return Time::FromInternalValue(header_->base_time) +
    679          TimeDelta::FromMinutes(timestamp);
    680 }
    681 
    682 void IndexTable::SetSate(uint32 hash, Addr address, EntryState state) {
    683   EntryCell cell = FindEntryCellImpl(hash, address, state == ENTRY_FREE);
    684   if (!cell.IsValid()) {
    685     NOTREACHED();
    686     return;
    687   }
    688 
    689   EntryState old_state = cell.GetState();
    690   switch (state) {
    691     case ENTRY_FREE:
    692       DCHECK_EQ(old_state, ENTRY_DELETED);
    693       break;
    694     case ENTRY_NEW:
    695       DCHECK_EQ(old_state, ENTRY_FREE);
    696       break;
    697     case ENTRY_OPEN:
    698       DCHECK_EQ(old_state, ENTRY_USED);
    699       break;
    700     case ENTRY_MODIFIED:
    701       DCHECK_EQ(old_state, ENTRY_OPEN);
    702       break;
    703     case ENTRY_DELETED:
    704       DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN ||
    705              old_state == ENTRY_MODIFIED);
    706       break;
    707     case ENTRY_USED:
    708       DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN ||
    709              old_state == ENTRY_MODIFIED);
    710       break;
    711     case ENTRY_FIXING:
    712       break;
    713   };
    714 
    715   modified_ = true;
    716   if (state == ENTRY_DELETED) {
    717     bitmap_->Set(cell.cell_num(), false);
    718     backup_bitmap_->Set(cell.cell_num(), false);
    719   } else if (state == ENTRY_FREE) {
    720     cell.Clear();
    721     Write(cell);
    722     header()->used_cells--;
    723     return;
    724   }
    725   cell.SetState(state);
    726 
    727   Save(&cell);
    728 }
    729 
    730 void IndexTable::UpdateTime(uint32 hash, Addr address, base::Time current) {
    731   EntryCell cell = FindEntryCell(hash, address);
    732   if (!cell.IsValid())
    733     return;
    734 
    735   int minutes = CalculateTimestamp(current);
    736 
    737   // Keep about 3 months of headroom.
    738   const int kMaxTimestamp = (1 << 20) - 60 * 24 * 90;
    739   if (minutes > kMaxTimestamp) {
    740     // TODO(rvargas):
    741     // Update header->old_time and trigger a timer
    742     // Rebaseline timestamps and don't update sums
    743     // Start a timer (about 2 backups)
    744     // fix all ckecksums and trigger another timer
    745     // update header->old_time because rebaseline is done.
    746     minutes = std::min(minutes, (1 << 20) - 1);
    747   }
    748 
    749   cell.SetTimestamp(minutes);
    750   Save(&cell);
    751 }
    752 
    753 void IndexTable::Save(EntryCell* cell) {
    754   cell->FixSum();
    755   Write(*cell);
    756 }
    757 
    758 void IndexTable::GetOldest(IndexIterator* no_use,
    759                            IndexIterator* low_use,
    760                            IndexIterator* high_use) {
    761   no_use->forward = true;
    762   low_use->forward = true;
    763   high_use->forward = true;
    764   InitIterator(no_use);
    765   InitIterator(low_use);
    766   InitIterator(high_use);
    767 
    768   WalkTables(-1, no_use, low_use, high_use);
    769 }
    770 
    771 bool IndexTable::GetNextCells(IndexIterator* iterator) {
    772   int current_time = iterator->timestamp;
    773   InitIterator(iterator);
    774 
    775   WalkTables(current_time, iterator, iterator, iterator);
    776   return !iterator->cells.empty();
    777 }
    778 
    779 void IndexTable::OnBackupTimer() {
    780   if (!modified_)
    781     return;
    782 
    783   int num_words = (header_->table_len + 31) / 32;
    784   int num_bytes = num_words * 4 + static_cast<int>(sizeof(*header_));
    785   scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(num_bytes));
    786   memcpy(buffer->data(), header_, sizeof(*header_));
    787   memcpy(buffer->data() + sizeof(*header_), backup_bitmap_storage_.get(),
    788          num_words * 4);
    789   backend_->SaveIndex(buffer, num_bytes);
    790   modified_ = false;
    791 }
    792 
    793 // -----------------------------------------------------------------------
    794 
    795 EntryCell IndexTable::FindEntryCellImpl(uint32 hash, Addr address,
    796                                         bool allow_deleted) {
    797   int bucket_num = static_cast<int>(hash & mask_);
    798   IndexBucket* bucket = &main_table_[bucket_num];
    799   do {
    800     for (int i = 0; i < kCellsPerBucket; i++) {
    801       IndexCell* current_cell = &bucket->cells[i];
    802       if (!GetLocation(*current_cell))
    803         continue;
    804       DCHECK(SanityCheck(*current_cell));
    805       if (IsHashMatch(*current_cell, hash)) {
    806         // We have a match.
