Home | History | Annotate | Download | only in gc
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "heap.h"
     18 
     19 #define ATRACE_TAG ATRACE_TAG_DALVIK
     20 #include <cutils/trace.h>
     21 
     22 #include <limits>
     23 #include <memory>
     24 #include <vector>
     25 
     26 #include "base/allocator.h"
     27 #include "base/histogram-inl.h"
     28 #include "base/stl_util.h"
     29 #include "common_throws.h"
     30 #include "cutils/sched_policy.h"
     31 #include "debugger.h"
     32 #include "gc/accounting/atomic_stack.h"
     33 #include "gc/accounting/card_table-inl.h"
     34 #include "gc/accounting/heap_bitmap-inl.h"
     35 #include "gc/accounting/mod_union_table.h"
     36 #include "gc/accounting/mod_union_table-inl.h"
     37 #include "gc/accounting/remembered_set.h"
     38 #include "gc/accounting/space_bitmap-inl.h"
     39 #include "gc/collector/concurrent_copying.h"
     40 #include "gc/collector/mark_compact.h"
     41 #include "gc/collector/mark_sweep-inl.h"
     42 #include "gc/collector/partial_mark_sweep.h"
     43 #include "gc/collector/semi_space.h"
     44 #include "gc/collector/sticky_mark_sweep.h"
     45 #include "gc/reference_processor.h"
     46 #include "gc/space/bump_pointer_space.h"
     47 #include "gc/space/dlmalloc_space-inl.h"
     48 #include "gc/space/image_space.h"
     49 #include "gc/space/large_object_space.h"
     50 #include "gc/space/rosalloc_space-inl.h"
     51 #include "gc/space/space-inl.h"
     52 #include "gc/space/zygote_space.h"
     53 #include "entrypoints/quick/quick_alloc_entrypoints.h"
     54 #include "heap-inl.h"
     55 #include "image.h"
     56 #include "mirror/art_field-inl.h"
     57 #include "mirror/class-inl.h"
     58 #include "mirror/object.h"
     59 #include "mirror/object-inl.h"
     60 #include "mirror/object_array-inl.h"
     61 #include "mirror/reference-inl.h"
     62 #include "os.h"
     63 #include "reflection.h"
     64 #include "runtime.h"
     65 #include "ScopedLocalRef.h"
     66 #include "scoped_thread_state_change.h"
     67 #include "handle_scope-inl.h"
     68 #include "thread_list.h"
     69 #include "well_known_classes.h"
     70 
     71 namespace art {
     72 
     73 namespace gc {
     74 
     75 static constexpr size_t kCollectorTransitionStressIterations = 0;
     76 static constexpr size_t kCollectorTransitionStressWait = 10 * 1000;  // Microseconds
     77 static constexpr bool kGCALotMode = false;
     78 static constexpr size_t kGcAlotInterval = KB;
     79 // Minimum amount of remaining bytes before a concurrent GC is triggered.
     80 static constexpr size_t kMinConcurrentRemainingBytes = 128 * KB;
     81 static constexpr size_t kMaxConcurrentRemainingBytes = 512 * KB;
     82 // Sticky GC throughput adjustment, divided by 4. Increasing this causes sticky GC to occur more
     83 // relative to partial/full GC. This may be desirable since sticky GCs interfere less with mutator
     84 // threads (lower pauses, use less memory bandwidth).
     85 static constexpr double kStickyGcThroughputAdjustment = 1.0;
     86 // Whether or not we use the free list large object space. Only use it if USE_ART_LOW_4G_ALLOCATOR
     87 // since this means that we have to use the slow msync loop in MemMap::MapAnonymous.
     88 #if USE_ART_LOW_4G_ALLOCATOR
     89 static constexpr bool kUseFreeListSpaceForLOS = true;
     90 #else
     91 static constexpr bool kUseFreeListSpaceForLOS = false;
     92 #endif
     93 // Whether or not we compact the zygote in PreZygoteFork.
     94 static constexpr bool kCompactZygote = kMovingCollector;
     95 // How many reserve entries are at the end of the allocation stack, these are only needed if the
     96 // allocation stack overflows.
     97 static constexpr size_t kAllocationStackReserveSize = 1024;
     98 // Default mark stack size in bytes.
     99 static const size_t kDefaultMarkStackSize = 64 * KB;
    100 // Define space name.
    101 static const char* kDlMallocSpaceName[2] = {"main dlmalloc space", "main dlmalloc space 1"};
    102 static const char* kRosAllocSpaceName[2] = {"main rosalloc space", "main rosalloc space 1"};
    103 static const char* kMemMapSpaceName[2] = {"main space", "main space 1"};
    104 static constexpr size_t kGSSBumpPointerSpaceCapacity = 32 * MB;
    105 
    106 Heap::Heap(size_t initial_size, size_t growth_limit, size_t min_free, size_t max_free,
    107            double target_utilization, double foreground_heap_growth_multiplier,
    108            size_t capacity, size_t non_moving_space_capacity, const std::string& image_file_name,
    109            const InstructionSet image_instruction_set, CollectorType foreground_collector_type,
    110            CollectorType background_collector_type, size_t parallel_gc_threads,
    111            size_t conc_gc_threads, bool low_memory_mode,
    112            size_t long_pause_log_threshold, size_t long_gc_log_threshold,
    113            bool ignore_max_footprint, bool use_tlab,
    114            bool verify_pre_gc_heap, bool verify_pre_sweeping_heap, bool verify_post_gc_heap,
    115            bool verify_pre_gc_rosalloc, bool verify_pre_sweeping_rosalloc,
    116            bool verify_post_gc_rosalloc, bool use_homogeneous_space_compaction_for_oom,
    117            uint64_t min_interval_homogeneous_space_compaction_by_oom)
    118     : non_moving_space_(nullptr),
    119       rosalloc_space_(nullptr),
    120       dlmalloc_space_(nullptr),
    121       main_space_(nullptr),
    122       collector_type_(kCollectorTypeNone),
    123       foreground_collector_type_(foreground_collector_type),
    124       background_collector_type_(background_collector_type),
    125       desired_collector_type_(foreground_collector_type_),
    126       heap_trim_request_lock_(nullptr),
    127       last_trim_time_(0),
    128       heap_transition_or_trim_target_time_(0),
    129       heap_trim_request_pending_(false),
    130       parallel_gc_threads_(parallel_gc_threads),
    131       conc_gc_threads_(conc_gc_threads),
    132       low_memory_mode_(low_memory_mode),
    133       long_pause_log_threshold_(long_pause_log_threshold),
    134       long_gc_log_threshold_(long_gc_log_threshold),
    135       ignore_max_footprint_(ignore_max_footprint),
    136       zygote_creation_lock_("zygote creation lock", kZygoteCreationLock),
    137       have_zygote_space_(false),
    138       large_object_threshold_(std::numeric_limits<size_t>::max()),  // Starts out disabled.
    139       collector_type_running_(kCollectorTypeNone),
    140       last_gc_type_(collector::kGcTypeNone),
    141       next_gc_type_(collector::kGcTypePartial),
    142       capacity_(capacity),
    143       growth_limit_(growth_limit),
    144       max_allowed_footprint_(initial_size),
    145       native_footprint_gc_watermark_(initial_size),
    146       native_need_to_run_finalization_(false),
    147       // Initially assume we perceive jank in case the process state is never updated.
    148       process_state_(kProcessStateJankPerceptible),
    149       concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
    150       total_bytes_freed_ever_(0),
    151       total_objects_freed_ever_(0),
    152       num_bytes_allocated_(0),
    153       native_bytes_allocated_(0),
    154       verify_missing_card_marks_(false),
    155       verify_system_weaks_(false),
    156       verify_pre_gc_heap_(verify_pre_gc_heap),
    157       verify_pre_sweeping_heap_(verify_pre_sweeping_heap),
    158       verify_post_gc_heap_(verify_post_gc_heap),
    159       verify_mod_union_table_(false),
    160       verify_pre_gc_rosalloc_(verify_pre_gc_rosalloc),
    161       verify_pre_sweeping_rosalloc_(verify_pre_sweeping_rosalloc),
    162       verify_post_gc_rosalloc_(verify_post_gc_rosalloc),
    163       last_gc_time_ns_(NanoTime()),
    164       allocation_rate_(0),
    165       /* For GC a lot mode, we limit the allocations stacks to be kGcAlotInterval allocations. This
    166        * causes a lot of GC since we do a GC for alloc whenever the stack is full. When heap
    167        * verification is enabled, we limit the size of allocation stacks to speed up their
    168        * searching.
    169        */
    170       max_allocation_stack_size_(kGCALotMode ? kGcAlotInterval
    171           : (kVerifyObjectSupport > kVerifyObjectModeFast) ? KB : MB),
    172       current_allocator_(kAllocatorTypeDlMalloc),
    173       current_non_moving_allocator_(kAllocatorTypeNonMoving),
    174       bump_pointer_space_(nullptr),
    175       temp_space_(nullptr),
    176       min_free_(min_free),
    177       max_free_(max_free),
    178       target_utilization_(target_utilization),
    179       foreground_heap_growth_multiplier_(foreground_heap_growth_multiplier),
    180       total_wait_time_(0),
    181       total_allocation_time_(0),
    182       verify_object_mode_(kVerifyObjectModeDisabled),
    183       disable_moving_gc_count_(0),
    184       running_on_valgrind_(Runtime::Current()->RunningOnValgrind()),
    185       use_tlab_(use_tlab),
    186       main_space_backup_(nullptr),
    187       min_interval_homogeneous_space_compaction_by_oom_(
    188           min_interval_homogeneous_space_compaction_by_oom),
    189       last_time_homogeneous_space_compaction_by_oom_(NanoTime()),
    190       use_homogeneous_space_compaction_for_oom_(use_homogeneous_space_compaction_for_oom) {
    191   if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
    192     LOG(INFO) << "Heap() entering";
    193   }
    194   // If we aren't the zygote, switch to the default non zygote allocator. This may update the
    195   // entrypoints.
    196   const bool is_zygote = Runtime::Current()->IsZygote();
    197   if (!is_zygote) {
    198     large_object_threshold_ = kDefaultLargeObjectThreshold;
    199     // Background compaction is currently not supported for command line runs.
    200     if (background_collector_type_ != foreground_collector_type_) {
    201       VLOG(heap) << "Disabling background compaction for non zygote";
    202       background_collector_type_ = foreground_collector_type_;
    203     }
    204   }
    205   ChangeCollector(desired_collector_type_);
    206   live_bitmap_.reset(new accounting::HeapBitmap(this));
    207   mark_bitmap_.reset(new accounting::HeapBitmap(this));
    208   // Requested begin for the alloc space, to follow the mapped image and oat files
    209   byte* requested_alloc_space_begin = nullptr;
    210   if (!image_file_name.empty()) {
    211     std::string error_msg;
    212     space::ImageSpace* image_space = space::ImageSpace::Create(image_file_name.c_str(),
    213                                                                image_instruction_set,
    214                                                                &error_msg);
    215     if (image_space != nullptr) {
    216       AddSpace(image_space);
    217       // Oat files referenced by image files immediately follow them in memory, ensure alloc space
    218       // isn't going to get in the middle
    219       byte* oat_file_end_addr = image_space->GetImageHeader().GetOatFileEnd();
    220       CHECK_GT(oat_file_end_addr, image_space->End());
    221       requested_alloc_space_begin = AlignUp(oat_file_end_addr, kPageSize);
    222     } else {
    223       LOG(WARNING) << "Could not create image space with image file '" << image_file_name << "'. "
    224                    << "Attempting to fall back to imageless running. Error was: " << error_msg;
    225     }
    226   }
    227   /*
    228   requested_alloc_space_begin ->     +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    229                                      +-  nonmoving space (non_moving_space_capacity)+-
    230                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    231                                      +-????????????????????????????????????????????+-
    232                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    233                                      +-main alloc space / bump space 1 (capacity_) +-
    234                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    235                                      +-????????????????????????????????????????????+-
    236                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    237                                      +-main alloc space2 / bump space 2 (capacity_)+-
    238                                      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
    239   */
    240   bool support_homogeneous_space_compaction =
    241       background_collector_type_ == gc::kCollectorTypeHomogeneousSpaceCompact ||
    242       use_homogeneous_space_compaction_for_oom;
    243   // We may use the same space the main space for the non moving space if we don't need to compact
    244   // from the main space.
