Home | History | Annotate | Download | only in src
      1 // Copyright 2010 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifdef ENABLE_GDB_JIT_INTERFACE
      6 #include "src/v8.h"
      7 #include "src/gdb-jit.h"
      8 
      9 #include "src/bootstrapper.h"
     10 #include "src/compiler.h"
     11 #include "src/frames.h"
     12 #include "src/frames-inl.h"
     13 #include "src/global-handles.h"
     14 #include "src/messages.h"
     15 #include "src/natives.h"
     16 #include "src/platform.h"
     17 #include "src/scopes.h"
     18 
     19 namespace v8 {
     20 namespace internal {
     21 
     22 #ifdef __APPLE__
     23 #define __MACH_O
     24 class MachO;
     25 class MachOSection;
     26 typedef MachO DebugObject;
     27 typedef MachOSection DebugSection;
     28 #else
     29 #define __ELF
     30 class ELF;
     31 class ELFSection;
     32 typedef ELF DebugObject;
     33 typedef ELFSection DebugSection;
     34 #endif
     35 
     36 class Writer BASE_EMBEDDED {
     37  public:
     38   explicit Writer(DebugObject* debug_object)
     39       : debug_object_(debug_object),
     40         position_(0),
     41         capacity_(1024),
     42         buffer_(reinterpret_cast<byte*>(malloc(capacity_))) {
     43   }
     44 
     45   ~Writer() {
     46     free(buffer_);
     47   }
     48 
     49   uintptr_t position() const {
     50     return position_;
     51   }
     52 
     53   template<typename T>
     54   class Slot {
     55    public:
     56     Slot(Writer* w, uintptr_t offset) : w_(w), offset_(offset) { }
     57 
     58     T* operator-> () {
     59       return w_->RawSlotAt<T>(offset_);
     60     }
     61 
     62     void set(const T& value) {
     63       *w_->RawSlotAt<T>(offset_) = value;
     64     }
     65 
     66     Slot<T> at(int i) {
     67       return Slot<T>(w_, offset_ + sizeof(T) * i);
     68     }
     69 
     70    private:
     71     Writer* w_;
     72     uintptr_t offset_;
     73   };
     74 
     75   template<typename T>
     76   void Write(const T& val) {
     77     Ensure(position_ + sizeof(T));
     78     *RawSlotAt<T>(position_) = val;
     79     position_ += sizeof(T);
     80   }
     81 
     82   template<typename T>
     83   Slot<T> SlotAt(uintptr_t offset) {
     84     Ensure(offset + sizeof(T));
     85     return Slot<T>(this, offset);
     86   }
     87 
     88   template<typename T>
     89   Slot<T> CreateSlotHere() {
     90     return CreateSlotsHere<T>(1);
     91   }
     92 
     93   template<typename T>
     94   Slot<T> CreateSlotsHere(uint32_t count) {
     95     uintptr_t slot_position = position_;
     96     position_ += sizeof(T) * count;
     97     Ensure(position_);
     98     return SlotAt<T>(slot_position);
     99   }
    100 
    101   void Ensure(uintptr_t pos) {
    102     if (capacity_ < pos) {
    103       while (capacity_ < pos) capacity_ *= 2;
    104       buffer_ = reinterpret_cast<byte*>(realloc(buffer_, capacity_));
    105     }
    106   }
    107 
    108   DebugObject* debug_object() { return debug_object_; }
    109 
    110   byte* buffer() { return buffer_; }
    111 
    112   void Align(uintptr_t align) {
    113     uintptr_t delta = position_ % align;
    114     if (delta == 0) return;
    115     uintptr_t padding = align - delta;
    116     Ensure(position_ += padding);
    117     ASSERT((position_ % align) == 0);
    118   }
    119 
    120   void WriteULEB128(uintptr_t value) {
    121     do {
    122       uint8_t byte = value & 0x7F;
    123       value >>= 7;
    124       if (value != 0) byte |= 0x80;
    125       Write<uint8_t>(byte);
    126     } while (value != 0);
    127   }
    128 
    129   void WriteSLEB128(intptr_t value) {
    130     bool more = true;
    131     while (more) {
    132       int8_t byte = value & 0x7F;
    133       bool byte_sign = byte & 0x40;
    134       value >>= 7;
    135 
    136       if ((value == 0 && !byte_sign) || (value == -1 && byte_sign)) {
    137         more = false;
    138       } else {
    139         byte |= 0x80;
    140       }
    141 
    142       Write<int8_t>(byte);
    143     }
    144   }
    145 
    146   void WriteString(const char* str) {
    147     do {
    148       Write<char>(*str);
    149     } while (*str++);
    150   }
    151 
    152  private:
    153   template<typename T> friend class Slot;
    154 
    155   template<typename T>
    156   T* RawSlotAt(uintptr_t offset) {
    157     ASSERT(offset < capacity_ && offset + sizeof(T) <= capacity_);
    158     return reinterpret_cast<T*>(&buffer_[offset]);
    159   }
    160 
    161   DebugObject* debug_object_;
    162   uintptr_t position_;
    163   uintptr_t capacity_;
    164   byte* buffer_;
    165 };
    166 
    167 class ELFStringTable;
    168 
    169 template<typename THeader>
    170 class DebugSectionBase : public ZoneObject {
    171  public:
    172   virtual ~DebugSectionBase() { }
    173 
    174   virtual void WriteBody(Writer::Slot<THeader> header, Writer* writer) {
    175     uintptr_t start = writer->position();
    176     if (WriteBodyInternal(writer)) {
    177       uintptr_t end = writer->position();
    178       header->offset = start;
    179 #if defined(__MACH_O)
    180       header->addr = 0;
    181 #endif
    182       header->size = end - start;
    183     }
    184   }
    185 
    186   virtual bool WriteBodyInternal(Writer* writer) {
    187     return false;
    188   }
    189 
    190   typedef THeader Header;
    191 };
    192 
    193 
    194 struct MachOSectionHeader {
    195   char sectname[16];
    196   char segname[16];
    197 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    198   uint32_t addr;
    199   uint32_t size;
    200 #else
    201   uint64_t addr;
    202   uint64_t size;
    203 #endif
    204   uint32_t offset;
    205   uint32_t align;
    206   uint32_t reloff;
    207   uint32_t nreloc;
    208   uint32_t flags;
    209   uint32_t reserved1;
    210   uint32_t reserved2;
    211 };
    212 
    213 
    214 class MachOSection : public DebugSectionBase<MachOSectionHeader> {
    215  public:
    216   enum Type {
    217     S_REGULAR = 0x0u,
    218     S_ATTR_COALESCED = 0xbu,
    219     S_ATTR_SOME_INSTRUCTIONS = 0x400u,
    220     S_ATTR_DEBUG = 0x02000000u,
    221     S_ATTR_PURE_INSTRUCTIONS = 0x80000000u
    222   };
    223 
    224   MachOSection(const char* name,
    225                const char* segment,
    226                uintptr_t align,
    227                uint32_t flags)
    228     : name_(name),
    229       segment_(segment),
    230       align_(align),
    231       flags_(flags) {
    232     if (align_ != 0) {
    233       ASSERT(IsPowerOf2(align));
    234       align_ = WhichPowerOf2(align_);
    235     }
    236   }
    237 
    238   virtual ~MachOSection() { }
    239 
    240   virtual void PopulateHeader(Writer::Slot<Header> header) {
    241     header->addr = 0;
    242     header->size = 0;
    243     header->offset = 0;
    244     header->align = align_;
    245     header->reloff = 0;
    246     header->nreloc = 0;
    247     header->flags = flags_;
    248     header->reserved1 = 0;
    249     header->reserved2 = 0;
    250     memset(header->sectname, 0, sizeof(header->sectname));
    251     memset(header->segname, 0, sizeof(header->segname));
    252     ASSERT(strlen(name_) < sizeof(header->sectname));
    253     ASSERT(strlen(segment_) < sizeof(header->segname));
    254     strncpy(header->sectname, name_, sizeof(header->sectname));
    255     strncpy(header->segname, segment_, sizeof(header->segname));
    256   }
    257 
    258  private:
    259   const char* name_;
    260   const char* segment_;
    261   uintptr_t align_;
    262   uint32_t flags_;
    263 };
    264 
    265 
    266 struct ELFSectionHeader {
    267   uint32_t name;
    268   uint32_t type;
    269   uintptr_t flags;
    270   uintptr_t address;
    271   uintptr_t offset;
    272   uintptr_t size;
    273   uint32_t link;
    274   uint32_t info;
    275   uintptr_t alignment;
    276   uintptr_t entry_size;
    277 };
    278 
    279 
    280 #if defined(__ELF)
    281 class ELFSection : public DebugSectionBase<ELFSectionHeader> {
    282  public:
    283   enum Type {
    284     TYPE_NULL = 0,
    285     TYPE_PROGBITS = 1,
    286     TYPE_SYMTAB = 2,
    287     TYPE_STRTAB = 3,
    288     TYPE_RELA = 4,
    289     TYPE_HASH = 5,
    290     TYPE_DYNAMIC = 6,
    291     TYPE_NOTE = 7,
    292     TYPE_NOBITS = 8,
    293     TYPE_REL = 9,
    294     TYPE_SHLIB = 10,
    295     TYPE_DYNSYM = 11,
    296     TYPE_LOPROC = 0x70000000,
    297     TYPE_X86_64_UNWIND = 0x70000001,
    298     TYPE_HIPROC = 0x7fffffff,
    299     TYPE_LOUSER = 0x80000000,
    300     TYPE_HIUSER = 0xffffffff
    301   };
    302 
    303   enum Flags {
    304     FLAG_WRITE = 1,
    305     FLAG_ALLOC = 2,
    306     FLAG_EXEC = 4
    307   };
    308 
    309   enum SpecialIndexes {
    310     INDEX_ABSOLUTE = 0xfff1
    311   };
    312 
    313   ELFSection(const char* name, Type type, uintptr_t align)
    314       : name_(name), type_(type), align_(align) { }
    315 
    316   virtual ~ELFSection() { }
    317 
    318   void PopulateHeader(Writer::Slot<Header> header, ELFStringTable* strtab);
    319 
    320   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    321     uintptr_t start = w->position();
    322     if (WriteBodyInternal(w)) {
    323       uintptr_t end = w->position();
    324       header->offset = start;
    325       header->size = end - start;
    326     }
    327   }
    328 
    329   virtual bool WriteBodyInternal(Writer* w) {
    330     return false;
    331   }
    332 
    333   uint16_t index() const { return index_; }
    334   void set_index(uint16_t index) { index_ = index; }
    335 
    336  protected:
    337   virtual void PopulateHeader(Writer::Slot<Header> header) {
    338     header->flags = 0;
    339     header->address = 0;
    340     header->offset = 0;
    341     header->size = 0;
    342     header->link = 0;
    343     header->info = 0;
    344     header->entry_size = 0;
    345   }
    346 
    347  private:
    348   const char* name_;
    349   Type type_;
    350   uintptr_t align_;
    351   uint16_t index_;
    352 };
    353 #endif  // defined(__ELF)
    354 
    355 
    356 #if defined(__MACH_O)
    357 class MachOTextSection : public MachOSection {
    358  public:
    359   MachOTextSection(uintptr_t align,
    360                    uintptr_t addr,
    361                    uintptr_t size)
    362       : MachOSection("__text",
    363                      "__TEXT",
    364                      align,
    365                      MachOSection::S_REGULAR |
    366                          MachOSection::S_ATTR_SOME_INSTRUCTIONS |
    367                          MachOSection::S_ATTR_PURE_INSTRUCTIONS),
    368         addr_(addr),
    369         size_(size) { }
    370 
    371  protected:
    372   virtual void PopulateHeader(Writer::Slot<Header> header) {
    373     MachOSection::PopulateHeader(header);
    374     header->addr = addr_;
    375     header->size = size_;
    376   }
    377 
    378  private:
    379   uintptr_t addr_;
    380   uintptr_t size_;
    381 };
    382 #endif  // defined(__MACH_O)
    383 
    384 
    385 #if defined(__ELF)
    386 class FullHeaderELFSection : public ELFSection {
    387  public:
    388   FullHeaderELFSection(const char* name,
    389                        Type type,
    390                        uintptr_t align,
    391                        uintptr_t addr,
    392                        uintptr_t offset,
    393                        uintptr_t size,
    394                        uintptr_t flags)
    395       : ELFSection(name, type, align),
    396         addr_(addr),
    397         offset_(offset),
    398         size_(size),
    399         flags_(flags) { }
    400 
    401  protected:
    402   virtual void PopulateHeader(Writer::Slot<Header> header) {
    403     ELFSection::PopulateHeader(header);
    404     header->address = addr_;
    405     header->offset = offset_;
    406     header->size = size_;
    407     header->flags = flags_;
    408   }
    409 
    410  private:
    411   uintptr_t addr_;
    412   uintptr_t offset_;
    413   uintptr_t size_;
    414   uintptr_t flags_;
    415 };
    416 
    417 
    418 class ELFStringTable : public ELFSection {
    419  public:
    420   explicit ELFStringTable(const char* name)
    421       : ELFSection(name, TYPE_STRTAB, 1), writer_(NULL), offset_(0), size_(0) {
    422   }
    423 
    424   uintptr_t Add(const char* str) {
    425     if (*str == '\0') return 0;
    426 
    427     uintptr_t offset = size_;
    428     WriteString(str);
    429     return offset;
    430   }
    431 
    432   void AttachWriter(Writer* w) {
    433     writer_ = w;
    434     offset_ = writer_->position();
    435 
    436     // First entry in the string table should be an empty string.