    807         int cell_num = bucket_num * kCellsPerBucket + i;
    808         EntryCell entry_cell(cell_num, hash, *current_cell, small_table_);
    809         if (entry_cell.GetAddress() != address)
    810           continue;
    811 
    812         if (!allow_deleted && entry_cell.GetState() == ENTRY_DELETED)
    813           continue;
    814 
    815         return entry_cell;
    816       }
    817     }
    818     bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
    819                                &bucket);
    820   } while (bucket_num);
    821   return EntryCell();
    822 }
    823 
    824 void IndexTable::CheckState(const EntryCell& cell) {
    825   int current_state = cell.GetState();
    826   if (current_state != ENTRY_FIXING) {
    827     bool present = ((current_state & 3) != 0);  // Look at the last two bits.
    828     if (present != bitmap_->Get(cell.cell_num()) ||
    829         present != backup_bitmap_->Get(cell.cell_num())) {
    830       // There's a mismatch.
    831       if (current_state == ENTRY_DELETED) {
    832         // We were in the process of deleting this entry. Finish now.
    833         backend_->DeleteCell(cell);
    834       } else {
    835         current_state = ENTRY_FIXING;
    836         EntryCell bad_cell(cell);
    837         bad_cell.SetState(ENTRY_FIXING);
    838         Save(&bad_cell);
    839       }
    840     }
    841   }
    842 
    843   if (current_state == ENTRY_FIXING)
    844     backend_->FixCell(cell);
    845 }
    846 
    847 void IndexTable::Write(const EntryCell& cell) {
    848   IndexBucket* bucket = NULL;
    849   int bucket_num = cell.cell_num() / kCellsPerBucket;
    850   if (bucket_num < static_cast<int32>(mask_ + 1)) {
    851     bucket = &main_table_[bucket_num];
    852   } else {
    853     DCHECK_LE(bucket_num, header()->max_bucket);
    854     bucket = &extra_table_[bucket_num - (mask_ + 1)];
    855   }
    856 
    857   int cell_number = cell.cell_num() % kCellsPerBucket;
    858   if (GetLocation(bucket->cells[cell_number]) && cell.GetLocation()) {
    859     DCHECK_EQ(cell.GetLocation(),
    860               GetLocation(bucket->cells[cell_number]));
    861   }
    862   cell.Serialize(&bucket->cells[cell_number]);
    863 }
    864 
    865 int IndexTable::NewExtraBucket() {
    866   int safe_window = (header()->table_len < kNumExtraBlocks * 2) ?