    245   // This is not the case if we support homogeneous compaction or have a moving background
    246   // collector type.
    247   bool separate_non_moving_space = is_zygote ||
    248       support_homogeneous_space_compaction || IsMovingGc(foreground_collector_type_) ||
    249       IsMovingGc(background_collector_type_);
    250   if (foreground_collector_type == kCollectorTypeGSS) {
    251     separate_non_moving_space = false;
    252   }
    253   std::unique_ptr<MemMap> main_mem_map_1;
    254   std::unique_ptr<MemMap> main_mem_map_2;
    255   byte* request_begin = requested_alloc_space_begin;
    256   if (request_begin != nullptr && separate_non_moving_space) {
    257     request_begin += non_moving_space_capacity;
    258   }
    259   std::string error_str;
    260   std::unique_ptr<MemMap> non_moving_space_mem_map;
    261   if (separate_non_moving_space) {
    262     // Reserve the non moving mem map before the other two since it needs to be at a specific
    263     // address.
    264     non_moving_space_mem_map.reset(
    265         MemMap::MapAnonymous("non moving space", requested_alloc_space_begin,
    266                              non_moving_space_capacity, PROT_READ | PROT_WRITE, true, &error_str));
    267     CHECK(non_moving_space_mem_map != nullptr) << error_str;
    268     // Try to reserve virtual memory at a lower address if we have a separate non moving space.
    269     request_begin = reinterpret_cast<byte*>(300 * MB);
    270   }
    271   // Attempt to create 2 mem maps at or after the requested begin.
    272   main_mem_map_1.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[0], request_begin, capacity_,
    273                                                     PROT_READ | PROT_WRITE, &error_str));
    274   CHECK(main_mem_map_1.get() != nullptr) << error_str;
    275   if (support_homogeneous_space_compaction ||
    276       background_collector_type_ == kCollectorTypeSS ||
    277       foreground_collector_type_ == kCollectorTypeSS) {
    278     main_mem_map_2.reset(MapAnonymousPreferredAddress(kMemMapSpaceName[1], main_mem_map_1->End(),
    279                                                       capacity_, PROT_READ | PROT_WRITE,
    280                                                       &error_str));
    281     CHECK(main_mem_map_2.get() != nullptr) << error_str;
    282   }
    283   // Create the non moving space first so that bitmaps don't take up the address range.
    284   if (separate_non_moving_space) {
    285     // Non moving space is always dlmalloc since we currently don't have support for multiple
    286     // active rosalloc spaces.
    287     const size_t size = non_moving_space_mem_map->Size();
    288     non_moving_space_ = space::DlMallocSpace::CreateFromMemMap(
    289         non_moving_space_mem_map.release(), "zygote / non moving space", kDefaultStartingSize,
    290         initial_size, size, size, false);
    291     non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
    292     CHECK(non_moving_space_ != nullptr) << "Failed creating non moving space "
    293         << requested_alloc_space_begin;
    294     AddSpace(non_moving_space_);
    295   }
    296   // Create other spaces based on whether or not we have a moving GC.
    297   if (IsMovingGc(foreground_collector_type_) && foreground_collector_type_ != kCollectorTypeGSS) {
    298     // Create bump pointer spaces.
    299     // We only to create the bump pointer if the foreground collector is a compacting GC.
    300     // TODO: Place bump-pointer spaces somewhere to minimize size of card table.
    301     bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 1",
    302                                                                     main_mem_map_1.release());
    303     CHECK(bump_pointer_space_ != nullptr) << "Failed to create bump pointer space";
    304     AddSpace(bump_pointer_space_);
    305     temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
    306                                                             main_mem_map_2.release());
    307     CHECK(temp_space_ != nullptr) << "Failed to create bump pointer space";
    308     AddSpace(temp_space_);
    309     CHECK(separate_non_moving_space);
    310   } else {
    311     CreateMainMallocSpace(main_mem_map_1.release(), initial_size, growth_limit_, capacity_);
    312     CHECK(main_space_ != nullptr);
    313     AddSpace(main_space_);
    314     if (!separate_non_moving_space) {
    315       non_moving_space_ = main_space_;
    316       CHECK(!non_moving_space_->CanMoveObjects());
    317     }
    318     if (foreground_collector_type_ == kCollectorTypeGSS) {
    319       CHECK_EQ(foreground_collector_type_, background_collector_type_);
    320       // Create bump pointer spaces instead of a backup space.
    321       main_mem_map_2.release();
    322       bump_pointer_space_ = space::BumpPointerSpace::Create("Bump pointer space 1",
    323                                                             kGSSBumpPointerSpaceCapacity, nullptr);
    324       CHECK(bump_pointer_space_ != nullptr);
    325       AddSpace(bump_pointer_space_);
    326       temp_space_ = space::BumpPointerSpace::Create("Bump pointer space 2",
    327                                                     kGSSBumpPointerSpaceCapacity, nullptr);
    328       CHECK(temp_space_ != nullptr);
    329       AddSpace(temp_space_);
    330     } else if (main_mem_map_2.get() != nullptr) {
    331       const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
    332       main_space_backup_.reset(CreateMallocSpaceFromMemMap(main_mem_map_2.release(), initial_size,
    333                                                            growth_limit_, capacity_, name, true));
    334       CHECK(main_space_backup_.get() != nullptr);
    335       // Add the space so its accounted for in the heap_begin and heap_end.
    336       AddSpace(main_space_backup_.get());
    337     }
    338   }
    339   CHECK(non_moving_space_ != nullptr);
    340   CHECK(!non_moving_space_->CanMoveObjects());
    341   // Allocate the large object space.
    342   if (kUseFreeListSpaceForLOS) {
    343     large_object_space_ = space::FreeListSpace::Create("large object space", nullptr, capacity_);
    344   } else {
    345     large_object_space_ = space::LargeObjectMapSpace::Create("large object space");
    346   }
    347   CHECK(large_object_space_ != nullptr) << "Failed to create large object space";
    348   AddSpace(large_object_space_);
    349   // Compute heap capacity. Continuous spaces are sorted in order of Begin().
    350   CHECK(!continuous_spaces_.empty());
    351   // Relies on the spaces being sorted.
    352   byte* heap_begin = continuous_spaces_.front()->Begin();
    353   byte* heap_end = continuous_spaces_.back()->Limit();
    354   size_t heap_capacity = heap_end - heap_begin;
    355   // Remove the main backup space since it slows down the GC to have unused extra spaces.
    356   if (main_space_backup_.get() != nullptr) {
    357     RemoveSpace(main_space_backup_.get());
    358   }
    359   // Allocate the card table.
    360   card_table_.reset(accounting::CardTable::Create(heap_begin, heap_capacity));
    361   CHECK(card_table_.get() != NULL) << "Failed to create card table";
    362   // Card cache for now since it makes it easier for us to update the references to the copying
    363   // spaces.
    364   accounting::ModUnionTable* mod_union_table =
    365       new accounting::ModUnionTableToZygoteAllocspace("Image mod-union table", this,
    366                                                       GetImageSpace());
    367   CHECK(mod_union_table != nullptr) << "Failed to create image mod-union table";
    368   AddModUnionTable(mod_union_table);
    369   if (collector::SemiSpace::kUseRememberedSet && non_moving_space_ != main_space_) {
    370     accounting::RememberedSet* non_moving_space_rem_set =
    371         new accounting::RememberedSet("Non-moving space remembered set", this, non_moving_space_);
    372     CHECK(non_moving_space_rem_set != nullptr) << "Failed to create non-moving space remembered set";
    373     AddRememberedSet(non_moving_space_rem_set);
    374   }
    375   // TODO: Count objects in the image space here?
    376   num_bytes_allocated_.StoreRelaxed(0);
    377   mark_stack_.reset(accounting::ObjectStack::Create("mark stack", kDefaultMarkStackSize,
    378                                                     kDefaultMarkStackSize));
    379   const size_t alloc_stack_capacity = max_allocation_stack_size_ + kAllocationStackReserveSize;
    380   allocation_stack_.reset(accounting::ObjectStack::Create(
    381       "allocation stack", max_allocation_stack_size_, alloc_stack_capacity));
    382   live_stack_.reset(accounting::ObjectStack::Create(
    383       "live stack", max_allocation_stack_size_, alloc_stack_capacity));
    384   // It's still too early to take a lock because there are no threads yet, but we can create locks
    385   // now. We don't create it earlier to make it clear that you can't use locks during heap
    386   // initialization.
    387   gc_complete_lock_ = new Mutex("GC complete lock");
    388   gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable",
    389                                                 *gc_complete_lock_));
    390   heap_trim_request_lock_ = new Mutex("Heap trim request lock");
    391   last_gc_size_ = GetBytesAllocated();
    392   if (ignore_max_footprint_) {
    393     SetIdealFootprint(std::numeric_limits<size_t>::max());
    394     concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
    395   }
    396   CHECK_NE(max_allowed_footprint_, 0U);
    397   // Create our garbage collectors.
    398   for (size_t i = 0; i < 2; ++i) {
    399     const bool concurrent = i != 0;
    400     garbage_collectors_.push_back(new collector::MarkSweep(this, concurrent));
    401     garbage_collectors_.push_back(new collector::PartialMarkSweep(this, concurrent));
    402     garbage_collectors_.push_back(new collector::StickyMarkSweep(this, concurrent));
    403   }
    404   if (kMovingCollector) {
    405     // TODO: Clean this up.
    406     const bool generational = foreground_collector_type_ == kCollectorTypeGSS;
    407     semi_space_collector_ = new collector::SemiSpace(this, generational,
    408                                                      generational ? "generational" : "");
    409     garbage_collectors_.push_back(semi_space_collector_);
    410     concurrent_copying_collector_ = new collector::ConcurrentCopying(this);
    411     garbage_collectors_.push_back(concurrent_copying_collector_);
    412     mark_compact_collector_ = new collector::MarkCompact(this);
    413     garbage_collectors_.push_back(mark_compact_collector_);
    414   }
    415   if (GetImageSpace() != nullptr && non_moving_space_ != nullptr) {
    416     // Check that there's no gap between the image space and the non moving space so that the
    417     // immune region won't break (eg. due to a large object allocated in the gap).
    418     bool no_gap = MemMap::CheckNoGaps(GetImageSpace()->GetMemMap(),
    419                                       non_moving_space_->GetMemMap());
    420     if (!no_gap) {
    421       MemMap::DumpMaps(LOG(ERROR));
    422       LOG(FATAL) << "There's a gap between the image space and the main space";
    423     }
    424   }
    425   if (running_on_valgrind_) {
    426     Runtime::Current()->GetInstrumentation()->InstrumentQuickAllocEntryPoints();
    427   }
    428   if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
    429     LOG(INFO) << "Heap() exiting";
    430   }
    431 }
    432 
    433 MemMap* Heap::MapAnonymousPreferredAddress(const char* name, byte* request_begin, size_t capacity,
    434                                            int prot_flags, std::string* out_error_str) {
    435   while (true) {
    436     MemMap* map = MemMap::MapAnonymous(kMemMapSpaceName[0], request_begin, capacity,
    437                                        PROT_READ | PROT_WRITE, true, out_error_str);
    438     if (map != nullptr || request_begin == nullptr) {
    439       return map;
    440     }
    441     // Retry a  second time with no specified request begin.
    442     request_begin = nullptr;
    443   }
    444   return nullptr;
    445 }
    446 
    447 space::MallocSpace* Heap::CreateMallocSpaceFromMemMap(MemMap* mem_map, size_t initial_size,
    448                                                       size_t growth_limit, size_t capacity,
    449                                                       const char* name, bool can_move_objects) {
    450   space::MallocSpace* malloc_space = nullptr;
    451   if (kUseRosAlloc) {
    452     // Create rosalloc space.