    437     WriteString("");
    438   }
    439 
    440   void DetachWriter() {
    441     writer_ = NULL;
    442   }
    443 
    444   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    445     ASSERT(writer_ == NULL);
    446     header->offset = offset_;
    447     header->size = size_;
    448   }
    449 
    450  private:
    451   void WriteString(const char* str) {
    452     uintptr_t written = 0;
    453     do {
    454       writer_->Write(*str);
    455       written++;
    456     } while (*str++);
    457     size_ += written;
    458   }
    459 
    460   Writer* writer_;
    461 
    462   uintptr_t offset_;
    463   uintptr_t size_;
    464 };
    465 
    466 
    467 void ELFSection::PopulateHeader(Writer::Slot<ELFSection::Header> header,
    468                                 ELFStringTable* strtab) {
    469   header->name = strtab->Add(name_);
    470   header->type = type_;
    471   header->alignment = align_;
    472   PopulateHeader(header);
    473 }
    474 #endif  // defined(__ELF)
    475 
    476 
    477 #if defined(__MACH_O)
    478 class MachO BASE_EMBEDDED {
    479  public:
    480   explicit MachO(Zone* zone) : zone_(zone), sections_(6, zone) { }
    481 
    482   uint32_t AddSection(MachOSection* section) {
    483     sections_.Add(section, zone_);
    484     return sections_.length() - 1;
    485   }
    486 
    487   void Write(Writer* w, uintptr_t code_start, uintptr_t code_size) {
    488     Writer::Slot<MachOHeader> header = WriteHeader(w);
    489     uintptr_t load_command_start = w->position();
    490     Writer::Slot<MachOSegmentCommand> cmd = WriteSegmentCommand(w,
    491                                                                 code_start,
    492                                                                 code_size);
    493     WriteSections(w, cmd, header, load_command_start);
    494   }
    495 
    496  private:
    497   struct MachOHeader {
    498     uint32_t magic;
    499     uint32_t cputype;
    500     uint32_t cpusubtype;
    501     uint32_t filetype;
    502     uint32_t ncmds;
    503     uint32_t sizeofcmds;
    504     uint32_t flags;
    505 #if V8_TARGET_ARCH_X64
    506     uint32_t reserved;
    507 #endif
    508   };
    509 
    510   struct MachOSegmentCommand {
    511     uint32_t cmd;
    512     uint32_t cmdsize;
    513     char segname[16];
    514 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    515     uint32_t vmaddr;
    516     uint32_t vmsize;
    517     uint32_t fileoff;
    518     uint32_t filesize;
    519 #else
    520     uint64_t vmaddr;
    521     uint64_t vmsize;
    522     uint64_t fileoff;
    523     uint64_t filesize;
    524 #endif
    525     uint32_t maxprot;
    526     uint32_t initprot;
    527     uint32_t nsects;
    528     uint32_t flags;
    529   };
    530 
    531   enum MachOLoadCommandCmd {
    532     LC_SEGMENT_32 = 0x00000001u,
    533     LC_SEGMENT_64 = 0x00000019u
    534   };
    535 
    536 
    537   Writer::Slot<MachOHeader> WriteHeader(Writer* w) {
    538     ASSERT(w->position() == 0);
    539     Writer::Slot<MachOHeader> header = w->CreateSlotHere<MachOHeader>();
    540 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    541     header->magic = 0xFEEDFACEu;
    542     header->cputype = 7;  // i386
    543     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
    544 #elif V8_TARGET_ARCH_X64
    545     header->magic = 0xFEEDFACFu;
    546     header->cputype = 7 | 0x01000000;  // i386 | 64-bit ABI
    547     header->cpusubtype = 3;  // CPU_SUBTYPE_I386_ALL
    548     header->reserved = 0;
    549 #else
    550 #error Unsupported target architecture.
    551 #endif
    552     header->filetype = 0x1;  // MH_OBJECT
    553     header->ncmds = 1;
    554     header->sizeofcmds = 0;
    555     header->flags = 0;
    556     return header;
    557   }
    558 
    559 
    560   Writer::Slot<MachOSegmentCommand> WriteSegmentCommand(Writer* w,
    561                                                         uintptr_t code_start,
    562                                                         uintptr_t code_size) {
    563     Writer::Slot<MachOSegmentCommand> cmd =
    564         w->CreateSlotHere<MachOSegmentCommand>();
    565 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    566     cmd->cmd = LC_SEGMENT_32;
    567 #else
    568     cmd->cmd = LC_SEGMENT_64;
    569 #endif
    570     cmd->vmaddr = code_start;
    571     cmd->vmsize = code_size;
    572     cmd->fileoff = 0;
    573     cmd->filesize = 0;
    574     cmd->maxprot = 7;
    575     cmd->initprot = 7;
    576     cmd->flags = 0;
    577     cmd->nsects = sections_.length();
    578     memset(cmd->segname, 0, 16);
    579     cmd->cmdsize = sizeof(MachOSegmentCommand) + sizeof(MachOSection::Header) *
    580         cmd->nsects;
    581     return cmd;
    582   }
    583 
    584 
    585   void WriteSections(Writer* w,
    586                      Writer::Slot<MachOSegmentCommand> cmd,
    587                      Writer::Slot<MachOHeader> header,
    588                      uintptr_t load_command_start) {
    589     Writer::Slot<MachOSection::Header> headers =
    590         w->CreateSlotsHere<MachOSection::Header>(sections_.length());
    591     cmd->fileoff = w->position();
    592     header->sizeofcmds = w->position() - load_command_start;
    593     for (int section = 0; section < sections_.length(); ++section) {
    594       sections_[section]->PopulateHeader(headers.at(section));
    595       sections_[section]->WriteBody(headers.at(section), w);
    596     }
    597     cmd->filesize = w->position() - (uintptr_t)cmd->fileoff;
    598   }
    599 
    600   Zone* zone_;
    601   ZoneList<MachOSection*> sections_;
    602 };
    603 #endif  // defined(__MACH_O)
    604 
    605 
    606 #if defined(__ELF)
    607 class ELF BASE_EMBEDDED {
    608  public:
    609   explicit ELF(Zone* zone) : zone_(zone), sections_(6, zone) {
    610     sections_.Add(new(zone) ELFSection("", ELFSection::TYPE_NULL, 0), zone);
    611     sections_.Add(new(zone) ELFStringTable(".shstrtab"), zone);
    612   }
    613 
    614   void Write(Writer* w) {
    615     WriteHeader(w);
    616     WriteSectionTable(w);
    617     WriteSections(w);
    618   }
    619 
    620   ELFSection* SectionAt(uint32_t index) {
    621     return sections_[index];
    622   }
    623 
    624   uint32_t AddSection(ELFSection* section) {
    625     sections_.Add(section, zone_);
    626     section->set_index(sections_.length() - 1);
    627     return sections_.length() - 1;
    628   }
    629 
    630  private:
    631   struct ELFHeader {
    632     uint8_t ident[16];
    633     uint16_t type;
    634     uint16_t machine;
    635     uint32_t version;
    636     uintptr_t entry;
    637     uintptr_t pht_offset;
    638     uintptr_t sht_offset;
    639     uint32_t flags;
    640     uint16_t header_size;
    641     uint16_t pht_entry_size;
    642     uint16_t pht_entry_num;
    643     uint16_t sht_entry_size;
    644     uint16_t sht_entry_num;
    645     uint16_t sht_strtab_index;
    646   };
    647 
    648 
    649   void WriteHeader(Writer* w) {
    650     ASSERT(w->position() == 0);
    651     Writer::Slot<ELFHeader> header = w->CreateSlotHere<ELFHeader>();
    652 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87
    653     const uint8_t ident[16] =
    654         { 0x7f, 'E', 'L', 'F', 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
    655 #elif V8_TARGET_ARCH_X64
    656     const uint8_t ident[16] =
    657         { 0x7f, 'E', 'L', 'F', 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0};
    658 #else
    659 #error Unsupported target architecture.