    867                     kNumExtraBlocks / 4 : kNumExtraBlocks;
    868   if (header()->table_len - header()->max_bucket * kCellsPerBucket <
    869       safe_window) {
    870     backend_->GrowIndex();
    871   }
    872 
    873   if (header()->max_bucket * kCellsPerBucket ==
    874       header()->table_len - kCellsPerBucket) {
    875     return 0;
    876   }
    877 
    878   header()->max_bucket++;
    879   return header()->max_bucket;
    880 }
    881 
    882 void IndexTable::WalkTables(int limit_time,
    883                             IndexIterator* no_use,
    884                             IndexIterator* low_use,
    885                             IndexIterator* high_use) {
    886   header_->num_no_use_entries = 0;
    887   header_->num_low_use_entries = 0;
    888   header_->num_high_use_entries = 0;
    889   header_->num_evicted_entries = 0;
    890 
    891   for (int i = 0; i < static_cast<int32>(mask_ + 1); i++) {
    892     int bucket_num = i;
    893     IndexBucket* bucket = &main_table_[i];
    894     do {
    895       UpdateFromBucket(bucket, i, limit_time, no_use, low_use, high_use);
    896 
    897       bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
    898                                  &bucket);
    899     } while (bucket_num);
    900   }
    901   header_->num_entries = header_->num_no_use_entries +
    902                          header_->num_low_use_entries +
    903                          header_->num_high_use_entries +
    904                          header_->num_evicted_entries;
    905   modified_ = true;
    906 }
    907 
    908 void IndexTable::UpdateFromBucket(IndexBucket* bucket, int bucket_hash,
    909                                   int limit_time,
    910                                   IndexIterator* no_use,
    911                                   IndexIterator* low_use,
    912                                   IndexIterator* high_use) {
    913   for (int i = 0; i < kCellsPerBucket; i++) {
    914     IndexCell& current_cell = bucket->cells[i];
    915     if (!GetLocation(current_cell))
    916       continue;
    917     DCHECK(SanityCheck(current_cell));
    918     if (!IsNormalState(current_cell))
    919       continue;
    920 
    921     EntryCell entry_cell(0, GetFullHash(current_cell, bucket_hash),
    922                          current_cell, small_table_);
    923     switch (GetCellGroup(current_cell)) {
    924       case ENTRY_NO_USE:
    925         UpdateIterator(entry_cell, limit_time, no_use);
    926         header_->num_no_use_entries++;
    927         break;
    928       case ENTRY_LOW_USE:
    929         UpdateIterator(entry_cell, limit_time, low_use);
    930         header_->num_low_use_entries++;
    931         break;
    932       case ENTRY_HIGH_USE:
    933         UpdateIterator(entry_cell, limit_time, high_use);
    934         header_->num_high_use_entries++;
    935         break;
    936       case ENTRY_EVICTED:
    937         header_->num_evicted_entries++;
    938         break;
    939       default:
    940         NOTREACHED();
    941     }
    942   }
    943 }
    944 
    945 // This code is only called from Init() so the internal state of this object is
    946 // in flux (this method is performing the last steps of re-initialization). As
    947 // such, random methods are not supposed to work at this point, so whatever this
    948 // method calls should be relatively well controlled and it may require some
    949 // degree of "stable state faking".
    950 void IndexTable::MoveCells(IndexBucket* old_extra_table) {
    951   int max_hash = (mask_ + 1) / 2;
    952   int max_bucket = header()->max_bucket;
    953   header()->max_bucket = mask_;
    954   int used_cells = header()->used_cells;
    955 
    956   // Consider a large cache: a cell stores the upper 18 bits of the hash
    957   // (h >> 14). If the table is say 8 times the original size (growing from 4x),
    958   // the bit that we are interested in would be the 3rd bit of the stored value,
    959   // in other words 'multiplier' >> 1.
    960   uint32 new_bit = (1 << extra_bits_) >> 1;
    961 
    962   scoped_ptr<IndexBucket[]> old_main_table;
    963   IndexBucket* source_table = main_table_;
    964   bool upgrade_format = !extra_bits_;
    965   if (upgrade_format) {
    966     // This method should deal with migrating a small table to a big one. Given
    967     // that the first thing to do is read the old table, set small_table_ for
    968     // the size of the old table. Now, when moving a cell, the result cannot be
    969     // placed in the old table or we will end up reading it again and attempting
    970     // to move it, so we have to copy the whole table at once.