    453     malloc_space = space::RosAllocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
    454                                                           initial_size, growth_limit, capacity,
    455                                                           low_memory_mode_, can_move_objects);
    456   } else {
    457     malloc_space = space::DlMallocSpace::CreateFromMemMap(mem_map, name, kDefaultStartingSize,
    458                                                           initial_size, growth_limit, capacity,
    459                                                           can_move_objects);
    460   }
    461   if (collector::SemiSpace::kUseRememberedSet) {
    462     accounting::RememberedSet* rem_set  =
    463         new accounting::RememberedSet(std::string(name) + " remembered set", this, malloc_space);
    464     CHECK(rem_set != nullptr) << "Failed to create main space remembered set";
    465     AddRememberedSet(rem_set);
    466   }
    467   CHECK(malloc_space != nullptr) << "Failed to create " << name;
    468   malloc_space->SetFootprintLimit(malloc_space->Capacity());
    469   return malloc_space;
    470 }
    471 
    472 void Heap::CreateMainMallocSpace(MemMap* mem_map, size_t initial_size, size_t growth_limit,
    473                                  size_t capacity) {
    474   // Is background compaction is enabled?
    475   bool can_move_objects = IsMovingGc(background_collector_type_) !=
    476       IsMovingGc(foreground_collector_type_) || use_homogeneous_space_compaction_for_oom_;
    477   // If we are the zygote and don't yet have a zygote space, it means that the zygote fork will
    478   // happen in the future. If this happens and we have kCompactZygote enabled we wish to compact
    479   // from the main space to the zygote space. If background compaction is enabled, always pass in
    480   // that we can move objets.
    481   if (kCompactZygote && Runtime::Current()->IsZygote() && !can_move_objects) {
    482     // After the zygote we want this to be false if we don't have background compaction enabled so
    483     // that getting primitive array elements is faster.
    484     // We never have homogeneous compaction with GSS and don't need a space with movable objects.
    485     can_move_objects = !have_zygote_space_ && foreground_collector_type_ != kCollectorTypeGSS;
    486   }
    487   if (collector::SemiSpace::kUseRememberedSet && main_space_ != nullptr) {
    488     RemoveRememberedSet(main_space_);
    489   }
    490   const char* name = kUseRosAlloc ? kRosAllocSpaceName[0] : kDlMallocSpaceName[0];
    491   main_space_ = CreateMallocSpaceFromMemMap(mem_map, initial_size, growth_limit, capacity, name,
    492                                             can_move_objects);
    493   SetSpaceAsDefault(main_space_);
    494   VLOG(heap) << "Created main space " << main_space_;
    495 }
    496 
    497 void Heap::ChangeAllocator(AllocatorType allocator) {
    498   if (current_allocator_ != allocator) {
    499     // These two allocators are only used internally and don't have any entrypoints.
    500     CHECK_NE(allocator, kAllocatorTypeLOS);
    501     CHECK_NE(allocator, kAllocatorTypeNonMoving);
    502     current_allocator_ = allocator;
    503     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
    504     SetQuickAllocEntryPointsAllocator(current_allocator_);
    505     Runtime::Current()->GetInstrumentation()->ResetQuickAllocEntryPoints();
    506   }
    507 }
    508 
    509 void Heap::DisableMovingGc() {
    510   if (IsMovingGc(foreground_collector_type_)) {
    511     foreground_collector_type_ = kCollectorTypeCMS;
    512   }
    513   if (IsMovingGc(background_collector_type_)) {
    514     background_collector_type_ = foreground_collector_type_;
    515   }
    516   TransitionCollector(foreground_collector_type_);
    517   ThreadList* tl = Runtime::Current()->GetThreadList();
    518   Thread* self = Thread::Current();
    519   ScopedThreadStateChange tsc(self, kSuspended);
    520   tl->SuspendAll();
    521   // Something may have caused the transition to fail.
    522   if (!IsMovingGc(collector_type_) && non_moving_space_ != main_space_) {
    523     CHECK(main_space_ != nullptr);
    524     // The allocation stack may have non movable objects in it. We need to flush it since the GC
    525     // can't only handle marking allocation stack objects of one non moving space and one main
    526     // space.
    527     {
    528       WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
    529       FlushAllocStack();
    530     }
    531     main_space_->DisableMovingObjects();
    532     non_moving_space_ = main_space_;
    533     CHECK(!non_moving_space_->CanMoveObjects());
    534   }
    535   tl->ResumeAll();
    536 }
    537 
    538 std::string Heap::SafeGetClassDescriptor(mirror::Class* klass) {
    539   if (!IsValidContinuousSpaceObjectAddress(klass)) {
    540     return StringPrintf("<non heap address klass %p>", klass);
    541   }
    542   mirror::Class* component_type = klass->GetComponentType<kVerifyNone>();
    543   if (IsValidContinuousSpaceObjectAddress(component_type) && klass->IsArrayClass<kVerifyNone>()) {
    544     std::string result("[");
    545     result += SafeGetClassDescriptor(component_type);
    546     return result;
    547   } else if (UNLIKELY(klass->IsPrimitive<kVerifyNone>())) {
    548     return Primitive::Descriptor(klass->GetPrimitiveType<kVerifyNone>());
    549   } else if (UNLIKELY(klass->IsProxyClass<kVerifyNone>())) {
    550     return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(klass);
    551   } else {
    552     mirror::DexCache* dex_cache = klass->GetDexCache<kVerifyNone>();
    553     if (!IsValidContinuousSpaceObjectAddress(dex_cache)) {
    554       return StringPrintf("<non heap address dex_cache %p>", dex_cache);
    555     }
    556     const DexFile* dex_file = dex_cache->GetDexFile();
    557     uint16_t class_def_idx = klass->GetDexClassDefIndex();
    558     if (class_def_idx == DexFile::kDexNoIndex16) {
    559       return "<class def not found>";
    560     }
    561     const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx);
    562     const DexFile::TypeId& type_id = dex_file->GetTypeId(class_def.class_idx_);
    563     return dex_file->GetTypeDescriptor(type_id);
    564   }
    565 }
    566 
    567 std::string Heap::SafePrettyTypeOf(mirror::Object* obj) {
    568   if (obj == nullptr) {
    569     return "null";
    570   }
    571   mirror::Class* klass = obj->GetClass<kVerifyNone>();
    572   if (klass == nullptr) {
    573     return "(class=null)";
    574   }
    575   std::string result(SafeGetClassDescriptor(klass));
    576   if (obj->IsClass()) {
    577     result += "<" + SafeGetClassDescriptor(obj->AsClass<kVerifyNone>()) + ">";
    578   }
    579   return result;
    580 }
    581 
    582 void Heap::DumpObject(std::ostream& stream, mirror::Object* obj) {
    583   if (obj == nullptr) {
    584     stream << "(obj=null)";
    585     return;
    586   }
    587   if (IsAligned<kObjectAlignment>(obj)) {
    588     space::Space* space = nullptr;
    589     // Don't use find space since it only finds spaces which actually contain objects instead of
    590     // spaces which may contain objects (e.g. cleared bump pointer spaces).
    591     for (const auto& cur_space : continuous_spaces_) {
    592       if (cur_space->HasAddress(obj)) {
    593         space = cur_space;
    594         break;
    595       }
    596     }
    597     // Unprotect all the spaces.
    598     for (const auto& space : continuous_spaces_) {
    599       mprotect(space->Begin(), space->Capacity(), PROT_READ | PROT_WRITE);
    600     }
    601     stream << "Object " << obj;
    602     if (space != nullptr) {
    603       stream << " in space " << *space;
    604     }
    605     mirror::Class* klass = obj->GetClass<kVerifyNone>();
    606     stream << "\nclass=" << klass;
    607     if (klass != nullptr) {
    608       stream << " type= " << SafePrettyTypeOf(obj);
    609     }
    610     // Re-protect the address we faulted on.
    611     mprotect(AlignDown(obj, kPageSize), kPageSize, PROT_NONE);
    612   }
    613 }
    614 
    615 bool Heap::IsCompilingBoot() const {
    616   if (!Runtime::Current()->IsCompiler()) {
    617     return false;
    618   }
    619   for (const auto& space : continuous_spaces_) {
    620     if (space->IsImageSpace() || space->IsZygoteSpace()) {
    621       return false;
    622     }
    623   }
    624   return true;
    625 }
    626 
    627 bool Heap::HasImageSpace() const {
    628   for (const auto& space : continuous_spaces_) {
    629     if (space->IsImageSpace()) {
    630       return true;
    631     }
    632   }
    633   return false;
    634 }
    635 
    636 void Heap::IncrementDisableMovingGC(Thread* self) {
    637   // Need to do this holding the lock to prevent races where the GC is about to run / running when
    638   // we attempt to disable it.
    639   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
    640   MutexLock mu(self, *gc_complete_lock_);
    641   ++disable_moving_gc_count_;
    642   if (IsMovingGc(collector_type_running_)) {
    643     WaitForGcToCompleteLocked(kGcCauseDisableMovingGc, self);
    644   }
    645 }
    646 
    647 void Heap::DecrementDisableMovingGC(Thread* self) {
    648   MutexLock mu(self, *gc_complete_lock_);
    649   CHECK_GE(disable_moving_gc_count_, 0U);
    650   --disable_moving_gc_count_;
    651 }
    652 
    653 void Heap::UpdateProcessState(ProcessState process_state) {
    654   if (process_state_ != process_state) {
    655     process_state_ = process_state;
    656     for (size_t i = 1; i <= kCollectorTransitionStressIterations; ++i) {
    657       // Start at index 1 to avoid "is always false" warning.
    658       // Have iteration 1 always transition the collector.
    659       TransitionCollector((((i & 1) == 1) == (process_state_ == kProcessStateJankPerceptible))
    660                           ? foreground_collector_type_ : background_collector_type_);
    661       usleep(kCollectorTransitionStressWait);
    662     }
    663     if (process_state_ == kProcessStateJankPerceptible) {
    664       // Transition back to foreground right away to prevent jank.
    665       RequestCollectorTransition(foreground_collector_type_, 0);
    666     } else {
    667       // Don't delay for debug builds since we may want to stress test the GC.
    668       // If background_collector_type_ is kCollectorTypeHomogeneousSpaceCompact then we have
    669       // special handling which does a homogenous space compaction once but then doesn't transition
    670       // the collector.
    671       RequestCollectorTransition(background_collector_type_,
    672                                  kIsDebugBuild ? 0 : kCollectorTransitionWait);
    673     }
    674   }
    675 }
    676 
    677 void Heap::CreateThreadPool() {
    678   const size_t num_threads = std::max(parallel_gc_threads_, conc_gc_threads_);
    679   if (num_threads != 0) {
    680     thread_pool_.reset(new ThreadPool("Heap thread pool", num_threads));
    681   }
    682 }
    683 
    684 void Heap::VisitObjects(ObjectCallback callback, void* arg) {
    685   Thread* self = Thread::Current();
    686   // GCs can move objects, so don't allow this.
    687   const char* old_cause = self->StartAssertNoThreadSuspension("Visiting objects");
    688   if (bump_pointer_space_ != nullptr) {
    689     // Visit objects in bump pointer space.
    690     bump_pointer_space_->Walk(callback, arg);
    691   }
    692   // TODO: Switch to standard begin and end to use ranged a based loop.
    693   for (mirror::Object** it = allocation_stack_->Begin(), **end = allocation_stack_->End();
    694       it < end; ++it) {
    695     mirror::Object* obj = *it;
    696     if (obj != nullptr && obj->GetClass() != nullptr) {
    697       // Avoid the race condition caused by the object not yet being written into the allocation
    698       // stack or the class not yet being written in the object. Or, if kUseThreadLocalAllocationStack,
    699       // there can be nulls on the allocation stack.