    660 #endif
    661     memcpy(header->ident, ident, 16);
    662     header->type = 1;
    663 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
    664     header->machine = 3;
    665 #elif V8_TARGET_ARCH_X64
    666     // Processor identification value for x64 is 62 as defined in
    667     //    System V ABI, AMD64 Supplement
    668     //    http://www.x86-64.org/documentation/abi.pdf
    669     header->machine = 62;
    670 #elif V8_TARGET_ARCH_ARM
    671     // Set to EM_ARM, defined as 40, in "ARM ELF File Format" at
    672     // infocenter.arm.com/help/topic/com.arm.doc.dui0101a/DUI0101A_Elf.pdf
    673     header->machine = 40;
    674 #else
    675 #error Unsupported target architecture.
    676 #endif
    677     header->version = 1;
    678     header->entry = 0;
    679     header->pht_offset = 0;
    680     header->sht_offset = sizeof(ELFHeader);  // Section table follows header.
    681     header->flags = 0;
    682     header->header_size = sizeof(ELFHeader);
    683     header->pht_entry_size = 0;
    684     header->pht_entry_num = 0;
    685     header->sht_entry_size = sizeof(ELFSection::Header);
    686     header->sht_entry_num = sections_.length();
    687     header->sht_strtab_index = 1;
    688   }
    689 
    690   void WriteSectionTable(Writer* w) {
    691     // Section headers table immediately follows file header.
    692     ASSERT(w->position() == sizeof(ELFHeader));
    693 
    694     Writer::Slot<ELFSection::Header> headers =
    695         w->CreateSlotsHere<ELFSection::Header>(sections_.length());
    696 
    697     // String table for section table is the first section.
    698     ELFStringTable* strtab = static_cast<ELFStringTable*>(SectionAt(1));
    699     strtab->AttachWriter(w);
    700     for (int i = 0, length = sections_.length();
    701          i < length;
    702          i++) {
    703       sections_[i]->PopulateHeader(headers.at(i), strtab);
    704     }
    705     strtab->DetachWriter();
    706   }
    707 
    708   int SectionHeaderPosition(uint32_t section_index) {
    709     return sizeof(ELFHeader) + sizeof(ELFSection::Header) * section_index;
    710   }
    711 
    712   void WriteSections(Writer* w) {
    713     Writer::Slot<ELFSection::Header> headers =
    714         w->SlotAt<ELFSection::Header>(sizeof(ELFHeader));
    715 
    716     for (int i = 0, length = sections_.length();
    717          i < length;
    718          i++) {
    719       sections_[i]->WriteBody(headers.at(i), w);
    720     }
    721   }
    722 
    723   Zone* zone_;
    724   ZoneList<ELFSection*> sections_;
    725 };
    726 
    727 
    728 class ELFSymbol BASE_EMBEDDED {
    729  public:
    730   enum Type {
    731     TYPE_NOTYPE = 0,
    732     TYPE_OBJECT = 1,
    733     TYPE_FUNC = 2,
    734     TYPE_SECTION = 3,
    735     TYPE_FILE = 4,
    736     TYPE_LOPROC = 13,
    737     TYPE_HIPROC = 15
    738   };
    739 
    740   enum Binding {
    741     BIND_LOCAL = 0,
    742     BIND_GLOBAL = 1,
    743     BIND_WEAK = 2,
    744     BIND_LOPROC = 13,
    745     BIND_HIPROC = 15
    746   };
    747 
    748   ELFSymbol(const char* name,
    749             uintptr_t value,
    750             uintptr_t size,
    751             Binding binding,
    752             Type type,
    753             uint16_t section)
    754       : name(name),
    755         value(value),
    756         size(size),
    757         info((binding << 4) | type),
    758         other(0),
    759         section(section) {
    760   }
    761 
    762   Binding binding() const {
    763     return static_cast<Binding>(info >> 4);
    764   }
    765 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_X87
    766   struct SerializedLayout {
    767     SerializedLayout(uint32_t name,
    768                      uintptr_t value,
    769                      uintptr_t size,
    770                      Binding binding,
    771                      Type type,
    772                      uint16_t section)
    773         : name(name),
    774           value(value),
    775           size(size),
    776           info((binding << 4) | type),
    777           other(0),
    778           section(section) {
    779     }
    780 
    781     uint32_t name;
    782     uintptr_t value;
    783     uintptr_t size;
    784     uint8_t info;
    785     uint8_t other;
    786     uint16_t section;
    787   };
    788 #elif V8_TARGET_ARCH_X64
    789   struct SerializedLayout {
    790     SerializedLayout(uint32_t name,
    791                      uintptr_t value,
    792                      uintptr_t size,
    793                      Binding binding,
    794                      Type type,
    795                      uint16_t section)
    796         : name(name),
    797           info((binding << 4) | type),
    798           other(0),
    799           section(section),
    800           value(value),
    801           size(size) {
    802     }
    803 
    804     uint32_t name;
    805     uint8_t info;
    806     uint8_t other;
    807     uint16_t section;
    808     uintptr_t value;
    809     uintptr_t size;
    810   };
    811 #endif
    812 
    813   void Write(Writer::Slot<SerializedLayout> s, ELFStringTable* t) {
    814     // Convert symbol names from strings to indexes in the string table.
    815     s->name = t->Add(name);
    816     s->value = value;
    817     s->size = size;
    818     s->info = info;
    819     s->other = other;
    820     s->section = section;
    821   }
    822 
    823  private:
    824   const char* name;
    825   uintptr_t value;
    826   uintptr_t size;
    827   uint8_t info;
    828   uint8_t other;
    829   uint16_t section;
    830 };
    831 
    832 
    833 class ELFSymbolTable : public ELFSection {
    834  public:
    835   ELFSymbolTable(const char* name, Zone* zone)
    836       : ELFSection(name, TYPE_SYMTAB, sizeof(uintptr_t)),
    837         locals_(1, zone),
    838         globals_(1, zone) {
    839   }
    840 
    841   virtual void WriteBody(Writer::Slot<Header> header, Writer* w) {
    842     w->Align(header->alignment);
    843     int total_symbols = locals_.length() + globals_.length() + 1;
    844     header->offset = w->position();
    845 
    846     Writer::Slot<ELFSymbol::SerializedLayout> symbols =
    847         w->CreateSlotsHere<ELFSymbol::SerializedLayout>(total_symbols);
    848 
    849     header->size = w->position() - header->offset;
    850 
    851     // String table for this symbol table should follow it in the section table.
    852     ELFStringTable* strtab =
    853         static_cast<ELFStringTable*>(w->debug_object()->SectionAt(index() + 1));
    854     strtab->AttachWriter(w);
    855     symbols.at(0).set(ELFSymbol::SerializedLayout(0,
    856                                                   0,
    857                                                   0,
    858                                                   ELFSymbol::BIND_LOCAL,
    859                                                   ELFSymbol::TYPE_NOTYPE,
    860                                                   0));
    861     WriteSymbolsList(&locals_, symbols.at(1), strtab);
    862     WriteSymbolsList(&globals_, symbols.at(locals_.length() + 1), strtab);
    863     strtab->DetachWriter();
    864   }
    865 
    866   void Add(const ELFSymbol& symbol, Zone* zone) {
    867     if (symbol.binding() == ELFSymbol::BIND_LOCAL) {
    868       locals_.Add(symbol, zone);
    869     } else {
    870       globals_.Add(symbol, zone);
    871     }
    872   }
    873 
    874  protected:
    875   virtual void PopulateHeader(Writer::Slot<Header> header) {
    876     ELFSection::PopulateHeader(header);
    877     // We are assuming that string table will follow symbol table.
    878     header->link = index() + 1;
    879     header->info = locals_.length() + 1;
    880     header->entry_size = sizeof(ELFSymbol::SerializedLayout);
    881   }
    882 
    883  private:
    884   void WriteSymbolsList(const ZoneList<ELFSymbol>* src,
    885                         Writer::Slot<ELFSymbol::SerializedLayout> dst,
    886                         ELFStringTable* strtab) {
    887     for (int i = 0, len = src->length();
    888          i < len;
    889          i++) {
    890       src->at(i).Write(dst.at(i), strtab);
    891     }
    892   }
    893 
    894   ZoneList<ELFSymbol> locals_;
    895   ZoneList<ELFSymbol> globals_;
    896 };
    897 #endif  // defined(__ELF)
    898 
    899 
    900 class CodeDescription BASE_EMBEDDED {
    901  public:
    902 #if V8_TARGET_ARCH_X64
    903   enum StackState {
    904     POST_RBP_PUSH,
    905     POST_RBP_SET,
    906     POST_RBP_POP,
    907     STACK_STATE_MAX
    908   };
    909 #endif
    910 
    911   CodeDescription(const char* name,
    912                   Code* code,
    913                   Handle<Script> script,
    914                   GDBJITLineInfo* lineinfo,
    915                   GDBJITInterface::CodeTag tag,
    916                   CompilationInfo* info)
    917       : name_(name),
    918         code_(code),
    919         script_(script),
    920         lineinfo_(lineinfo),
    921         tag_(tag),
    922         info_(info) {
    923   }
    924 
    925   const char* name() const {
    926     return name_;
    927   }
    928 
    929   GDBJITLineInfo* lineinfo() const {
    930     return lineinfo_;
    931   }
    932 
    933   GDBJITInterface::CodeTag tag() const {
    934     return tag_;
    935   }
    936 
    937   CompilationInfo* info() const {
    938     return info_;
    939   }
    940 
    941   bool IsInfoAvailable() const {
    942     return info_ != NULL;
    943   }
    944 
    945   uintptr_t CodeStart() const {
    946     return reinterpret_cast<uintptr_t>(code_->instruction_start());
    947   }
    948 
    949   uintptr_t CodeEnd() const {
    950     return reinterpret_cast<uintptr_t>(code_->instruction_end());
    951   }
    952 
    953   uintptr_t CodeSize() const {
    954     return CodeEnd() - CodeStart();
    955   }
    956 
    957   bool IsLineInfoAvailable() {
    958     return !script_.is_null() &&
    959         script_->source()->IsString() &&
    960         script_->HasValidSource() &&
    961         script_->name()->IsString() &&
    962         lineinfo_ != NULL;
    963   }
    964 
    965 #if V8_TARGET_ARCH_X64
    966   uintptr_t GetStackStateStartAddress(StackState state) const {
    967     ASSERT(state < STACK_STATE_MAX);
    968     return stack_state_start_addresses_[state];
    969   }
    970 
    971   void SetStackStateStartAddress(StackState state, uintptr_t addr) {
    972     ASSERT(state < STACK_STATE_MAX);
    973     stack_state_start_addresses_[state] = addr;
    974   }
    975 #endif
    976 
    977   SmartArrayPointer<char> GetFilename() {
    978     return String::cast(script_->name())->ToCString();
    979   }
    980 
    981   int GetScriptLineNumber(int pos) {
    982     return script_->GetLineNumber(pos) + 1;
    983   }
    984 
    985 
    986  private:
    987   const char* name_;
    988   Code* code_;
    989   Handle<Script> script_;
    990   GDBJITLineInfo* lineinfo_;
    991   GDBJITInterface::CodeTag tag_;
    992   CompilationInfo* info_;
    993 #if V8_TARGET_ARCH_X64
    994   uintptr_t stack_state_start_addresses_[STACK_STATE_MAX];
    995 #endif
    996 };
    997 
    998 #if defined(__ELF)
    999 static void CreateSymbolsTable(CodeDescription* desc,
   1000                                Zone* zone,
   1001                                ELF* elf,
   1002                                int text_section_index) {
   1003   ELFSymbolTable* symtab = new(zone) ELFSymbolTable(".symtab", zone);
   1004   ELFStringTable* strtab = new(zone) ELFStringTable(".strtab");
   1005 
   1006   // Symbol table should be followed by the linked string table.