    971     DCHECK(!small_table_);
    972     small_table_ = true;
    973     old_main_table.reset(new IndexBucket[max_hash]);
    974     memcpy(old_main_table.get(), main_table_, max_hash * sizeof(IndexBucket));
    975     memset(main_table_, 0, max_hash * sizeof(IndexBucket));
    976     source_table = old_main_table.get();
    977   }
    978 
    979   for (int i = 0; i < max_hash; i++) {
    980     int bucket_num = i;
    981     IndexBucket* bucket = &source_table[i];
    982     do {
    983       for (int j = 0; j < kCellsPerBucket; j++) {
    984         IndexCell& current_cell = bucket->cells[j];
    985         if (!GetLocation(current_cell))
    986           continue;
    987         DCHECK(SanityCheck(current_cell));
    988         if (bucket_num == i) {
    989           if (upgrade_format || (GetHashValue(current_cell) & new_bit)) {
    990             // Move this cell to the upper half of the table.
    991             MoveSingleCell(&current_cell, bucket_num * kCellsPerBucket + j, i,
    992                            true);
    993           }
    994         } else {
    995           // All cells on extra buckets have to move.
    996           MoveSingleCell(&current_cell, bucket_num * kCellsPerBucket + j, i,
    997                          true);
    998         }
    999       }
   1000 
   1001       // There is no need to clear the old bucket->next value because if falls
   1002       // within the main table so it will be fixed when attempting to follow
   1003       // the link.
   1004       bucket_num = GetNextBucket(max_hash, max_bucket, old_extra_table,
   1005                                  &bucket);
   1006     } while (bucket_num);
   1007   }
   1008 
   1009   DCHECK_EQ(header()->used_cells, used_cells);
   1010 
   1011   if (upgrade_format) {
   1012     small_table_ = false;
   1013     header()->flags &= ~SMALL_CACHE;
   1014   }
   1015 }
   1016 
   1017 void IndexTable::MoveSingleCell(IndexCell* current_cell, int cell_num,
   1018                                 int main_table_index, bool growing) {
   1019   uint32 hash = GetFullHash(*current_cell, main_table_index);
   1020   EntryCell old_cell(cell_num, hash, *current_cell, small_table_);
   1021 
   1022   // This method may be called when moving entries from a small table to a
   1023   // normal table. In that case, the caller (MoveCells) has to read the old
   1024   // table, so it needs small_table_ set to true, but this method needs to
   1025   // write to the new table so small_table_ has to be set to false, and the
   1026   // value restored to true before returning.
   1027   bool upgrade_format = !extra_bits_ && growing;
   1028   if (upgrade_format)
   1029     small_table_ = false;
   1030   EntryCell new_cell = CreateEntryCell(hash, old_cell.GetAddress());
   1031 
   1032   if (!new_cell.IsValid()) {
   1033     // We'll deal with this entry later.
   1034     if (upgrade_format)
   1035       small_table_ = true;
   1036     return;
   1037   }
   1038 
   1039   new_cell.SetState(old_cell.GetState());
   1040   new_cell.SetGroup(old_cell.GetGroup());
   1041   new_cell.SetReuse(old_cell.GetReuse());
   1042   new_cell.SetTimestamp(old_cell.GetTimestamp());
   1043   Save(&new_cell);
   1044   modified_ = true;
   1045   if (upgrade_format)
   1046     small_table_ = true;
   1047 
   1048   if (old_cell.GetState() == ENTRY_DELETED) {
   1049     bitmap_->Set(new_cell.cell_num(), false);
   1050     backup_bitmap_->Set(new_cell.cell_num(), false);
   1051   }
   1052 
   1053   if (!growing || cell_num / kCellsPerBucket == main_table_index) {
   1054     // Only delete entries that live on the main table.