    700       callback(obj, arg);
    701     }
    702   }
    703   GetLiveBitmap()->Walk(callback, arg);
    704   self->EndAssertNoThreadSuspension(old_cause);
    705 }
    706 
    707 void Heap::MarkAllocStackAsLive(accounting::ObjectStack* stack) {
    708   space::ContinuousSpace* space1 = main_space_ != nullptr ? main_space_ : non_moving_space_;
    709   space::ContinuousSpace* space2 = non_moving_space_;
    710   // TODO: Generalize this to n bitmaps?
    711   CHECK(space1 != nullptr);
    712   CHECK(space2 != nullptr);
    713   MarkAllocStack(space1->GetLiveBitmap(), space2->GetLiveBitmap(),
    714                  large_object_space_->GetLiveBitmap(), stack);
    715 }
    716 
    717 void Heap::DeleteThreadPool() {
    718   thread_pool_.reset(nullptr);
    719 }
    720 
    721 void Heap::AddSpace(space::Space* space) {
    722   CHECK(space != nullptr);
    723   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    724   if (space->IsContinuousSpace()) {
    725     DCHECK(!space->IsDiscontinuousSpace());
    726     space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
    727     // Continuous spaces don't necessarily have bitmaps.
    728     accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
    729     accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
    730     if (live_bitmap != nullptr) {
    731       CHECK(mark_bitmap != nullptr);
    732       live_bitmap_->AddContinuousSpaceBitmap(live_bitmap);
    733       mark_bitmap_->AddContinuousSpaceBitmap(mark_bitmap);
    734     }
    735     continuous_spaces_.push_back(continuous_space);
    736     // Ensure that spaces remain sorted in increasing order of start address.
    737     std::sort(continuous_spaces_.begin(), continuous_spaces_.end(),
    738               [](const space::ContinuousSpace* a, const space::ContinuousSpace* b) {
    739       return a->Begin() < b->Begin();
    740     });
    741   } else {
    742     CHECK(space->IsDiscontinuousSpace());
    743     space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
    744     live_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
    745     mark_bitmap_->AddLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
    746     discontinuous_spaces_.push_back(discontinuous_space);
    747   }
    748   if (space->IsAllocSpace()) {
    749     alloc_spaces_.push_back(space->AsAllocSpace());
    750   }
    751 }
    752 
    753 void Heap::SetSpaceAsDefault(space::ContinuousSpace* continuous_space) {
    754   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    755   if (continuous_space->IsDlMallocSpace()) {
    756     dlmalloc_space_ = continuous_space->AsDlMallocSpace();
    757   } else if (continuous_space->IsRosAllocSpace()) {
    758     rosalloc_space_ = continuous_space->AsRosAllocSpace();
    759   }
    760 }
    761 
    762 void Heap::RemoveSpace(space::Space* space) {
    763   DCHECK(space != nullptr);
    764   WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
    765   if (space->IsContinuousSpace()) {
    766     DCHECK(!space->IsDiscontinuousSpace());
    767     space::ContinuousSpace* continuous_space = space->AsContinuousSpace();
    768     // Continuous spaces don't necessarily have bitmaps.
    769     accounting::ContinuousSpaceBitmap* live_bitmap = continuous_space->GetLiveBitmap();
    770     accounting::ContinuousSpaceBitmap* mark_bitmap = continuous_space->GetMarkBitmap();
    771     if (live_bitmap != nullptr) {
    772       DCHECK(mark_bitmap != nullptr);
    773       live_bitmap_->RemoveContinuousSpaceBitmap(live_bitmap);
    774       mark_bitmap_->RemoveContinuousSpaceBitmap(mark_bitmap);
    775     }
    776     auto it = std::find(continuous_spaces_.begin(), continuous_spaces_.end(), continuous_space);
    777     DCHECK(it != continuous_spaces_.end());
    778     continuous_spaces_.erase(it);
    779   } else {
    780     DCHECK(space->IsDiscontinuousSpace());
    781     space::DiscontinuousSpace* discontinuous_space = space->AsDiscontinuousSpace();
    782     live_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetLiveBitmap());
    783     mark_bitmap_->RemoveLargeObjectBitmap(discontinuous_space->GetMarkBitmap());
    784     auto it = std::find(discontinuous_spaces_.begin(), discontinuous_spaces_.end(),
    785                         discontinuous_space);
    786     DCHECK(it != discontinuous_spaces_.end());
    787     discontinuous_spaces_.erase(it);
    788   }
    789   if (space->IsAllocSpace()) {
    790     auto it = std::find(alloc_spaces_.begin(), alloc_spaces_.end(), space->AsAllocSpace());
    791     DCHECK(it != alloc_spaces_.end());
    792     alloc_spaces_.erase(it);
    793   }
    794 }
    795 
    796 void Heap::DumpGcPerformanceInfo(std::ostream& os) {
    797   // Dump cumulative timings.
    798   os << "Dumping cumulative Gc timings\n";
    799   uint64_t total_duration = 0;
    800   // Dump cumulative loggers for each GC type.
    801   uint64_t total_paused_time = 0;
    802   for (auto& collector : garbage_collectors_) {
    803     const CumulativeLogger& logger = collector->GetCumulativeTimings();
    804     const size_t iterations = logger.GetIterations();
    805     const Histogram<uint64_t>& pause_histogram = collector->GetPauseHistogram();
    806     if (iterations != 0 && pause_histogram.SampleSize() != 0) {
    807       os << ConstDumpable<CumulativeLogger>(logger);
    808       const uint64_t total_ns = logger.GetTotalNs();
    809       const uint64_t total_pause_ns = collector->GetTotalPausedTimeNs();
    810       double seconds = NsToMs(logger.GetTotalNs()) / 1000.0;
    811       const uint64_t freed_bytes = collector->GetTotalFreedBytes();
    812       const uint64_t freed_objects = collector->GetTotalFreedObjects();
    813       Histogram<uint64_t>::CumulativeData cumulative_data;
    814       pause_histogram.CreateHistogram(&cumulative_data);
    815       pause_histogram.PrintConfidenceIntervals(os, 0.99, cumulative_data);
    816       os << collector->GetName() << " total time: " << PrettyDuration(total_ns)
    817          << " mean time: " << PrettyDuration(total_ns / iterations) << "\n"
    818          << collector->GetName() << " freed: " << freed_objects
    819          << " objects with total size " << PrettySize(freed_bytes) << "\n"
    820          << collector->GetName() << " throughput: " << freed_objects / seconds << "/s / "
    821          << PrettySize(freed_bytes / seconds) << "/s\n";
    822       total_duration += total_ns;
    823       total_paused_time += total_pause_ns;
    824     }
    825     collector->ResetMeasurements();
    826   }
    827   uint64_t allocation_time =
    828       static_cast<uint64_t>(total_allocation_time_.LoadRelaxed()) * kTimeAdjust;
    829   if (total_duration != 0) {
    830     const double total_seconds = static_cast<double>(total_duration / 1000) / 1000000.0;
    831     os << "Total time spent in GC: " << PrettyDuration(total_duration) << "\n";
    832     os << "Mean GC size throughput: "
    833        << PrettySize(GetBytesFreedEver() / total_seconds) << "/s\n";
    834     os << "Mean GC object throughput: "
    835        << (GetObjectsFreedEver() / total_seconds) << " objects/s\n";
    836   }
    837   uint64_t total_objects_allocated = GetObjectsAllocatedEver();
    838   os << "Total number of allocations " << total_objects_allocated << "\n";
    839   uint64_t total_bytes_allocated = GetBytesAllocatedEver();
    840   os << "Total bytes allocated " << PrettySize(total_bytes_allocated) << "\n";
    841   os << "Free memory " << PrettySize(GetFreeMemory()) << "\n";
    842   os << "Free memory until GC " << PrettySize(GetFreeMemoryUntilGC()) << "\n";
    843   os << "Free memory until OOME " << PrettySize(GetFreeMemoryUntilOOME()) << "\n";
    844   os << "Total memory " << PrettySize(GetTotalMemory()) << "\n";
    845   os << "Max memory " << PrettySize(GetMaxMemory()) << "\n";
    846   if (kMeasureAllocationTime) {
    847     os << "Total time spent allocating: " << PrettyDuration(allocation_time) << "\n";
    848     os << "Mean allocation time: " << PrettyDuration(allocation_time / total_objects_allocated)
    849        << "\n";
    850   }
    851   os << "Total mutator paused time: " << PrettyDuration(total_paused_time) << "\n";
    852   os << "Total time waiting for GC to complete: " << PrettyDuration(total_wait_time_) << "\n";
    853   BaseMutex::DumpAll(os);
    854 }
    855 
    856 Heap::~Heap() {
    857   VLOG(heap) << "Starting ~Heap()";
    858   STLDeleteElements(&garbage_collectors_);
    859   // If we don't reset then the mark stack complains in its destructor.
    860   allocation_stack_->Reset();
    861   live_stack_->Reset();
    862   STLDeleteValues(&mod_union_tables_);
    863   STLDeleteValues(&remembered_sets_);
    864   STLDeleteElements(&continuous_spaces_);
    865   STLDeleteElements(&discontinuous_spaces_);
    866   delete gc_complete_lock_;
    867   delete heap_trim_request_lock_;
    868   VLOG(heap) << "Finished ~Heap()";
    869 }
    870 
    871 space::ContinuousSpace* Heap::FindContinuousSpaceFromObject(const mirror::Object* obj,
    872                                                             bool fail_ok) const {
    873   for (const auto& space : continuous_spaces_) {
    874     if (space->Contains(obj)) {
    875       return space;
    876     }
    877   }
    878   if (!fail_ok) {
    879     LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
    880   }
    881   return NULL;
    882 }
    883 
    884 space::DiscontinuousSpace* Heap::FindDiscontinuousSpaceFromObject(const mirror::Object* obj,
    885                                                                   bool fail_ok) const {
    886   for (const auto& space : discontinuous_spaces_) {
    887     if (space->Contains(obj)) {
    888       return space;
    889     }
    890   }
    891   if (!fail_ok) {
    892     LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
    893   }
    894   return NULL;
    895 }
    896 
    897 space::Space* Heap::FindSpaceFromObject(const mirror::Object* obj, bool fail_ok) const {
    898   space::Space* result = FindContinuousSpaceFromObject(obj, true);
    899   if (result != NULL) {
    900     return result;
    901   }
    902   return FindDiscontinuousSpaceFromObject(obj, true);
    903 }
    904 
    905 space::ImageSpace* Heap::GetImageSpace() const {
    906   for (const auto& space : continuous_spaces_) {
    907     if (space->IsImageSpace()) {
    908       return space->AsImageSpace();
    909     }
    910   }
    911   return NULL;
    912 }
    913 
    914 void Heap::ThrowOutOfMemoryError(Thread* self, size_t byte_count, AllocatorType allocator_type) {
    915   std::ostringstream oss;
    916   size_t total_bytes_free = GetFreeMemory();
    917   oss << "Failed to allocate a " << byte_count << " byte allocation with " << total_bytes_free
    918       << " free bytes and " << PrettySize(GetFreeMemoryUntilOOME()) << " until OOM";
    919   // If the allocation failed due to fragmentation, print out the largest continuous allocation.
    920   if (total_bytes_free >= byte_count) {
    921     space::AllocSpace* space = nullptr;
    922     if (allocator_type == kAllocatorTypeNonMoving) {
    923       space = non_moving_space_;
    924     } else if (allocator_type == kAllocatorTypeRosAlloc ||
    925                allocator_type == kAllocatorTypeDlMalloc) {
    926       space = main_space_;
    927     } else if (allocator_type == kAllocatorTypeBumpPointer ||
    928                allocator_type == kAllocatorTypeTLAB) {
    929       space = bump_pointer_space_;
    930     }
    931     if (space != nullptr) {
    932       space->LogFragmentationAllocFailure(oss, byte_count);
    933     }
    934   }
    935   self->ThrowOutOfMemoryError(oss.str().c_str());
    936 }
    937 
    938 void Heap::DoPendingTransitionOrTrim() {
    939   Thread* self = Thread::Current();
    940   CollectorType desired_collector_type;
    941   // Wait until we reach the desired transition time.