   1007   elf->AddSection(symtab);
   1008   elf->AddSection(strtab);
   1009 
   1010   symtab->Add(ELFSymbol("V8 Code",
   1011                         0,
   1012                         0,
   1013                         ELFSymbol::BIND_LOCAL,
   1014                         ELFSymbol::TYPE_FILE,
   1015                         ELFSection::INDEX_ABSOLUTE),
   1016               zone);
   1017 
   1018   symtab->Add(ELFSymbol(desc->name(),
   1019                         0,
   1020                         desc->CodeSize(),
   1021                         ELFSymbol::BIND_GLOBAL,
   1022                         ELFSymbol::TYPE_FUNC,
   1023                         text_section_index),
   1024               zone);
   1025 }
   1026 #endif  // defined(__ELF)
   1027 
   1028 
   1029 class DebugInfoSection : public DebugSection {
   1030  public:
   1031   explicit DebugInfoSection(CodeDescription* desc)
   1032 #if defined(__ELF)
   1033       : ELFSection(".debug_info", TYPE_PROGBITS, 1),
   1034 #else
   1035       : MachOSection("__debug_info",
   1036                      "__DWARF",
   1037                      1,
   1038                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
   1039 #endif
   1040         desc_(desc) { }
   1041 
   1042   // DWARF2 standard
   1043   enum DWARF2LocationOp {
   1044     DW_OP_reg0 = 0x50,
   1045     DW_OP_reg1 = 0x51,
   1046     DW_OP_reg2 = 0x52,
   1047     DW_OP_reg3 = 0x53,
   1048     DW_OP_reg4 = 0x54,
   1049     DW_OP_reg5 = 0x55,
   1050     DW_OP_reg6 = 0x56,
   1051     DW_OP_reg7 = 0x57,
   1052     DW_OP_fbreg = 0x91  // 1 param: SLEB128 offset
   1053   };
   1054 
   1055   enum DWARF2Encoding {
   1056     DW_ATE_ADDRESS = 0x1,
   1057     DW_ATE_SIGNED = 0x5
   1058   };
   1059 
   1060   bool WriteBodyInternal(Writer* w) {
   1061     uintptr_t cu_start = w->position();
   1062     Writer::Slot<uint32_t> size = w->CreateSlotHere<uint32_t>();
   1063     uintptr_t start = w->position();
   1064     w->Write<uint16_t>(2);  // DWARF version.
   1065     w->Write<uint32_t>(0);  // Abbreviation table offset.
   1066     w->Write<uint8_t>(sizeof(intptr_t));
   1067 
   1068     w->WriteULEB128(1);  // Abbreviation code.
   1069     w->WriteString(desc_->GetFilename().get());
   1070     w->Write<intptr_t>(desc_->CodeStart());
   1071     w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
   1072     w->Write<uint32_t>(0);
   1073 
   1074     uint32_t ty_offset = static_cast<uint32_t>(w->position() - cu_start);
   1075     w->WriteULEB128(3);
   1076     w->Write<uint8_t>(kPointerSize);
   1077     w->WriteString("v8value");
   1078 
   1079     if (desc_->IsInfoAvailable()) {
   1080       Scope* scope = desc_->info()->scope();
   1081       w->WriteULEB128(2);
   1082       w->WriteString(desc_->name());
   1083       w->Write<intptr_t>(desc_->CodeStart());
   1084       w->Write<intptr_t>(desc_->CodeStart() + desc_->CodeSize());
   1085       Writer::Slot<uint32_t> fb_block_size = w->CreateSlotHere<uint32_t>();
   1086       uintptr_t fb_block_start = w->position();
   1087 #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87
   1088       w->Write<uint8_t>(DW_OP_reg5);  // The frame pointer's here on ia32
   1089 #elif V8_TARGET_ARCH_X64
   1090       w->Write<uint8_t>(DW_OP_reg6);  // and here on x64.
   1091 #elif V8_TARGET_ARCH_ARM
   1092       UNIMPLEMENTED();
   1093 #elif V8_TARGET_ARCH_MIPS
   1094       UNIMPLEMENTED();
   1095 #else
   1096 #error Unsupported target architecture.
   1097 #endif
   1098       fb_block_size.set(static_cast<uint32_t>(w->position() - fb_block_start));
   1099 
   1100       int params = scope->num_parameters();
   1101       int slots = scope->num_stack_slots();
   1102       int context_slots = scope->ContextLocalCount();
   1103       // The real slot ID is internal_slots + context_slot_id.
   1104       int internal_slots = Context::MIN_CONTEXT_SLOTS;
   1105       int locals = scope->StackLocalCount();
   1106       int current_abbreviation = 4;
   1107 
   1108       for (int param = 0; param < params; ++param) {
   1109         w->WriteULEB128(current_abbreviation++);
   1110         w->WriteString(
   1111             scope->parameter(param)->name()->ToCString(DISALLOW_NULLS).get());
   1112         w->Write<uint32_t>(ty_offset);
   1113         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1114         uintptr_t block_start = w->position();
   1115         w->Write<uint8_t>(DW_OP_fbreg);
   1116         w->WriteSLEB128(
   1117           JavaScriptFrameConstants::kLastParameterOffset +
   1118               kPointerSize * (params - param - 1));
   1119         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1120       }
   1121 
   1122       EmbeddedVector<char, 256> buffer;
   1123       StringBuilder builder(buffer.start(), buffer.length());
   1124 
   1125       for (int slot = 0; slot < slots; ++slot) {
   1126         w->WriteULEB128(current_abbreviation++);
   1127         builder.Reset();
   1128         builder.AddFormatted("slot%d", slot);
   1129         w->WriteString(builder.Finalize());
   1130       }
   1131 
   1132       // See contexts.h for more information.
   1133       ASSERT(Context::MIN_CONTEXT_SLOTS == 4);
   1134       ASSERT(Context::CLOSURE_INDEX == 0);
   1135       ASSERT(Context::PREVIOUS_INDEX == 1);
   1136       ASSERT(Context::EXTENSION_INDEX == 2);
   1137       ASSERT(Context::GLOBAL_OBJECT_INDEX == 3);
   1138       w->WriteULEB128(current_abbreviation++);
   1139       w->WriteString(".closure");
   1140       w->WriteULEB128(current_abbreviation++);
   1141       w->WriteString(".previous");
   1142       w->WriteULEB128(current_abbreviation++);
   1143       w->WriteString(".extension");
   1144       w->WriteULEB128(current_abbreviation++);
   1145       w->WriteString(".global");
   1146 
   1147       for (int context_slot = 0;
   1148            context_slot < context_slots;
   1149            ++context_slot) {
   1150         w->WriteULEB128(current_abbreviation++);
   1151         builder.Reset();
   1152         builder.AddFormatted("context_slot%d", context_slot + internal_slots);
   1153         w->WriteString(builder.Finalize());
   1154       }
   1155 
   1156       ZoneList<Variable*> stack_locals(locals, scope->zone());
   1157       ZoneList<Variable*> context_locals(context_slots, scope->zone());
   1158       scope->CollectStackAndContextLocals(&stack_locals, &context_locals);
   1159       for (int local = 0; local < locals; ++local) {
   1160         w->WriteULEB128(current_abbreviation++);
   1161         w->WriteString(
   1162             stack_locals[local]->name()->ToCString(DISALLOW_NULLS).get());
   1163         w->Write<uint32_t>(ty_offset);
   1164         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1165         uintptr_t block_start = w->position();
   1166         w->Write<uint8_t>(DW_OP_fbreg);
   1167         w->WriteSLEB128(
   1168           JavaScriptFrameConstants::kLocal0Offset -
   1169               kPointerSize * local);
   1170         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1171       }
   1172 
   1173       {
   1174         w->WriteULEB128(current_abbreviation++);
   1175         w->WriteString("__function");
   1176         w->Write<uint32_t>(ty_offset);
   1177         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1178         uintptr_t block_start = w->position();
   1179         w->Write<uint8_t>(DW_OP_fbreg);
   1180         w->WriteSLEB128(JavaScriptFrameConstants::kFunctionOffset);
   1181         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1182       }
   1183 
   1184       {
   1185         w->WriteULEB128(current_abbreviation++);
   1186         w->WriteString("__context");
   1187         w->Write<uint32_t>(ty_offset);
   1188         Writer::Slot<uint32_t> block_size = w->CreateSlotHere<uint32_t>();
   1189         uintptr_t block_start = w->position();
   1190         w->Write<uint8_t>(DW_OP_fbreg);
   1191         w->WriteSLEB128(StandardFrameConstants::kContextOffset);
   1192         block_size.set(static_cast<uint32_t>(w->position() - block_start));
   1193       }
   1194 
   1195       w->WriteULEB128(0);  // Terminate the sub program.
   1196     }
   1197 
   1198     w->WriteULEB128(0);  // Terminate the compile unit.
   1199     size.set(static_cast<uint32_t>(w->position() - start));
   1200     return true;
   1201   }
   1202 
   1203  private:
   1204   CodeDescription* desc_;
   1205 };
   1206 
   1207 
   1208 class DebugAbbrevSection : public DebugSection {
   1209  public:
   1210   explicit DebugAbbrevSection(CodeDescription* desc)
   1211 #ifdef __ELF
   1212       : ELFSection(".debug_abbrev", TYPE_PROGBITS, 1),
   1213 #else
   1214       : MachOSection("__debug_abbrev",
   1215                      "__DWARF",
   1216                      1,
   1217                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
   1218 #endif
   1219         desc_(desc) { }
   1220 
   1221   // DWARF2 standard, figure 14.