   1055     if (!upgrade_format) {
   1056       old_cell.Clear();
   1057       Write(old_cell);
   1058     }
   1059 
   1060     if (cell_num != new_cell.cell_num()) {
   1061       bitmap_->Set(old_cell.cell_num(), false);
   1062       backup_bitmap_->Set(old_cell.cell_num(), false);
   1063     }
   1064   }
   1065   header()->used_cells--;
   1066 }
   1067 
   1068 void IndexTable::HandleMisplacedCell(IndexCell* current_cell, int cell_num,
   1069                                      int main_table_index) {
   1070   NOTREACHED();  // No unit tests yet.
   1071 
   1072   // The cell may be misplaced, or a duplicate cell exists with this data.
   1073   uint32 hash = GetFullHash(*current_cell, main_table_index);
   1074   MoveSingleCell(current_cell, cell_num, main_table_index, false);
   1075 
   1076   // Now look for a duplicate cell.
   1077   CheckBucketList(hash & mask_);
   1078 }
   1079 
   1080 void IndexTable::CheckBucketList(int bucket_num) {
   1081   typedef std::pair<int, EntryGroup> AddressAndGroup;
   1082   std::set<AddressAndGroup> entries;
   1083   IndexBucket* bucket = &main_table_[bucket_num];
   1084   int bucket_hash = bucket_num;
   1085   do {
   1086     for (int i = 0; i < kCellsPerBucket; i++) {
   1087       IndexCell* current_cell = &bucket->cells[i];
   1088       if (!GetLocation(*current_cell))
   1089         continue;
   1090       if (!SanityCheck(*current_cell)) {
   1091         NOTREACHED();
   1092         current_cell->Clear();
   1093         continue;
   1094       }
   1095       int cell_num = bucket_num * kCellsPerBucket + i;
   1096       EntryCell cell(cell_num, GetFullHash(*current_cell, bucket_hash),
   1097                      *current_cell, small_table_);
   1098       if (!entries.insert(std::make_pair(cell.GetAddress().value(),
   1099                                          cell.GetGroup())).second) {
   1100         current_cell->Clear();
   1101         continue;
   1102       }
   1103       CheckState(cell);
   1104     }
   1105 
   1106     bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
   1107                               &bucket);
   1108   } while (bucket_num);
   1109 }
   1110 
   1111 uint32 IndexTable::GetLocation(const IndexCell& cell) {
   1112   if (small_table_)
   1113     return GetCellSmallTableLocation(cell);
   1114 
   1115   return GetCellLocation(cell);
   1116 }
   1117 
   1118 uint32 IndexTable::GetHashValue(const IndexCell& cell) {
   1119   if (small_table_)
   1120     return GetCellSmallTableId(cell);
   1121 
   1122   return GetCellId(cell);
   1123 }
   1124 
   1125 uint32 IndexTable::GetFullHash(const IndexCell& cell, uint32 lower_part) {
   1126   // It is OK for the high order bits of lower_part to overlap with the stored
   1127   // part of the hash.
   1128   if (small_table_)
   1129     return (GetCellSmallTableId(cell) << kSmallTableHashShift) | lower_part;
   1130 
   1131   return (GetCellId(cell) << kHashShift) | lower_part;
   1132 }
   1133 
   1134 // All the bits stored in the cell should match the provided hash.
   1135 bool IndexTable::IsHashMatch(const IndexCell& cell, uint32 hash) {
   1136   hash = small_table_ ? hash >> kSmallTableHashShift : hash >> kHashShift;
   1137   return GetHashValue(cell) == hash;
   1138 }
   1139 
   1140 bool IndexTable::MisplacedHash(const IndexCell& cell, uint32 hash) {
   1141   if (!extra_bits_)
   1142     return false;
   1143 
   1144   uint32 mask = (1 << extra_bits_) - 1;
   1145   hash = small_table_ ? hash >> kSmallTableHashShift : hash >> kHashShift;
   1146   return (GetHashValue(cell) & mask) != (hash & mask);
   1147 }
   1148 
   1149 }  // namespace disk_cache
   1150