    942   while (true) {
    943     uint64_t wait_time;
    944     {
    945       MutexLock mu(self, *heap_trim_request_lock_);
    946       desired_collector_type = desired_collector_type_;
    947       uint64_t current_time = NanoTime();
    948       if (current_time >= heap_transition_or_trim_target_time_) {
    949         break;
    950       }
    951       wait_time = heap_transition_or_trim_target_time_ - current_time;
    952     }
    953     ScopedThreadStateChange tsc(self, kSleeping);
    954     usleep(wait_time / 1000);  // Usleep takes microseconds.
    955   }
    956   // Launch homogeneous space compaction if it is desired.
    957   if (desired_collector_type == kCollectorTypeHomogeneousSpaceCompact) {
    958     if (!CareAboutPauseTimes()) {
    959       PerformHomogeneousSpaceCompact();
    960     }
    961     // No need to Trim(). Homogeneous space compaction may free more virtual and physical memory.
    962     desired_collector_type = collector_type_;
    963     return;
    964   }
    965   // Transition the collector if the desired collector type is not the same as the current
    966   // collector type.
    967   TransitionCollector(desired_collector_type);
    968   if (!CareAboutPauseTimes()) {
    969     // Deflate the monitors, this can cause a pause but shouldn't matter since we don't care
    970     // about pauses.
    971     Runtime* runtime = Runtime::Current();
    972     runtime->GetThreadList()->SuspendAll();
    973     uint64_t start_time = NanoTime();
    974     size_t count = runtime->GetMonitorList()->DeflateMonitors();
    975     VLOG(heap) << "Deflating " << count << " monitors took "
    976         << PrettyDuration(NanoTime() - start_time);
    977     runtime->GetThreadList()->ResumeAll();
    978   }
    979   // Do a heap trim if it is needed.
    980   Trim();
    981 }
    982 
    983 void Heap::Trim() {
    984   Thread* self = Thread::Current();
    985   {
    986     MutexLock mu(self, *heap_trim_request_lock_);
    987     if (!heap_trim_request_pending_ || last_trim_time_ + kHeapTrimWait >= NanoTime()) {
    988       return;
    989     }
    990     last_trim_time_ = NanoTime();
    991     heap_trim_request_pending_ = false;
    992   }
    993   {
    994     // Need to do this before acquiring the locks since we don't want to get suspended while
    995     // holding any locks.
    996     ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
    997     // Pretend we are doing a GC to prevent background compaction from deleting the space we are
    998     // trimming.
    999     MutexLock mu(self, *gc_complete_lock_);
   1000     // Ensure there is only one GC at a time.
   1001     WaitForGcToCompleteLocked(kGcCauseTrim, self);
   1002     collector_type_running_ = kCollectorTypeHeapTrim;
   1003   }
   1004   uint64_t start_ns = NanoTime();
   1005   // Trim the managed spaces.
   1006   uint64_t total_alloc_space_allocated = 0;
   1007   uint64_t total_alloc_space_size = 0;
   1008   uint64_t managed_reclaimed = 0;
   1009   for (const auto& space : continuous_spaces_) {
   1010     if (space->IsMallocSpace()) {
   1011       gc::space::MallocSpace* malloc_space = space->AsMallocSpace();
   1012       if (malloc_space->IsRosAllocSpace() || !CareAboutPauseTimes()) {
   1013         // Don't trim dlmalloc spaces if we care about pauses since this can hold the space lock
   1014         // for a long period of time.
   1015         managed_reclaimed += malloc_space->Trim();
   1016       }
   1017       total_alloc_space_size += malloc_space->Size();
   1018     }
   1019   }
   1020   total_alloc_space_allocated = GetBytesAllocated() - large_object_space_->GetBytesAllocated();
   1021   if (bump_pointer_space_ != nullptr) {
   1022     total_alloc_space_allocated -= bump_pointer_space_->Size();
   1023   }
   1024   const float managed_utilization = static_cast<float>(total_alloc_space_allocated) /
   1025       static_cast<float>(total_alloc_space_size);
   1026   uint64_t gc_heap_end_ns = NanoTime();
   1027   // We never move things in the native heap, so we can finish the GC at this point.
   1028   FinishGC(self, collector::kGcTypeNone);
   1029   size_t native_reclaimed = 0;
   1030   // Only trim the native heap if we don't care about pauses.
   1031   if (!CareAboutPauseTimes()) {
   1032 #if defined(USE_DLMALLOC)
   1033     // Trim the native heap.
   1034     dlmalloc_trim(0);
   1035     dlmalloc_inspect_all(DlmallocMadviseCallback, &native_reclaimed);
   1036 #elif defined(USE_JEMALLOC)
   1037     // Jemalloc does it's own internal trimming.
   1038 #else
   1039     UNIMPLEMENTED(WARNING) << "Add trimming support";
   1040 #endif
   1041   }
   1042   uint64_t end_ns = NanoTime();
   1043   VLOG(heap) << "Heap trim of managed (duration=" << PrettyDuration(gc_heap_end_ns - start_ns)
   1044       << ", advised=" << PrettySize(managed_reclaimed) << ") and native (duration="
   1045       << PrettyDuration(end_ns - gc_heap_end_ns) << ", advised=" << PrettySize(native_reclaimed)
   1046       << ") heaps. Managed heap utilization of " << static_cast<int>(100 * managed_utilization)
   1047       << "%.";
   1048 }
   1049 
   1050 bool Heap::IsValidObjectAddress(const mirror::Object* obj) const {
   1051   // Note: we deliberately don't take the lock here, and mustn't test anything that would require
   1052   // taking the lock.
   1053   if (obj == nullptr) {
   1054     return true;
   1055   }
   1056   return IsAligned<kObjectAlignment>(obj) && FindSpaceFromObject(obj, true) != nullptr;
   1057 }
   1058 
   1059 bool Heap::IsNonDiscontinuousSpaceHeapAddress(const mirror::Object* obj) const {
   1060   return FindContinuousSpaceFromObject(obj, true) != nullptr;
   1061 }
   1062 
   1063 bool Heap::IsValidContinuousSpaceObjectAddress(const mirror::Object* obj) const {
   1064   if (obj == nullptr || !IsAligned<kObjectAlignment>(obj)) {
   1065     return false;
   1066   }
   1067   for (const auto& space : continuous_spaces_) {
   1068     if (space->HasAddress(obj)) {
   1069       return true;
   1070     }
   1071   }
   1072   return false;
   1073 }
   1074 
   1075 bool Heap::IsLiveObjectLocked(mirror::Object* obj, bool search_allocation_stack,
   1076                               bool search_live_stack, bool sorted) {
   1077   if (UNLIKELY(!IsAligned<kObjectAlignment>(obj))) {
   1078     return false;
   1079   }
   1080   if (bump_pointer_space_ != nullptr && bump_pointer_space_->HasAddress(obj)) {
   1081     mirror::Class* klass = obj->GetClass<kVerifyNone>();
   1082     if (obj == klass) {
   1083       // This case happens for java.lang.Class.
   1084       return true;
   1085     }
   1086     return VerifyClassClass(klass) && IsLiveObjectLocked(klass);
   1087   } else if (temp_space_ != nullptr && temp_space_->HasAddress(obj)) {
   1088     // If we are in the allocated region of the temp space, then we are probably live (e.g. during
   1089     // a GC). When a GC isn't running End() - Begin() is 0 which means no objects are contained.
   1090     return temp_space_->Contains(obj);
   1091   }
   1092   space::ContinuousSpace* c_space = FindContinuousSpaceFromObject(obj, true);
   1093   space::DiscontinuousSpace* d_space = nullptr;
   1094   if (c_space != nullptr) {
   1095     if (c_space->GetLiveBitmap()->Test(obj)) {
   1096       return true;
   1097     }
   1098   } else {
   1099     d_space = FindDiscontinuousSpaceFromObject(obj, true);
   1100     if (d_space != nullptr) {
   1101       if (d_space->GetLiveBitmap()->Test(obj)) {
   1102         return true;
   1103       }
   1104     }
   1105   }
   1106   // This is covering the allocation/live stack swapping that is done without mutators suspended.
   1107   for (size_t i = 0; i < (sorted ? 1 : 5); ++i) {
   1108     if (i > 0) {
   1109       NanoSleep(MsToNs(10));
   1110     }
   1111     if (search_allocation_stack) {
   1112       if (sorted) {
   1113         if (allocation_stack_->ContainsSorted(obj)) {
   1114           return true;
   1115         }
   1116       } else if (allocation_stack_->Contains(obj)) {
   1117         return true;
   1118       }
   1119     }
   1120 
   1121     if (search_live_stack) {
   1122       if (sorted) {
   1123         if (live_stack_->ContainsSorted(obj)) {
   1124           return true;
   1125         }
   1126       } else if (live_stack_->Contains(obj)) {
   1127         return true;
   1128       }
   1129     }
   1130   }
   1131   // We need to check the bitmaps again since there is a race where we mark something as live and
   1132   // then clear the stack containing it.
   1133   if (c_space != nullptr) {
   1134     if (c_space->GetLiveBitmap()->Test(obj)) {
   1135       return true;
   1136     }
   1137   } else {
   1138     d_space = FindDiscontinuousSpaceFromObject(obj, true);
   1139     if (d_space != nullptr && d_space->GetLiveBitmap()->Test(obj)) {
   1140       return true;
   1141     }
   1142   }
   1143   return false;
   1144 }
   1145 
   1146 std::string Heap::DumpSpaces() const {
   1147   std::ostringstream oss;
   1148   DumpSpaces(oss);
   1149   return oss.str();
   1150 }
   1151 
   1152 void Heap::DumpSpaces(std::ostream& stream) const {
   1153   for (const auto& space : continuous_spaces_) {
   1154     accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
   1155     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
   1156     stream << space << " " << *space << "\n";
   1157     if (live_bitmap != nullptr) {
   1158       stream << live_bitmap << " " << *live_bitmap << "\n";
   1159     }
   1160     if (mark_bitmap != nullptr) {
   1161       stream << mark_bitmap << " " << *mark_bitmap << "\n";
   1162     }
   1163   }
   1164   for (const auto& space : discontinuous_spaces_) {
   1165     stream << space << " " << *space << "\n";
   1166   }
   1167 }
   1168 
   1169 void Heap::VerifyObjectBody(mirror::Object* obj) {
   1170   if (verify_object_mode_ == kVerifyObjectModeDisabled) {
   1171     return;
   1172   }
   1173 
   1174   // Ignore early dawn of the universe verifications.
   1175   if (UNLIKELY(static_cast<size_t>(num_bytes_allocated_.LoadRelaxed()) < 10 * KB)) {
   1176     return;
   1177   }
   1178   CHECK(IsAligned<kObjectAlignment>(obj)) << "Object isn't aligned: " << obj;
   1179   mirror::Class* c = obj->GetFieldObject<mirror::Class, kVerifyNone>(mirror::Object::ClassOffset());
   1180   CHECK(c != nullptr) << "Null class in object " << obj;
   1181   CHECK(IsAligned<kObjectAlignment>(c)) << "Class " << c << " not aligned in object " << obj;
   1182   CHECK(VerifyClassClass(c));
   1183 
   1184   if (verify_object_mode_ > kVerifyObjectModeFast) {
   1185     // Note: the bitmap tests below are racy since we don't hold the heap bitmap lock.
   1186     CHECK(IsLiveObjectLocked(obj)) << "Object is dead " << obj << "\n" << DumpSpaces();
   1187   }
   1188 }
   1189 
   1190 void Heap::VerificationCallback(mirror::Object* obj, void* arg) {
   1191   reinterpret_cast<Heap*>(arg)->VerifyObjectBody(obj);
   1192 }
   1193 
   1194 void Heap::VerifyHeap() {
   1195   ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1196   GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
   1197 }
   1198 
   1199 void Heap::RecordFree(uint64_t freed_objects, int64_t freed_bytes) {
   1200   // Use signed comparison since freed bytes can be negative when background compaction foreground
   1201   // transitions occurs. This is caused by the moving objects from a bump pointer space to a
   1202   // free list backed space typically increasing memory footprint due to padding and binning.