   1222   enum DWARF2Tags {
   1223     DW_TAG_FORMAL_PARAMETER = 0x05,
   1224     DW_TAG_POINTER_TYPE = 0xf,
   1225     DW_TAG_COMPILE_UNIT = 0x11,
   1226     DW_TAG_STRUCTURE_TYPE = 0x13,
   1227     DW_TAG_BASE_TYPE = 0x24,
   1228     DW_TAG_SUBPROGRAM = 0x2e,
   1229     DW_TAG_VARIABLE = 0x34
   1230   };
   1231 
   1232   // DWARF2 standard, figure 16.
   1233   enum DWARF2ChildrenDetermination {
   1234     DW_CHILDREN_NO = 0,
   1235     DW_CHILDREN_YES = 1
   1236   };
   1237 
   1238   // DWARF standard, figure 17.
   1239   enum DWARF2Attribute {
   1240     DW_AT_LOCATION = 0x2,
   1241     DW_AT_NAME = 0x3,
   1242     DW_AT_BYTE_SIZE = 0xb,
   1243     DW_AT_STMT_LIST = 0x10,
   1244     DW_AT_LOW_PC = 0x11,
   1245     DW_AT_HIGH_PC = 0x12,
   1246     DW_AT_ENCODING = 0x3e,
   1247     DW_AT_FRAME_BASE = 0x40,
   1248     DW_AT_TYPE = 0x49
   1249   };
   1250 
   1251   // DWARF2 standard, figure 19.
   1252   enum DWARF2AttributeForm {
   1253     DW_FORM_ADDR = 0x1,
   1254     DW_FORM_BLOCK4 = 0x4,
   1255     DW_FORM_STRING = 0x8,
   1256     DW_FORM_DATA4 = 0x6,
   1257     DW_FORM_BLOCK = 0x9,
   1258     DW_FORM_DATA1 = 0xb,
   1259     DW_FORM_FLAG = 0xc,
   1260     DW_FORM_REF4 = 0x13
   1261   };
   1262 
   1263   void WriteVariableAbbreviation(Writer* w,
   1264                                  int abbreviation_code,
   1265                                  bool has_value,
   1266                                  bool is_parameter) {
   1267     w->WriteULEB128(abbreviation_code);
   1268     w->WriteULEB128(is_parameter ? DW_TAG_FORMAL_PARAMETER : DW_TAG_VARIABLE);
   1269     w->Write<uint8_t>(DW_CHILDREN_NO);
   1270     w->WriteULEB128(DW_AT_NAME);
   1271     w->WriteULEB128(DW_FORM_STRING);
   1272     if (has_value) {
   1273       w->WriteULEB128(DW_AT_TYPE);
   1274       w->WriteULEB128(DW_FORM_REF4);
   1275       w->WriteULEB128(DW_AT_LOCATION);
   1276       w->WriteULEB128(DW_FORM_BLOCK4);
   1277     }
   1278     w->WriteULEB128(0);
   1279     w->WriteULEB128(0);
   1280   }
   1281 
   1282   bool WriteBodyInternal(Writer* w) {
   1283     int current_abbreviation = 1;
   1284     bool extra_info = desc_->IsInfoAvailable();
   1285     ASSERT(desc_->IsLineInfoAvailable());
   1286     w->WriteULEB128(current_abbreviation++);
   1287     w->WriteULEB128(DW_TAG_COMPILE_UNIT);
   1288     w->Write<uint8_t>(extra_info ? DW_CHILDREN_YES : DW_CHILDREN_NO);
   1289     w->WriteULEB128(DW_AT_NAME);
   1290     w->WriteULEB128(DW_FORM_STRING);
   1291     w->WriteULEB128(DW_AT_LOW_PC);
   1292     w->WriteULEB128(DW_FORM_ADDR);
   1293     w->WriteULEB128(DW_AT_HIGH_PC);
   1294     w->WriteULEB128(DW_FORM_ADDR);
   1295     w->WriteULEB128(DW_AT_STMT_LIST);
   1296     w->WriteULEB128(DW_FORM_DATA4);
   1297     w->WriteULEB128(0);
   1298     w->WriteULEB128(0);
   1299 
   1300     if (extra_info) {
   1301       Scope* scope = desc_->info()->scope();
   1302       int params = scope->num_parameters();
   1303       int slots = scope->num_stack_slots();
   1304       int context_slots = scope->ContextLocalCount();
   1305       // The real slot ID is internal_slots + context_slot_id.
   1306       int internal_slots = Context::MIN_CONTEXT_SLOTS;
   1307       int locals = scope->StackLocalCount();
   1308       // Total children is params + slots + context_slots + internal_slots +
   1309       // locals + 2 (__function and __context).
   1310 
   1311       // The extra duplication below seems to be necessary to keep
   1312       // gdb from getting upset on OSX.
   1313       w->WriteULEB128(current_abbreviation++);  // Abbreviation code.
   1314       w->WriteULEB128(DW_TAG_SUBPROGRAM);
   1315       w->Write<uint8_t>(DW_CHILDREN_YES);
   1316       w->WriteULEB128(DW_AT_NAME);
   1317       w->WriteULEB128(DW_FORM_STRING);
   1318       w->WriteULEB128(DW_AT_LOW_PC);
   1319       w->WriteULEB128(DW_FORM_ADDR);
   1320       w->WriteULEB128(DW_AT_HIGH_PC);
   1321       w->WriteULEB128(DW_FORM_ADDR);
   1322       w->WriteULEB128(DW_AT_FRAME_BASE);
   1323       w->WriteULEB128(DW_FORM_BLOCK4);
   1324       w->WriteULEB128(0);
   1325       w->WriteULEB128(0);
   1326 
   1327       w->WriteULEB128(current_abbreviation++);
   1328       w->WriteULEB128(DW_TAG_STRUCTURE_TYPE);
   1329       w->Write<uint8_t>(DW_CHILDREN_NO);
   1330       w->WriteULEB128(DW_AT_BYTE_SIZE);
   1331       w->WriteULEB128(DW_FORM_DATA1);
   1332       w->WriteULEB128(DW_AT_NAME);
   1333       w->WriteULEB128(DW_FORM_STRING);
   1334       w->WriteULEB128(0);
   1335       w->WriteULEB128(0);
   1336 
   1337       for (int param = 0; param < params; ++param) {
   1338         WriteVariableAbbreviation(w, current_abbreviation++, true, true);
   1339       }
   1340 
   1341       for (int slot = 0; slot < slots; ++slot) {
   1342         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
   1343       }
   1344 
   1345       for (int internal_slot = 0;
   1346            internal_slot < internal_slots;
   1347            ++internal_slot) {
   1348         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
   1349       }
   1350 
   1351       for (int context_slot = 0;
   1352            context_slot < context_slots;
   1353            ++context_slot) {
   1354         WriteVariableAbbreviation(w, current_abbreviation++, false, false);
   1355       }
   1356 
   1357       for (int local = 0; local < locals; ++local) {
   1358         WriteVariableAbbreviation(w, current_abbreviation++, true, false);
   1359       }
   1360 
   1361       // The function.
   1362       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
   1363 
   1364       // The context.
   1365       WriteVariableAbbreviation(w, current_abbreviation++, true, false);
   1366 
   1367       w->WriteULEB128(0);  // Terminate the sibling list.
   1368     }
   1369 
   1370     w->WriteULEB128(0);  // Terminate the table.
   1371     return true;
   1372   }
   1373 
   1374  private:
   1375   CodeDescription* desc_;
   1376 };
   1377 
   1378 
   1379 class DebugLineSection : public DebugSection {
   1380  public:
   1381   explicit DebugLineSection(CodeDescription* desc)
   1382 #ifdef __ELF
   1383       : ELFSection(".debug_line", TYPE_PROGBITS, 1),
   1384 #else
   1385       : MachOSection("__debug_line",
   1386                      "__DWARF",
   1387                      1,
   1388                      MachOSection::S_REGULAR | MachOSection::S_ATTR_DEBUG),
   1389 #endif
   1390         desc_(desc) { }
   1391 
   1392   // DWARF2 standard, figure 34.
   1393   enum DWARF2Opcodes {
   1394     DW_LNS_COPY = 1,
   1395     DW_LNS_ADVANCE_PC = 2,
   1396     DW_LNS_ADVANCE_LINE = 3,
   1397     DW_LNS_SET_FILE = 4,
   1398     DW_LNS_SET_COLUMN = 5,
   1399     DW_LNS_NEGATE_STMT = 6
   1400   };
   1401 
   1402   // DWARF2 standard, figure 35.
   1403   enum DWARF2ExtendedOpcode {
   1404     DW_LNE_END_SEQUENCE = 1,
   1405     DW_LNE_SET_ADDRESS = 2,
   1406     DW_LNE_DEFINE_FILE = 3
   1407   };
   1408 
   1409   bool WriteBodyInternal(Writer* w) {
   1410     // Write prologue.
   1411     Writer::Slot<uint32_t> total_length = w->CreateSlotHere<uint32_t>();
   1412     uintptr_t start = w->position();
   1413 
   1414     // Used for special opcodes
   1415     const int8_t line_base = 1;
   1416     const uint8_t line_range = 7;
   1417     const int8_t max_line_incr = (line_base + line_range - 1);
   1418     const uint8_t opcode_base = DW_LNS_NEGATE_STMT + 1;
   1419 
   1420     w->Write<uint16_t>(2);  // Field version.
   1421     Writer::Slot<uint32_t> prologue_length = w->CreateSlotHere<uint32_t>();
   1422     uintptr_t prologue_start = w->position();
   1423     w->Write<uint8_t>(1);  // Field minimum_instruction_length.
   1424     w->Write<uint8_t>(1);  // Field default_is_stmt.
   1425     w->Write<int8_t>(line_base);  // Field line_base.
   1426     w->Write<uint8_t>(line_range);  // Field line_range.
   1427     w->Write<uint8_t>(opcode_base);  // Field opcode_base.
   1428     w->Write<uint8_t>(0);  // DW_LNS_COPY operands count.
   1429     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_PC operands count.
   1430     w->Write<uint8_t>(1);  // DW_LNS_ADVANCE_LINE operands count.
   1431     w->Write<uint8_t>(1);  // DW_LNS_SET_FILE operands count.
   1432     w->Write<uint8_t>(1);  // DW_LNS_SET_COLUMN operands count.
   1433     w->Write<uint8_t>(0);  // DW_LNS_NEGATE_STMT operands count.