   1203   DCHECK_LE(freed_bytes, static_cast<int64_t>(num_bytes_allocated_.LoadRelaxed()));
   1204   // Note: This relies on 2s complement for handling negative freed_bytes.
   1205   num_bytes_allocated_.FetchAndSubSequentiallyConsistent(static_cast<ssize_t>(freed_bytes));
   1206   if (Runtime::Current()->HasStatsEnabled()) {
   1207     RuntimeStats* thread_stats = Thread::Current()->GetStats();
   1208     thread_stats->freed_objects += freed_objects;
   1209     thread_stats->freed_bytes += freed_bytes;
   1210     // TODO: Do this concurrently.
   1211     RuntimeStats* global_stats = Runtime::Current()->GetStats();
   1212     global_stats->freed_objects += freed_objects;
   1213     global_stats->freed_bytes += freed_bytes;
   1214   }
   1215 }
   1216 
   1217 space::RosAllocSpace* Heap::GetRosAllocSpace(gc::allocator::RosAlloc* rosalloc) const {
   1218   for (const auto& space : continuous_spaces_) {
   1219     if (space->AsContinuousSpace()->IsRosAllocSpace()) {
   1220       if (space->AsContinuousSpace()->AsRosAllocSpace()->GetRosAlloc() == rosalloc) {
   1221         return space->AsContinuousSpace()->AsRosAllocSpace();
   1222       }
   1223     }
   1224   }
   1225   return nullptr;
   1226 }
   1227 
   1228 mirror::Object* Heap::AllocateInternalWithGc(Thread* self, AllocatorType allocator,
   1229                                              size_t alloc_size, size_t* bytes_allocated,
   1230                                              size_t* usable_size,
   1231                                              mirror::Class** klass) {
   1232   bool was_default_allocator = allocator == GetCurrentAllocator();
   1233   // Make sure there is no pending exception since we may need to throw an OOME.
   1234   self->AssertNoPendingException();
   1235   DCHECK(klass != nullptr);
   1236   StackHandleScope<1> hs(self);
   1237   HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(klass));
   1238   klass = nullptr;  // Invalidate for safety.
   1239   // The allocation failed. If the GC is running, block until it completes, and then retry the
   1240   // allocation.
   1241   collector::GcType last_gc = WaitForGcToComplete(kGcCauseForAlloc, self);
   1242   if (last_gc != collector::kGcTypeNone) {
   1243     // If we were the default allocator but the allocator changed while we were suspended,
   1244     // abort the allocation.
   1245     if (was_default_allocator && allocator != GetCurrentAllocator()) {
   1246       return nullptr;
   1247     }
   1248     // A GC was in progress and we blocked, retry allocation now that memory has been freed.
   1249     mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
   1250                                                      usable_size);
   1251     if (ptr != nullptr) {
   1252       return ptr;
   1253     }
   1254   }
   1255 
   1256   collector::GcType tried_type = next_gc_type_;
   1257   const bool gc_ran =
   1258       CollectGarbageInternal(tried_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
   1259   if (was_default_allocator && allocator != GetCurrentAllocator()) {
   1260     return nullptr;
   1261   }
   1262   if (gc_ran) {
   1263     mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
   1264                                                      usable_size);
   1265     if (ptr != nullptr) {
   1266       return ptr;
   1267     }
   1268   }
   1269 
   1270   // Loop through our different Gc types and try to Gc until we get enough free memory.
   1271   for (collector::GcType gc_type : gc_plan_) {
   1272     if (gc_type == tried_type) {
   1273       continue;
   1274     }
   1275     // Attempt to run the collector, if we succeed, re-try the allocation.
   1276     const bool gc_ran =
   1277         CollectGarbageInternal(gc_type, kGcCauseForAlloc, false) != collector::kGcTypeNone;
   1278     if (was_default_allocator && allocator != GetCurrentAllocator()) {
   1279       return nullptr;
   1280     }
   1281     if (gc_ran) {
   1282       // Did we free sufficient memory for the allocation to succeed?
   1283       mirror::Object* ptr = TryToAllocate<true, false>(self, allocator, alloc_size, bytes_allocated,
   1284                                                        usable_size);
   1285       if (ptr != nullptr) {
   1286         return ptr;
   1287       }
   1288     }
   1289   }
   1290   // Allocations have failed after GCs;  this is an exceptional state.
   1291   // Try harder, growing the heap if necessary.
   1292   mirror::Object* ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
   1293                                                   usable_size);
   1294   if (ptr != nullptr) {
   1295     return ptr;
   1296   }
   1297   // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
   1298   // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
   1299   // VM spec requires that all SoftReferences have been collected and cleared before throwing
   1300   // OOME.
   1301   VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size)
   1302            << " allocation";
   1303   // TODO: Run finalization, but this may cause more allocations to occur.
   1304   // We don't need a WaitForGcToComplete here either.
   1305   DCHECK(!gc_plan_.empty());
   1306   CollectGarbageInternal(gc_plan_.back(), kGcCauseForAlloc, true);
   1307   if (was_default_allocator && allocator != GetCurrentAllocator()) {
   1308     return nullptr;
   1309   }
   1310   ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated, usable_size);
   1311   if (ptr == nullptr) {
   1312     const uint64_t current_time = NanoTime();
   1313     switch (allocator) {
   1314       case kAllocatorTypeRosAlloc:
   1315         // Fall-through.
   1316       case kAllocatorTypeDlMalloc: {
   1317         if (use_homogeneous_space_compaction_for_oom_ &&
   1318             current_time - last_time_homogeneous_space_compaction_by_oom_ >
   1319             min_interval_homogeneous_space_compaction_by_oom_) {
   1320           last_time_homogeneous_space_compaction_by_oom_ = current_time;
   1321           HomogeneousSpaceCompactResult result = PerformHomogeneousSpaceCompact();
   1322           switch (result) {
   1323             case HomogeneousSpaceCompactResult::kSuccess:
   1324               // If the allocation succeeded, we delayed an oom.
   1325               ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
   1326                                               usable_size);
   1327               if (ptr != nullptr) {
   1328                 count_delayed_oom_++;
   1329               }
   1330               break;
   1331             case HomogeneousSpaceCompactResult::kErrorReject:
   1332               // Reject due to disabled moving GC.
   1333               break;
   1334             case HomogeneousSpaceCompactResult::kErrorVMShuttingDown:
   1335               // Throw OOM by default.
   1336               break;
   1337             default: {
   1338               LOG(FATAL) << "Unimplemented homogeneous space compaction result "
   1339                          << static_cast<size_t>(result);
   1340             }
   1341           }
   1342           // Always print that we ran homogeneous space compation since this can cause jank.
   1343           VLOG(heap) << "Ran heap homogeneous space compaction, "
   1344                     << " requested defragmentation "
   1345                     << count_requested_homogeneous_space_compaction_.LoadSequentiallyConsistent()
   1346                     << " performed defragmentation "
   1347                     << count_performed_homogeneous_space_compaction_.LoadSequentiallyConsistent()
   1348                     << " ignored homogeneous space compaction "
   1349                     << count_ignored_homogeneous_space_compaction_.LoadSequentiallyConsistent()
   1350                     << " delayed count = "
   1351                     << count_delayed_oom_.LoadSequentiallyConsistent();
   1352         }
   1353         break;
   1354       }
   1355       case kAllocatorTypeNonMoving: {
   1356         // Try to transition the heap if the allocation failure was due to the space being full.
   1357         if (!IsOutOfMemoryOnAllocation<false>(allocator, alloc_size)) {
   1358           // If we aren't out of memory then the OOM was probably from the non moving space being
   1359           // full. Attempt to disable compaction and turn the main space into a non moving space.
   1360           DisableMovingGc();
   1361           // If we are still a moving GC then something must have caused the transition to fail.
   1362           if (IsMovingGc(collector_type_)) {
   1363             MutexLock mu(self, *gc_complete_lock_);
   1364             // If we couldn't disable moving GC, just throw OOME and return null.
   1365             LOG(WARNING) << "Couldn't disable moving GC with disable GC count "
   1366                          << disable_moving_gc_count_;
   1367           } else {
   1368             LOG(WARNING) << "Disabled moving GC due to the non moving space being full";
   1369             ptr = TryToAllocate<true, true>(self, allocator, alloc_size, bytes_allocated,
   1370                                             usable_size);
   1371           }
   1372         }
   1373         break;
   1374       }
   1375       default: {
   1376         // Do nothing for others allocators.
   1377       }
   1378     }
   1379   }
   1380   // If the allocation hasn't succeeded by this point, throw an OOM error.
   1381   if (ptr == nullptr) {
   1382     ThrowOutOfMemoryError(self, alloc_size, allocator);
   1383   }
   1384   return ptr;
   1385 }
   1386 
   1387 void Heap::SetTargetHeapUtilization(float target) {
   1388   DCHECK_GT(target, 0.0f);  // asserted in Java code
   1389   DCHECK_LT(target, 1.0f);
   1390   target_utilization_ = target;
   1391 }
   1392 
   1393 size_t Heap::GetObjectsAllocated() const {
   1394   size_t total = 0;
   1395   for (space::AllocSpace* space : alloc_spaces_) {
   1396     total += space->GetObjectsAllocated();
   1397   }
   1398   return total;
   1399 }
   1400 
   1401 uint64_t Heap::GetObjectsAllocatedEver() const {
   1402   return GetObjectsFreedEver() + GetObjectsAllocated();
   1403 }
   1404 
   1405 uint64_t Heap::GetBytesAllocatedEver() const {
   1406   return GetBytesFreedEver() + GetBytesAllocated();
   1407 }
   1408 
   1409 class InstanceCounter {
   1410  public:
   1411   InstanceCounter(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from, uint64_t* counts)
   1412       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   1413       : classes_(classes), use_is_assignable_from_(use_is_assignable_from), counts_(counts) {
   1414   }
   1415   static void Callback(mirror::Object* obj, void* arg)
   1416       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1417     InstanceCounter* instance_counter = reinterpret_cast<InstanceCounter*>(arg);
   1418     mirror::Class* instance_class = obj->GetClass();
   1419     CHECK(instance_class != nullptr);
   1420     for (size_t i = 0; i < instance_counter->classes_.size(); ++i) {
   1421       if (instance_counter->use_is_assignable_from_) {
   1422         if (instance_counter->classes_[i]->IsAssignableFrom(instance_class)) {
   1423           ++instance_counter->counts_[i];
   1424         }
   1425       } else if (instance_class == instance_counter->classes_[i]) {
   1426         ++instance_counter->counts_[i];
   1427       }
   1428     }
   1429   }
   1430 
   1431  private:
   1432   const std::vector<mirror::Class*>& classes_;
   1433   bool use_is_assignable_from_;
   1434   uint64_t* const counts_;
   1435   DISALLOW_COPY_AND_ASSIGN(InstanceCounter);
   1436 };
   1437 
   1438 void Heap::CountInstances(const std::vector<mirror::Class*>& classes, bool use_is_assignable_from,
   1439                           uint64_t* counts) {
   1440   // Can't do any GC in this function since this may move classes.
   1441   Thread* self = Thread::Current();
   1442   auto* old_cause = self->StartAssertNoThreadSuspension("CountInstances");
   1443   InstanceCounter counter(classes, use_is_assignable_from, counts);
   1444   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
   1445   VisitObjects(InstanceCounter::Callback, &counter);
   1446   self->EndAssertNoThreadSuspension(old_cause);
   1447 }
   1448 
   1449 class InstanceCollector {
   1450  public:
   1451   InstanceCollector(mirror::Class* c, int32_t max_count, std::vector<mirror::Object*>& instances)
   1452       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   1453       : class_(c), max_count_(max_count), instances_(instances) {
   1454   }
   1455   static void Callback(mirror::Object* obj, void* arg)
   1456       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1457     DCHECK(arg != nullptr);
   1458     InstanceCollector* instance_collector = reinterpret_cast<InstanceCollector*>(arg);
   1459     mirror::Class* instance_class = obj->GetClass();
   1460     if (instance_class == instance_collector->class_) {
   1461       if (instance_collector->max_count_ == 0 ||
   1462           instance_collector->instances_.size() < instance_collector->max_count_) {
   1463         instance_collector->instances_.push_back(obj);
   1464       }
   1465     }
   1466   }
   1467 
   1468  private:
   1469   mirror::Class* class_;
   1470   uint32_t max_count_;
   1471   std::vector<mirror::Object*>& instances_;
   1472   DISALLOW_COPY_AND_ASSIGN(InstanceCollector);
   1473 };
   1474 
   1475 void Heap::GetInstances(mirror::Class* c, int32_t max_count,
   1476                         std::vector<mirror::Object*>& instances) {
   1477   // Can't do any GC in this function since this may move classes.
   1478   Thread* self = Thread::Current();
   1479   auto* old_cause = self->StartAssertNoThreadSuspension("GetInstances");
   1480   InstanceCollector collector(c, max_count, instances);
   1481   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
   1482   VisitObjects(&InstanceCollector::Callback, &collector);
   1483   self->EndAssertNoThreadSuspension(old_cause);
   1484 }
   1485 
   1486 class ReferringObjectsFinder {
   1487  public:
   1488   ReferringObjectsFinder(mirror::Object* object, int32_t max_count,
   1489                          std::vector<mirror::Object*>& referring_objects)
   1490       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
   1491       : object_(object), max_count_(max_count), referring_objects_(referring_objects) {
   1492   }
   1493 
   1494   static void Callback(mirror::Object* obj, void* arg)
   1495       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   1496     reinterpret_cast<ReferringObjectsFinder*>(arg)->operator()(obj);
   1497   }
   1498 
   1499   // For bitmap Visit.
   1500   // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
   1501   // annotalysis on visitors.
   1502   void operator()(mirror::Object* o) const NO_THREAD_SAFETY_ANALYSIS {
   1503     o->VisitReferences<true>(*this, VoidFunctor());
   1504   }
   1505 
   1506   // For Object::VisitReferences.
   1507   void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
   1508       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1509     mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
   1510     if (ref == object_ && (max_count_ == 0 || referring_objects_.size() < max_count_)) {
   1511       referring_objects_.push_back(obj);
   1512     }
   1513   }
   1514 
   1515  private:
   1516   mirror::Object* object_;
   1517   uint32_t max_count_;
   1518   std::vector<mirror::Object*>& referring_objects_;
   1519   DISALLOW_COPY_AND_ASSIGN(ReferringObjectsFinder);
   1520 };
   1521 
   1522 void Heap::GetReferringObjects(mirror::Object* o, int32_t max_count,
   1523                                std::vector<mirror::Object*>& referring_objects) {
   1524   // Can't do any GC in this function since this may move the object o.
   1525   Thread* self = Thread::Current();
   1526   auto* old_cause = self->StartAssertNoThreadSuspension("GetReferringObjects");
   1527   ReferringObjectsFinder finder(o, max_count, referring_objects);
   1528   WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
   1529   VisitObjects(&ReferringObjectsFinder::Callback, &finder);
   1530   self->EndAssertNoThreadSuspension(old_cause);
   1531 }
   1532 
   1533 void Heap::CollectGarbage(bool clear_soft_references) {
   1534   // Even if we waited for a GC we still need to do another GC since weaks allocated during the
   1535   // last GC will not have necessarily been cleared.
   1536   CollectGarbageInternal(gc_plan_.back(), kGcCauseExplicit, clear_soft_references);
   1537 }
   1538 
   1539 HomogeneousSpaceCompactResult Heap::PerformHomogeneousSpaceCompact() {
   1540   Thread* self = Thread::Current();
   1541   // Inc requested homogeneous space compaction.
   1542   count_requested_homogeneous_space_compaction_++;
   1543   // Store performed homogeneous space compaction at a new request arrival.
   1544   ThreadList* tl = Runtime::Current()->GetThreadList();
   1545   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
   1546   Locks::mutator_lock_->AssertNotHeld(self);
   1547   {
   1548     ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
   1549     MutexLock mu(self, *gc_complete_lock_);
   1550     // Ensure there is only one GC at a time.
   1551     WaitForGcToCompleteLocked(kGcCauseHomogeneousSpaceCompact, self);
   1552     // Homogeneous space compaction is a copying transition, can't run it if the moving GC disable count
   1553     // is non zero.
   1554     // If the collector type changed to something which doesn't benefit from homogeneous space compaction,
   1555     // exit.
   1556     if (disable_moving_gc_count_ != 0 || IsMovingGc(collector_type_) ||
   1557         !main_space_->CanMoveObjects()) {
   1558       return HomogeneousSpaceCompactResult::kErrorReject;
   1559     }
   1560     collector_type_running_ = kCollectorTypeHomogeneousSpaceCompact;
   1561   }
   1562   if (Runtime::Current()->IsShuttingDown(self)) {
   1563     // Don't allow heap transitions to happen if the runtime is shutting down since these can
   1564     // cause objects to get finalized.
   1565     FinishGC(self, collector::kGcTypeNone);
   1566     return HomogeneousSpaceCompactResult::kErrorVMShuttingDown;
   1567   }
   1568   // Suspend all threads.
   1569   tl->SuspendAll();
   1570   uint64_t start_time = NanoTime();
   1571   // Launch compaction.
   1572   space::MallocSpace* to_space = main_space_backup_.release();
   1573   space::MallocSpace* from_space = main_space_;
   1574   to_space->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   1575   const uint64_t space_size_before_compaction = from_space->Size();
   1576   AddSpace(to_space);
   1577   Compact(to_space, from_space, kGcCauseHomogeneousSpaceCompact);
   1578   // Leave as prot read so that we can still run ROSAlloc verification on this space.
   1579   from_space->GetMemMap()->Protect(PROT_READ);
   1580   const uint64_t space_size_after_compaction = to_space->Size();
   1581   main_space_ = to_space;
   1582   main_space_backup_.reset(from_space);
   1583   RemoveSpace(from_space);
   1584   SetSpaceAsDefault(main_space_);  // Set as default to reset the proper dlmalloc space.
   1585   // Update performed homogeneous space compaction count.
   1586   count_performed_homogeneous_space_compaction_++;
   1587   // Print statics log and resume all threads.
   1588   uint64_t duration = NanoTime() - start_time;
   1589   VLOG(heap) << "Heap homogeneous space compaction took " << PrettyDuration(duration) << " size: "
   1590              << PrettySize(space_size_before_compaction) << " -> "
   1591              << PrettySize(space_size_after_compaction) << " compact-ratio: "
   1592              << std::fixed << static_cast<double>(space_size_after_compaction) /
   1593              static_cast<double>(space_size_before_compaction);
   1594   tl->ResumeAll();
   1595   // Finish GC.
   1596   reference_processor_.EnqueueClearedReferences(self);
   1597   GrowForUtilization(semi_space_collector_);
   1598   FinishGC(self, collector::kGcTypeFull);
   1599   return HomogeneousSpaceCompactResult::kSuccess;
   1600 }
   1601 
   1602 
   1603 void Heap::TransitionCollector(CollectorType collector_type) {
   1604   if (collector_type == collector_type_) {
   1605     return;
   1606   }
   1607   VLOG(heap) << "TransitionCollector: " << static_cast<int>(collector_type_)
   1608              << " -> " << static_cast<int>(collector_type);
   1609   uint64_t start_time = NanoTime();
   1610   uint32_t before_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
   1611   Runtime* const runtime = Runtime::Current();
   1612   ThreadList* const tl = runtime->GetThreadList();
   1613   Thread* const self = Thread::Current();
   1614   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
   1615   Locks::mutator_lock_->AssertNotHeld(self);
   1616   // Busy wait until we can GC (StartGC can fail if we have a non-zero
   1617   // compacting_gc_disable_count_, this should rarely occurs).
   1618   for (;;) {
   1619     {
   1620       ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
   1621       MutexLock mu(self, *gc_complete_lock_);
   1622       // Ensure there is only one GC at a time.
   1623       WaitForGcToCompleteLocked(kGcCauseCollectorTransition, self);
   1624       // Currently we only need a heap transition if we switch from a moving collector to a
   1625       // non-moving one, or visa versa.
   1626       const bool copying_transition = IsMovingGc(collector_type_) != IsMovingGc(collector_type);
   1627       // If someone else beat us to it and changed the collector before we could, exit.
   1628       // This is safe to do before the suspend all since we set the collector_type_running_ before
   1629       // we exit the loop. If another thread attempts to do the heap transition before we exit,
   1630       // then it would get blocked on WaitForGcToCompleteLocked.
   1631       if (collector_type == collector_type_) {
   1632         return;
   1633       }
   1634       // GC can be disabled if someone has a used GetPrimitiveArrayCritical but not yet released.
   1635       if (!copying_transition || disable_moving_gc_count_ == 0) {
   1636         // TODO: Not hard code in semi-space collector?
   1637         collector_type_running_ = copying_transition ? kCollectorTypeSS : collector_type;
   1638         break;
   1639       }
   1640     }
   1641     usleep(1000);
   1642   }
   1643   if (runtime->IsShuttingDown(self)) {
   1644     // Don't allow heap transitions to happen if the runtime is shutting down since these can
   1645     // cause objects to get finalized.
   1646     FinishGC(self, collector::kGcTypeNone);
   1647     return;
   1648   }
   1649   tl->SuspendAll();
   1650   switch (collector_type) {
   1651     case kCollectorTypeSS: {
   1652       if (!IsMovingGc(collector_type_)) {
   1653         // Create the bump pointer space from the backup space.
   1654         CHECK(main_space_backup_ != nullptr);
   1655         std::unique_ptr<MemMap> mem_map(main_space_backup_->ReleaseMemMap());
   1656         // We are transitioning from non moving GC -> moving GC, since we copied from the bump
   1657         // pointer space last transition it will be protected.
   1658         CHECK(mem_map != nullptr);
   1659         mem_map->Protect(PROT_READ | PROT_WRITE);
   1660         bump_pointer_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space",
   1661                                                                         mem_map.release());
   1662         AddSpace(bump_pointer_space_);
   1663         Compact(bump_pointer_space_, main_space_, kGcCauseCollectorTransition);
   1664         // Use the now empty main space mem map for the bump pointer temp space.
   1665         mem_map.reset(main_space_->ReleaseMemMap());
   1666         // Unset the pointers just in case.
   1667         if (dlmalloc_space_ == main_space_) {
   1668           dlmalloc_space_ = nullptr;
   1669         } else if (rosalloc_space_ == main_space_) {
   1670           rosalloc_space_ = nullptr;
   1671         }
   1672         // Remove the main space so that we don't try to trim it, this doens't work for debug
   1673         // builds since RosAlloc attempts to read the magic number from a protected page.
   1674         RemoveSpace(main_space_);
   1675         RemoveRememberedSet(main_space_);
   1676         delete main_space_;  // Delete the space since it has been removed.
   1677         main_space_ = nullptr;
   1678         RemoveRememberedSet(main_space_backup_.get());
   1679         main_space_backup_.reset(nullptr);  // Deletes the space.
   1680         temp_space_ = space::BumpPointerSpace::CreateFromMemMap("Bump pointer space 2",
   1681                                                                 mem_map.release());
   1682         AddSpace(temp_space_);
   1683       }
   1684       break;
   1685     }
   1686     case kCollectorTypeMS:
   1687       // Fall through.