   1434     w->Write<uint8_t>(0);  // Empty include_directories sequence.
   1435     w->WriteString(desc_->GetFilename().get());  // File name.
   1436     w->WriteULEB128(0);  // Current directory.
   1437     w->WriteULEB128(0);  // Unknown modification time.
   1438     w->WriteULEB128(0);  // Unknown file size.
   1439     w->Write<uint8_t>(0);
   1440     prologue_length.set(static_cast<uint32_t>(w->position() - prologue_start));
   1441 
   1442     WriteExtendedOpcode(w, DW_LNE_SET_ADDRESS, sizeof(intptr_t));
   1443     w->Write<intptr_t>(desc_->CodeStart());
   1444     w->Write<uint8_t>(DW_LNS_COPY);
   1445 
   1446     intptr_t pc = 0;
   1447     intptr_t line = 1;
   1448     bool is_statement = true;
   1449 
   1450     List<GDBJITLineInfo::PCInfo>* pc_info = desc_->lineinfo()->pc_info();
   1451     pc_info->Sort(&ComparePCInfo);
   1452 
   1453     int pc_info_length = pc_info->length();
   1454     for (int i = 0; i < pc_info_length; i++) {
   1455       GDBJITLineInfo::PCInfo* info = &pc_info->at(i);
   1456       ASSERT(info->pc_ >= pc);
   1457 
   1458       // Reduce bloating in the debug line table by removing duplicate line
   1459       // entries (per DWARF2 standard).
   1460       intptr_t  new_line = desc_->GetScriptLineNumber(info->pos_);
   1461       if (new_line == line) {
   1462         continue;
   1463       }
   1464 
   1465       // Mark statement boundaries.  For a better debugging experience, mark
   1466       // the last pc address in the function as a statement (e.g. "}"), so that
   1467       // a user can see the result of the last line executed in the function,
   1468       // should control reach the end.
   1469       if ((i+1) == pc_info_length) {
   1470         if (!is_statement) {
   1471           w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
   1472         }
   1473       } else if (is_statement != info->is_statement_) {
   1474         w->Write<uint8_t>(DW_LNS_NEGATE_STMT);
   1475         is_statement = !is_statement;
   1476       }
   1477 
   1478       // Generate special opcodes, if possible.  This results in more compact
   1479       // debug line tables.  See the DWARF 2.0 standard to learn more about
   1480       // special opcodes.
   1481       uintptr_t pc_diff = info->pc_ - pc;
   1482       intptr_t line_diff = new_line - line;
   1483 
   1484       // Compute special opcode (see DWARF 2.0 standard)
   1485       intptr_t special_opcode = (line_diff - line_base) +
   1486                                 (line_range * pc_diff) + opcode_base;
   1487 
   1488       // If special_opcode is less than or equal to 255, it can be used as a
   1489       // special opcode.  If line_diff is larger than the max line increment
   1490       // allowed for a special opcode, or if line_diff is less than the minimum
   1491       // line that can be added to the line register (i.e. line_base), then
   1492       // special_opcode can't be used.
   1493       if ((special_opcode >= opcode_base) && (special_opcode <= 255) &&
   1494           (line_diff <= max_line_incr) && (line_diff >= line_base)) {
   1495         w->Write<uint8_t>(special_opcode);
   1496       } else {
   1497         w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
   1498         w->WriteSLEB128(pc_diff);
   1499         w->Write<uint8_t>(DW_LNS_ADVANCE_LINE);
   1500         w->WriteSLEB128(line_diff);
   1501         w->Write<uint8_t>(DW_LNS_COPY);
   1502       }
   1503 
   1504       // Increment the pc and line operands.
   1505       pc += pc_diff;
   1506       line += line_diff;
   1507     }
   1508     // Advance the pc to the end of the routine, since the end sequence opcode
   1509     // requires this.
   1510     w->Write<uint8_t>(DW_LNS_ADVANCE_PC);
   1511     w->WriteSLEB128(desc_->CodeSize() - pc);
   1512     WriteExtendedOpcode(w, DW_LNE_END_SEQUENCE, 0);
   1513     total_length.set(static_cast<uint32_t>(w->position() - start));
   1514     return true;
   1515   }
   1516 
   1517  private:
   1518   void WriteExtendedOpcode(Writer* w,
   1519                            DWARF2ExtendedOpcode op,
   1520                            size_t operands_size) {
   1521     w->Write<uint8_t>(0);
   1522     w->WriteULEB128(operands_size + 1);
   1523     w->Write<uint8_t>(op);
   1524   }
   1525 
   1526   static int ComparePCInfo(const GDBJITLineInfo::PCInfo* a,
   1527                            const GDBJITLineInfo::PCInfo* b) {
   1528     if (a->pc_ == b->pc_) {
   1529       if (a->is_statement_ != b->is_statement_) {
   1530         return b->is_statement_ ? +1 : -1;
   1531       }
   1532       return 0;
   1533     } else if (a->pc_ > b->pc_) {
   1534       return +1;
   1535     } else {
   1536       return -1;
   1537     }
   1538   }
   1539 
   1540   CodeDescription* desc_;
   1541 };
   1542 
   1543 
   1544 #if V8_TARGET_ARCH_X64
   1545 
   1546 class UnwindInfoSection : public DebugSection {
   1547  public:
   1548   explicit UnwindInfoSection(CodeDescription* desc);
   1549   virtual bool WriteBodyInternal(Writer* w);
   1550 
   1551   int WriteCIE(Writer* w);
   1552   void WriteFDE(Writer* w, int);
   1553 
   1554   void WriteFDEStateOnEntry(Writer* w);
   1555   void WriteFDEStateAfterRBPPush(Writer* w);
   1556   void WriteFDEStateAfterRBPSet(Writer* w);
   1557   void WriteFDEStateAfterRBPPop(Writer* w);
   1558 
   1559   void WriteLength(Writer* w,
   1560                    Writer::Slot<uint32_t>* length_slot,
   1561                    int initial_position);
   1562 
   1563  private:
   1564   CodeDescription* desc_;
   1565 
   1566   // DWARF3 Specification, Table 7.23
   1567   enum CFIInstructions {
   1568     DW_CFA_ADVANCE_LOC = 0x40,
   1569     DW_CFA_OFFSET = 0x80,
   1570     DW_CFA_RESTORE = 0xC0,
   1571     DW_CFA_NOP = 0x00,
   1572     DW_CFA_SET_LOC = 0x01,
   1573     DW_CFA_ADVANCE_LOC1 = 0x02,
   1574     DW_CFA_ADVANCE_LOC2 = 0x03,
   1575     DW_CFA_ADVANCE_LOC4 = 0x04,
   1576     DW_CFA_OFFSET_EXTENDED = 0x05,
   1577     DW_CFA_RESTORE_EXTENDED = 0x06,
   1578     DW_CFA_UNDEFINED = 0x07,
   1579     DW_CFA_SAME_VALUE = 0x08,
   1580     DW_CFA_REGISTER = 0x09,
   1581     DW_CFA_REMEMBER_STATE = 0x0A,
   1582     DW_CFA_RESTORE_STATE = 0x0B,
   1583     DW_CFA_DEF_CFA = 0x0C,
   1584     DW_CFA_DEF_CFA_REGISTER = 0x0D,
   1585     DW_CFA_DEF_CFA_OFFSET = 0x0E,
   1586 
   1587     DW_CFA_DEF_CFA_EXPRESSION = 0x0F,
   1588     DW_CFA_EXPRESSION = 0x10,
   1589     DW_CFA_OFFSET_EXTENDED_SF = 0x11,
   1590     DW_CFA_DEF_CFA_SF = 0x12,
   1591     DW_CFA_DEF_CFA_OFFSET_SF = 0x13,
   1592     DW_CFA_VAL_OFFSET = 0x14,
   1593     DW_CFA_VAL_OFFSET_SF = 0x15,
   1594     DW_CFA_VAL_EXPRESSION = 0x16
   1595   };
   1596 
   1597   // System V ABI, AMD64 Supplement, Version 0.99.5, Figure 3.36
   1598   enum RegisterMapping {
   1599     // Only the relevant ones have been added to reduce clutter.
   1600     AMD64_RBP = 6,
   1601     AMD64_RSP = 7,
   1602     AMD64_RA = 16
   1603   };
   1604 
   1605   enum CFIConstants {
   1606     CIE_ID = 0,
   1607     CIE_VERSION = 1,
   1608     CODE_ALIGN_FACTOR = 1,
   1609     DATA_ALIGN_FACTOR = 1,
   1610     RETURN_ADDRESS_REGISTER = AMD64_RA
   1611   };
   1612 };
   1613 
   1614 
   1615 void UnwindInfoSection::WriteLength(Writer* w,
   1616                                     Writer::Slot<uint32_t>* length_slot,
   1617                                     int initial_position) {
   1618   uint32_t align = (w->position() - initial_position) % kPointerSize;
   1619 
   1620   if (align != 0) {
   1621     for (uint32_t i = 0; i < (kPointerSize - align); i++) {
   1622       w->Write<uint8_t>(DW_CFA_NOP);
   1623     }
   1624   }
   1625 
   1626   ASSERT((w->position() - initial_position) % kPointerSize == 0);
   1627   length_slot->set(w->position() - initial_position);
   1628 }
   1629 
   1630 
   1631 UnwindInfoSection::UnwindInfoSection(CodeDescription* desc)
   1632 #ifdef __ELF
   1633     : ELFSection(".eh_frame", TYPE_X86_64_UNWIND, 1),
   1634 #else
   1635     : MachOSection("__eh_frame", "__TEXT", sizeof(uintptr_t),
   1636                    MachOSection::S_REGULAR),
   1637 #endif
   1638       desc_(desc) { }
   1639 
   1640 int UnwindInfoSection::WriteCIE(Writer* w) {
   1641   Writer::Slot<uint32_t> cie_length_slot = w->CreateSlotHere<uint32_t>();
   1642   uint32_t cie_position = w->position();
   1643 
   1644   // Write out the CIE header. Currently no 'common instructions' are
   1645   // emitted onto the CIE; every FDE has its own set of instructions.
   1646 
   1647   w->Write<uint32_t>(CIE_ID);
   1648   w->Write<uint8_t>(CIE_VERSION);
   1649   w->Write<uint8_t>(0);  // Null augmentation string.
   1650   w->WriteSLEB128(CODE_ALIGN_FACTOR);
   1651   w->WriteSLEB128(DATA_ALIGN_FACTOR);
   1652   w->Write<uint8_t>(RETURN_ADDRESS_REGISTER);
   1653 
   1654   WriteLength(w, &cie_length_slot, cie_position);
   1655 
   1656   return cie_position;
   1657 }
   1658 
   1659 
   1660 void UnwindInfoSection::WriteFDE(Writer* w, int cie_position) {
   1661   // The only FDE for this function. The CFA is the current RBP.
   1662   Writer::Slot<uint32_t> fde_length_slot = w->CreateSlotHere<uint32_t>();
   1663   int fde_position = w->position();
   1664   w->Write<int32_t>(fde_position - cie_position + 4);
   1665 
   1666   w->Write<uintptr_t>(desc_->CodeStart());
   1667   w->Write<uintptr_t>(desc_->CodeSize());
   1668 
   1669   WriteFDEStateOnEntry(w);
   1670   WriteFDEStateAfterRBPPush(w);
   1671   WriteFDEStateAfterRBPSet(w);
   1672   WriteFDEStateAfterRBPPop(w);
   1673 
   1674   WriteLength(w, &fde_length_slot, fde_position);
   1675 }
   1676 
   1677 
   1678 void UnwindInfoSection::WriteFDEStateOnEntry(Writer* w) {
   1679   // The first state, just after the control has been transferred to the the
   1680   // function.
   1681 
   1682   // RBP for this function will be the value of RSP after pushing the RBP
   1683   // for the previous function. The previous RBP has not been pushed yet.
   1684   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
   1685   w->WriteULEB128(AMD64_RSP);
   1686   w->WriteSLEB128(-kPointerSize);
   1687 
   1688   // The RA is stored at location CFA + kCallerPCOffset. This is an invariant,
   1689   // and hence omitted from the next states.
   1690   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
   1691   w->WriteULEB128(AMD64_RA);
   1692   w->WriteSLEB128(StandardFrameConstants::kCallerPCOffset);
   1693 
   1694   // The RBP of the previous function is still in RBP.
   1695   w->Write<uint8_t>(DW_CFA_SAME_VALUE);
   1696   w->WriteULEB128(AMD64_RBP);
   1697 
   1698   // Last location described by this entry.
   1699   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1700   w->Write<uint64_t>(
   1701       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_PUSH));
   1702 }
   1703 
   1704 
   1705 void UnwindInfoSection::WriteFDEStateAfterRBPPush(Writer* w) {
   1706   // The second state, just after RBP has been pushed.
   1707 
   1708   // RBP / CFA for this function is now the current RSP, so just set the
   1709   // offset from the previous rule (from -8) to 0.
   1710   w->Write<uint8_t>(DW_CFA_DEF_CFA_OFFSET);
   1711   w->WriteULEB128(0);
   1712 
   1713   // The previous RBP is stored at CFA + kCallerFPOffset. This is an invariant
   1714   // in this and the next state, and hence omitted in the next state.
   1715   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
   1716   w->WriteULEB128(AMD64_RBP);
   1717   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
   1718 
   1719   // Last location described by this entry.
   1720   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1721   w->Write<uint64_t>(
   1722       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_SET));
   1723 }
   1724 
   1725 
   1726 void UnwindInfoSection::WriteFDEStateAfterRBPSet(Writer* w) {
   1727   // The third state, after the RBP has been set.
   1728 
   1729   // The CFA can now directly be set to RBP.
   1730   w->Write<uint8_t>(DW_CFA_DEF_CFA);
   1731   w->WriteULEB128(AMD64_RBP);
   1732   w->WriteULEB128(0);
   1733 
   1734   // Last location described by this entry.
   1735   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1736   w->Write<uint64_t>(
   1737       desc_->GetStackStateStartAddress(CodeDescription::POST_RBP_POP));
   1738 }
   1739 
   1740 
   1741 void UnwindInfoSection::WriteFDEStateAfterRBPPop(Writer* w) {
   1742   // The fourth (final) state. The RBP has been popped (just before issuing a
   1743   // return).
   1744 
   1745   // The CFA can is now calculated in the same way as in the first state.
   1746   w->Write<uint8_t>(DW_CFA_DEF_CFA_SF);
   1747   w->WriteULEB128(AMD64_RSP);
   1748   w->WriteSLEB128(-kPointerSize);
   1749 
   1750   // The RBP
   1751   w->Write<uint8_t>(DW_CFA_OFFSET_EXTENDED);
   1752   w->WriteULEB128(AMD64_RBP);
   1753   w->WriteSLEB128(StandardFrameConstants::kCallerFPOffset);
   1754 
   1755   // Last location described by this entry.
   1756   w->Write<uint8_t>(DW_CFA_SET_LOC);
   1757   w->Write<uint64_t>(desc_->CodeEnd());
   1758 }
   1759 
   1760 
   1761 bool UnwindInfoSection::WriteBodyInternal(Writer* w) {
   1762   uint32_t cie_position = WriteCIE(w);
   1763   WriteFDE(w, cie_position);
   1764   return true;
   1765 }
   1766 
   1767 
   1768 #endif  // V8_TARGET_ARCH_X64
   1769 
   1770 static void CreateDWARFSections(CodeDescription* desc,
   1771                                 Zone* zone,
   1772                                 DebugObject* obj) {
   1773   if (desc->IsLineInfoAvailable()) {
   1774     obj->AddSection(new(zone) DebugInfoSection(desc));
   1775     obj->AddSection(new(zone) DebugAbbrevSection(desc));
   1776     obj->AddSection(new(zone) DebugLineSection(desc));
   1777   }
   1778 #if V8_TARGET_ARCH_X64
   1779   obj->AddSection(new(zone) UnwindInfoSection(desc));
   1780 #endif
   1781 }
   1782 
   1783 
   1784 // -------------------------------------------------------------------
   1785 // Binary GDB JIT Interface as described in
   1786 //   http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html
   1787 extern "C" {
   1788   typedef enum {
   1789     JIT_NOACTION = 0,
   1790     JIT_REGISTER_FN,
   1791     JIT_UNREGISTER_FN
   1792   } JITAction;
   1793 
   1794   struct JITCodeEntry {
   1795     JITCodeEntry* next_;
   1796     JITCodeEntry* prev_;
   1797     Address symfile_addr_;
   1798     uint64_t symfile_size_;
   1799   };
   1800 
   1801   struct JITDescriptor {
   1802     uint32_t version_;
   1803     uint32_t action_flag_;
   1804     JITCodeEntry* relevant_entry_;
   1805     JITCodeEntry* first_entry_;
   1806   };
   1807 
   1808   // GDB will place breakpoint into this function.
   1809   // To prevent GCC from inlining or removing it we place noinline attribute
   1810   // and inline assembler statement inside.
   1811   void __attribute__((noinline)) __jit_debug_register_code() {
   1812     __asm__("");
   1813   }
   1814 
   1815   // GDB will inspect contents of this descriptor.
   1816   // Static initialization is necessary to prevent GDB from seeing
   1817   // uninitialized descriptor.
   1818   JITDescriptor __jit_debug_descriptor = { 1, 0, 0, 0 };
   1819 
   1820 #ifdef OBJECT_PRINT
   1821   void __gdb_print_v8_object(Object* object) {
   1822     object->Print();
   1823     PrintF(stdout, "\n");
   1824   }
   1825 #endif
   1826 }
   1827 
   1828 
   1829 static JITCodeEntry* CreateCodeEntry(Address symfile_addr,
   1830                                      uintptr_t symfile_size) {
   1831   JITCodeEntry* entry = static_cast<JITCodeEntry*>(
   1832       malloc(sizeof(JITCodeEntry) + symfile_size));
   1833 
   1834   entry->symfile_addr_ = reinterpret_cast<Address>(entry + 1);
   1835   entry->symfile_size_ = symfile_size;
   1836   MemCopy(entry->symfile_addr_, symfile_addr, symfile_size);
   1837 
   1838   entry->prev_ = entry->next_ = NULL;
   1839 
   1840   return entry;
   1841 }
   1842 
   1843 
   1844 static void DestroyCodeEntry(JITCodeEntry* entry) {
   1845   free(entry);
   1846 }
   1847 
   1848 
   1849 static void RegisterCodeEntry(JITCodeEntry* entry,
   1850                               bool dump_if_enabled,
   1851                               const char* name_hint) {
   1852 #if defined(DEBUG) && !V8_OS_WIN
   1853   static int file_num = 0;
   1854   if (FLAG_gdbjit_dump && dump_if_enabled) {
   1855     static const int kMaxFileNameSize = 64;
   1856     static const char* kElfFilePrefix = "/tmp/elfdump";
   1857     static const char* kObjFileExt = ".o";
   1858     char file_name[64];
   1859 
   1860     SNPrintF(Vector<char>(file_name, kMaxFileNameSize),
   1861              "%s%s%d%s",
   1862              kElfFilePrefix,
   1863              (name_hint != NULL) ? name_hint : "",
   1864              file_num++,
   1865              kObjFileExt);
   1866     WriteBytes(file_name, entry->symfile_addr_, entry->symfile_size_);
   1867   }
   1868 #endif
   1869 
   1870   entry->next_ = __jit_debug_descriptor.first_entry_;
   1871   if (entry->next_ != NULL) entry->next_->prev_ = entry;
   1872   __jit_debug_descriptor.first_entry_ =
   1873       __jit_debug_descriptor.relevant_entry_ = entry;
   1874 
   1875   __jit_debug_descriptor.action_flag_ = JIT_REGISTER_FN;
   1876   __jit_debug_register_code();
   1877 }
   1878 
   1879 
   1880 static void UnregisterCodeEntry(JITCodeEntry* entry) {
   1881   if (entry->prev_ != NULL) {
   1882     entry->prev_->next_ = entry->next_;
   1883   } else {
   1884     __jit_debug_descriptor.first_entry_ = entry->next_;
   1885   }
   1886 
   1887   if (entry->next_ != NULL) {
   1888     entry->next_->prev_ = entry->prev_;
   1889   }
   1890 
   1891   __jit_debug_descriptor.relevant_entry_ = entry;
   1892   __jit_debug_descriptor.action_flag_ = JIT_UNREGISTER_FN;
   1893   __jit_debug_register_code();
   1894 }
   1895 
   1896 
   1897 static JITCodeEntry* CreateELFObject(CodeDescription* desc, Isolate* isolate) {
   1898 #ifdef __MACH_O
   1899   Zone zone(isolate);
   1900   MachO mach_o(&zone);
   1901   Writer w(&mach_o);
   1902 
   1903   mach_o.AddSection(new(&zone) MachOTextSection(kCodeAlignment,
   1904                                                 desc->CodeStart(),
   1905                                                 desc->CodeSize()));
   1906 
   1907   CreateDWARFSections(desc, &zone, &mach_o);
   1908 
   1909   mach_o.Write(&w, desc->CodeStart(), desc->CodeSize());
   1910 #else
   1911   Zone zone(isolate);
   1912   ELF elf(&zone);
   1913   Writer w(&elf);
   1914 
   1915   int text_section_index = elf.AddSection(
   1916       new(&zone) FullHeaderELFSection(
   1917           ".text",
   1918           ELFSection::TYPE_NOBITS,
   1919           kCodeAlignment,
   1920           desc->CodeStart(),
   1921           0,
   1922           desc->CodeSize(),
   1923           ELFSection::FLAG_ALLOC | ELFSection::FLAG_EXEC));
   1924 
   1925   CreateSymbolsTable(desc, &zone, &elf, text_section_index);
   1926 
   1927   CreateDWARFSections(desc, &zone, &elf);
   1928 
   1929   elf.Write(&w);
   1930 #endif
   1931 
   1932   return CreateCodeEntry(w.buffer(), w.position());
   1933 }
   1934 
   1935 
   1936 static bool SameCodeObjects(void* key1, void* key2) {
   1937   return key1 == key2;
   1938 }
   1939 
   1940 
   1941 static HashMap* GetEntries() {
   1942   static HashMap* entries = NULL;
   1943   if (entries == NULL) {
   1944     entries = new HashMap(&SameCodeObjects);
   1945   }
   1946   return entries;
   1947 }
   1948 
   1949 
   1950 static uint32_t HashForCodeObject(Code* code) {
   1951   static const uintptr_t kGoldenRatio = 2654435761u;
   1952   uintptr_t hash = reinterpret_cast<uintptr_t>(code->address());
   1953   return static_cast<uint32_t>((hash >> kCodeAlignmentBits) * kGoldenRatio);
   1954 }
   1955 
   1956 
   1957 static const intptr_t kLineInfoTag = 0x1;
   1958 
   1959 
   1960 static bool IsLineInfoTagged(void* ptr) {
   1961   return 0 != (reinterpret_cast<intptr_t>(ptr) & kLineInfoTag);
   1962 }
   1963 
   1964 
   1965 static void* TagLineInfo(GDBJITLineInfo* ptr) {
   1966   return reinterpret_cast<void*>(
   1967       reinterpret_cast<intptr_t>(ptr) | kLineInfoTag);
   1968 }
   1969 
   1970 
   1971 static GDBJITLineInfo* UntagLineInfo(void* ptr) {
   1972   return reinterpret_cast<GDBJITLineInfo*>(
   1973       reinterpret_cast<intptr_t>(ptr) & ~kLineInfoTag);
   1974 }
   1975 
   1976 
   1977 void GDBJITInterface::AddCode(Handle<Name> name,
   1978                               Handle<Script> script,
   1979                               Handle<Code> code,
   1980                               CompilationInfo* info) {
   1981   if (!FLAG_gdbjit) return;
   1982 
   1983   Script::InitLineEnds(script);
   1984 
   1985   if (!name.is_null() && name->IsString()) {
   1986     SmartArrayPointer<char> name_cstring =
   1987         Handle<String>::cast(name)->ToCString(DISALLOW_NULLS);
   1988     AddCode(name_cstring.get(), *code, GDBJITInterface::FUNCTION, *script,
   1989             info);
   1990   } else {
   1991     AddCode("", *code, GDBJITInterface::FUNCTION, *script, info);
   1992   }
   1993 }
   1994 
   1995 
   1996 static void AddUnwindInfo(CodeDescription* desc) {
   1997 #if V8_TARGET_ARCH_X64
   1998   if (desc->tag() == GDBJITInterface::FUNCTION) {
   1999     // To avoid propagating unwinding information through
   2000     // compilation pipeline we use an approximation.
   2001     // For most use cases this should not affect usability.
   2002     static const int kFramePointerPushOffset = 1;
   2003     static const int kFramePointerSetOffset = 4;
   2004     static const int kFramePointerPopOffset = -3;
   2005 
   2006     uintptr_t frame_pointer_push_address =
   2007         desc->CodeStart() + kFramePointerPushOffset;
   2008 
   2009     uintptr_t frame_pointer_set_address =
   2010         desc->CodeStart() + kFramePointerSetOffset;
   2011 
   2012     uintptr_t frame_pointer_pop_address =
   2013         desc->CodeEnd() + kFramePointerPopOffset;
   2014 
   2015     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
   2016                                     frame_pointer_push_address);
   2017     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
   2018                                     frame_pointer_set_address);
   2019     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
   2020                                     frame_pointer_pop_address);
   2021   } else {
   2022     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_PUSH,
   2023                                     desc->CodeStart());
   2024     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_SET,
   2025                                     desc->CodeStart());
   2026     desc->SetStackStateStartAddress(CodeDescription::POST_RBP_POP,
   2027                                     desc->CodeEnd());
   2028   }
   2029 #endif  // V8_TARGET_ARCH_X64
   2030 }
   2031 
   2032 
   2033 static LazyMutex mutex = LAZY_MUTEX_INITIALIZER;
   2034 
   2035 
   2036 void GDBJITInterface::AddCode(const char* name,
   2037                               Code* code,
   2038                               GDBJITInterface::CodeTag tag,
   2039                               Script* script,
   2040                               CompilationInfo* info) {
   2041   if (!FLAG_gdbjit) return;
   2042 
   2043   LockGuard<Mutex> lock_guard(mutex.Pointer());
   2044   DisallowHeapAllocation no_gc;
   2045 
   2046   HashMap::Entry* e = GetEntries()->Lookup(code, HashForCodeObject(code), true);
   2047   if (e->value != NULL && !IsLineInfoTagged(e->value)) return;
   2048 
   2049   GDBJITLineInfo* lineinfo = UntagLineInfo(e->value);
   2050   CodeDescription code_desc(name,
   2051                             code,
   2052                             script != NULL ? Handle<Script>(script)
   2053                                            : Handle<Script>(),
   2054                             lineinfo,
   2055                             tag,
   2056                             info);
   2057 
   2058   if (!FLAG_gdbjit_full && !code_desc.IsLineInfoAvailable()) {
   2059     delete lineinfo;
   2060     GetEntries()->Remove(code, HashForCodeObject(code));
   2061     return;
   2062   }
   2063 
   2064   AddUnwindInfo(&code_desc);
   2065   Isolate* isolate = code->GetIsolate();
   2066   JITCodeEntry* entry = CreateELFObject(&code_desc, isolate);
   2067   ASSERT(!IsLineInfoTagged(entry));
   2068 
   2069   delete lineinfo;
   2070   e->value = entry;
   2071 
   2072   const char* name_hint = NULL;
   2073   bool should_dump = false;
   2074   if (FLAG_gdbjit_dump) {
   2075     if (strlen(FLAG_gdbjit_dump_filter) == 0) {
   2076       name_hint = name;
   2077       should_dump = true;
   2078     } else if (name != NULL) {
   2079       name_hint = strstr(name, FLAG_gdbjit_dump_filter);
   2080       should_dump = (name_hint != NULL);
   2081     }
   2082   }
   2083   RegisterCodeEntry(entry, should_dump, name_hint);
   2084 }
   2085 
   2086 
   2087 void GDBJITInterface::AddCode(GDBJITInterface::CodeTag tag,
   2088                               const char* name,
   2089                               Code* code) {
   2090   if (!FLAG_gdbjit) return;
   2091 
   2092   EmbeddedVector<char, 256> buffer;
   2093   StringBuilder builder(buffer.start(), buffer.length());
   2094 
   2095   builder.AddString(Tag2String(tag));
   2096   if ((name != NULL) && (*name != '\0')) {
   2097     builder.AddString(": ");
   2098     builder.AddString(name);
   2099   } else {
   2100     builder.AddFormatted(": code object %p", static_cast<void*>(code));
   2101   }
   2102 
   2103   AddCode(builder.Finalize(), code, tag, NULL, NULL);
   2104 }
   2105 
   2106 
   2107 void GDBJITInterface::AddCode(GDBJITInterface::CodeTag tag,
   2108                               Name* name,
   2109                               Code* code) {
   2110   if (!FLAG_gdbjit) return;
   2111   if (name != NULL && name->IsString()) {
   2112     AddCode(tag, String::cast(name)->ToCString(DISALLOW_NULLS).get(), code);
   2113   } else {
   2114     AddCode(tag, "", code);
   2115   }
   2116 }
   2117 
   2118 
   2119 void GDBJITInterface::AddCode(GDBJITInterface::CodeTag tag, Code* code) {
   2120   if (!FLAG_gdbjit) return;
   2121 
   2122   AddCode(tag, "", code);
   2123 }
   2124 
   2125 
   2126 void GDBJITInterface::RemoveCode(Code* code) {
   2127   if (!FLAG_gdbjit) return;
   2128 
   2129   LockGuard<Mutex> lock_guard(mutex.Pointer());
   2130   HashMap::Entry* e = GetEntries()->Lookup(code,
   2131                                            HashForCodeObject(code),
   2132                                            false);
   2133   if (e == NULL) return;
   2134 
   2135   if (IsLineInfoTagged(e->value)) {
   2136     delete UntagLineInfo(e->value);
   2137   } else {
   2138     JITCodeEntry* entry = static_cast<JITCodeEntry*>(e->value);
   2139     UnregisterCodeEntry(entry);
   2140     DestroyCodeEntry(entry);
   2141   }
   2142   e->value = NULL;
   2143   GetEntries()->Remove(code, HashForCodeObject(code));
   2144 }
   2145 
   2146 
   2147 void GDBJITInterface::RemoveCodeRange(Address start, Address end) {
   2148   HashMap* entries = GetEntries();
   2149   Zone zone(Isolate::Current());
   2150   ZoneList<Code*> dead_codes(1, &zone);
   2151 
   2152   for (HashMap::Entry* e = entries->Start(); e != NULL; e = entries->Next(e)) {
   2153     Code* code = reinterpret_cast<Code*>(e->key);
   2154     if (code->address() >= start && code->address() < end) {
   2155       dead_codes.Add(code, &zone);
   2156     }
   2157   }
   2158 
   2159   for (int i = 0; i < dead_codes.length(); i++) {
   2160     RemoveCode(dead_codes.at(i));
   2161   }
   2162 }
   2163 
   2164 
   2165 void GDBJITInterface::RegisterDetailedLineInfo(Code* code,
   2166                                                GDBJITLineInfo* line_info) {
   2167   LockGuard<Mutex> lock_guard(mutex.Pointer());
   2168   ASSERT(!IsLineInfoTagged(line_info));
   2169   HashMap::Entry* e = GetEntries()->Lookup(code, HashForCodeObject(code), true);
   2170   ASSERT(e->value == NULL);
   2171   e->value = TagLineInfo(line_info);
   2172 }
   2173 
   2174 
   2175 } }  // namespace v8::internal
   2176 #endif
   2177