   1688     case kCollectorTypeCMS: {
   1689       if (IsMovingGc(collector_type_)) {
   1690         CHECK(temp_space_ != nullptr);
   1691         std::unique_ptr<MemMap> mem_map(temp_space_->ReleaseMemMap());
   1692         RemoveSpace(temp_space_);
   1693         temp_space_ = nullptr;
   1694         mem_map->Protect(PROT_READ | PROT_WRITE);
   1695         CreateMainMallocSpace(mem_map.get(), kDefaultInitialSize, mem_map->Size(),
   1696                               mem_map->Size());
   1697         mem_map.release();
   1698         // Compact to the main space from the bump pointer space, don't need to swap semispaces.
   1699         AddSpace(main_space_);
   1700         Compact(main_space_, bump_pointer_space_, kGcCauseCollectorTransition);
   1701         mem_map.reset(bump_pointer_space_->ReleaseMemMap());
   1702         RemoveSpace(bump_pointer_space_);
   1703         bump_pointer_space_ = nullptr;
   1704         const char* name = kUseRosAlloc ? kRosAllocSpaceName[1] : kDlMallocSpaceName[1];
   1705         // Temporarily unprotect the backup mem map so rosalloc can write the debug magic number.
   1706         if (kIsDebugBuild && kUseRosAlloc) {
   1707           mem_map->Protect(PROT_READ | PROT_WRITE);
   1708         }
   1709         main_space_backup_.reset(CreateMallocSpaceFromMemMap(mem_map.get(), kDefaultInitialSize,
   1710                                                              mem_map->Size(), mem_map->Size(),
   1711                                                              name, true));
   1712         if (kIsDebugBuild && kUseRosAlloc) {
   1713           mem_map->Protect(PROT_NONE);
   1714         }
   1715         mem_map.release();
   1716       }
   1717       break;
   1718     }
   1719     default: {
   1720       LOG(FATAL) << "Attempted to transition to invalid collector type "
   1721                  << static_cast<size_t>(collector_type);
   1722       break;
   1723     }
   1724   }
   1725   ChangeCollector(collector_type);
   1726   tl->ResumeAll();
   1727   // Can't call into java code with all threads suspended.
   1728   reference_processor_.EnqueueClearedReferences(self);
   1729   uint64_t duration = NanoTime() - start_time;
   1730   GrowForUtilization(semi_space_collector_);
   1731   FinishGC(self, collector::kGcTypeFull);
   1732   int32_t after_allocated = num_bytes_allocated_.LoadSequentiallyConsistent();
   1733   int32_t delta_allocated = before_allocated - after_allocated;
   1734   std::string saved_str;
   1735   if (delta_allocated >= 0) {
   1736     saved_str = " saved at least " + PrettySize(delta_allocated);
   1737   } else {
   1738     saved_str = " expanded " + PrettySize(-delta_allocated);
   1739   }
   1740   VLOG(heap) << "Heap transition to " << process_state_ << " took "
   1741       << PrettyDuration(duration) << saved_str;
   1742 }
   1743 
   1744 void Heap::ChangeCollector(CollectorType collector_type) {
   1745   // TODO: Only do this with all mutators suspended to avoid races.
   1746   if (collector_type != collector_type_) {
   1747     if (collector_type == kCollectorTypeMC) {
   1748       // Don't allow mark compact unless support is compiled in.
   1749       CHECK(kMarkCompactSupport);
   1750     }
   1751     collector_type_ = collector_type;
   1752     gc_plan_.clear();
   1753     switch (collector_type_) {
   1754       case kCollectorTypeCC:  // Fall-through.
   1755       case kCollectorTypeMC:  // Fall-through.
   1756       case kCollectorTypeSS:  // Fall-through.
   1757       case kCollectorTypeGSS: {
   1758         gc_plan_.push_back(collector::kGcTypeFull);
   1759         if (use_tlab_) {
   1760           ChangeAllocator(kAllocatorTypeTLAB);
   1761         } else {
   1762           ChangeAllocator(kAllocatorTypeBumpPointer);
   1763         }
   1764         break;
   1765       }
   1766       case kCollectorTypeMS: {
   1767         gc_plan_.push_back(collector::kGcTypeSticky);
   1768         gc_plan_.push_back(collector::kGcTypePartial);
   1769         gc_plan_.push_back(collector::kGcTypeFull);
   1770         ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
   1771         break;
   1772       }
   1773       case kCollectorTypeCMS: {
   1774         gc_plan_.push_back(collector::kGcTypeSticky);
   1775         gc_plan_.push_back(collector::kGcTypePartial);
   1776         gc_plan_.push_back(collector::kGcTypeFull);
   1777         ChangeAllocator(kUseRosAlloc ? kAllocatorTypeRosAlloc : kAllocatorTypeDlMalloc);
   1778         break;
   1779       }
   1780       default: {
   1781         LOG(FATAL) << "Unimplemented";
   1782       }
   1783     }
   1784     if (IsGcConcurrent()) {
   1785       concurrent_start_bytes_ =
   1786           std::max(max_allowed_footprint_, kMinConcurrentRemainingBytes) - kMinConcurrentRemainingBytes;
   1787     } else {
   1788       concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
   1789     }
   1790   }
   1791 }
   1792 
   1793 // Special compacting collector which uses sub-optimal bin packing to reduce zygote space size.
   1794 class ZygoteCompactingCollector FINAL : public collector::SemiSpace {
   1795  public:
   1796   explicit ZygoteCompactingCollector(gc::Heap* heap) : SemiSpace(heap, false, "zygote collector"),
   1797       bin_live_bitmap_(nullptr), bin_mark_bitmap_(nullptr) {
   1798   }
   1799 
   1800   void BuildBins(space::ContinuousSpace* space) {
   1801     bin_live_bitmap_ = space->GetLiveBitmap();
   1802     bin_mark_bitmap_ = space->GetMarkBitmap();
   1803     BinContext context;
   1804     context.prev_ = reinterpret_cast<uintptr_t>(space->Begin());
   1805     context.collector_ = this;
   1806     WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
   1807     // Note: This requires traversing the space in increasing order of object addresses.
   1808     bin_live_bitmap_->Walk(Callback, reinterpret_cast<void*>(&context));
   1809     // Add the last bin which spans after the last object to the end of the space.
   1810     AddBin(reinterpret_cast<uintptr_t>(space->End()) - context.prev_, context.prev_);
   1811   }
   1812 
   1813  private:
   1814   struct BinContext {
   1815     uintptr_t prev_;  // The end of the previous object.
   1816     ZygoteCompactingCollector* collector_;
   1817   };
   1818   // Maps from bin sizes to locations.
   1819   std::multimap<size_t, uintptr_t> bins_;
   1820   // Live bitmap of the space which contains the bins.
   1821   accounting::ContinuousSpaceBitmap* bin_live_bitmap_;
   1822   // Mark bitmap of the space which contains the bins.
   1823   accounting::ContinuousSpaceBitmap* bin_mark_bitmap_;
   1824 
   1825   static void Callback(mirror::Object* obj, void* arg)
   1826       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   1827     DCHECK(arg != nullptr);
   1828     BinContext* context = reinterpret_cast<BinContext*>(arg);
   1829     ZygoteCompactingCollector* collector = context->collector_;
   1830     uintptr_t object_addr = reinterpret_cast<uintptr_t>(obj);
   1831     size_t bin_size = object_addr - context->prev_;
   1832     // Add the bin consisting of the end of the previous object to the start of the current object.
   1833     collector->AddBin(bin_size, context->prev_);
   1834     context->prev_ = object_addr + RoundUp(obj->SizeOf(), kObjectAlignment);
   1835   }
   1836 
   1837   void AddBin(size_t size, uintptr_t position) {
   1838     if (size != 0) {
   1839       bins_.insert(std::make_pair(size, position));
   1840     }
   1841   }
   1842 
   1843   virtual bool ShouldSweepSpace(space::ContinuousSpace* space) const {
   1844     // Don't sweep any spaces since we probably blasted the internal accounting of the free list
   1845     // allocator.
   1846     return false;
   1847   }
   1848 
   1849   virtual mirror::Object* MarkNonForwardedObject(mirror::Object* obj)
   1850       EXCLUSIVE_LOCKS_REQUIRED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
   1851     size_t object_size = RoundUp(obj->SizeOf(), kObjectAlignment);
   1852     mirror::Object* forward_address;
   1853     // Find the smallest bin which we can move obj in.
   1854     auto it = bins_.lower_bound(object_size);
   1855     if (it == bins_.end()) {
   1856       // No available space in the bins, place it in the target space instead (grows the zygote
   1857       // space).
   1858       size_t bytes_allocated;
   1859       forward_address = to_space_->Alloc(self_, object_size, &bytes_allocated, nullptr);
   1860       if (to_space_live_bitmap_ != nullptr) {
   1861         to_space_live_bitmap_->Set(forward_address);
   1862       } else {
   1863         GetHeap()->GetNonMovingSpace()->GetLiveBitmap()->Set(forward_address);
   1864         GetHeap()->GetNonMovingSpace()->GetMarkBitmap()->Set(forward_address);
   1865       }
   1866     } else {
   1867       size_t size = it->first;
   1868       uintptr_t pos = it->second;
   1869       bins_.erase(it);  // Erase the old bin which we replace with the new smaller bin.
   1870       forward_address = reinterpret_cast<mirror::Object*>(pos);
   1871       // Set the live and mark bits so that sweeping system weaks works properly.
   1872       bin_live_bitmap_->Set(forward_address);
   1873       bin_mark_bitmap_->Set(forward_address);
   1874       DCHECK_GE(size, object_size);
   1875       AddBin(size - object_size, pos + object_size);  // Add a new bin with the remaining space.
   1876     }
   1877     // Copy the object over to its new location.
   1878     memcpy(reinterpret_cast<void*>(forward_address), obj, object_size);
   1879     if (kUseBakerOrBrooksReadBarrier) {
   1880       obj->AssertReadBarrierPointer();
   1881       if (kUseBrooksReadBarrier) {
   1882         DCHECK_EQ(forward_address->GetReadBarrierPointer(), obj);
   1883         forward_address->SetReadBarrierPointer(forward_address);
   1884       }
   1885       forward_address->AssertReadBarrierPointer();
   1886     }
   1887     return forward_address;
   1888   }
   1889 };
   1890 
   1891 void Heap::UnBindBitmaps() {
   1892   TimingLogger::ScopedTiming t("UnBindBitmaps", GetCurrentGcIteration()->GetTimings());
   1893   for (const auto& space : GetContinuousSpaces()) {
   1894     if (space->IsContinuousMemMapAllocSpace()) {
   1895       space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
   1896       if (alloc_space->HasBoundBitmaps()) {
   1897         alloc_space->UnBindBitmaps();
   1898       }
   1899     }
   1900   }
   1901 }
   1902 
   1903 void Heap::PreZygoteFork() {
   1904   CollectGarbageInternal(collector::kGcTypeFull, kGcCauseBackground, false);
   1905   Thread* self = Thread::Current();
   1906   MutexLock mu(self, zygote_creation_lock_);
   1907   // Try to see if we have any Zygote spaces.
   1908   if (have_zygote_space_) {
   1909     return;
   1910   }
   1911   VLOG(heap) << "Starting PreZygoteFork";
   1912   // Trim the pages at the end of the non moving space.
   1913   non_moving_space_->Trim();
   1914   // The end of the non-moving space may be protected, unprotect it so that we can copy the zygote
   1915   // there.
   1916   non_moving_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   1917   const bool same_space = non_moving_space_ == main_space_;
   1918   if (kCompactZygote) {
   1919     // Can't compact if the non moving space is the same as the main space.
   1920     DCHECK(semi_space_collector_ != nullptr);
   1921     // Temporarily disable rosalloc verification because the zygote
   1922     // compaction will mess up the rosalloc internal metadata.
   1923     ScopedDisableRosAllocVerification disable_rosalloc_verif(this);
   1924     ZygoteCompactingCollector zygote_collector(this);
   1925     zygote_collector.BuildBins(non_moving_space_);
   1926     // Create a new bump pointer space which we will compact into.
   1927     space::BumpPointerSpace target_space("zygote bump space", non_moving_space_->End(),
   1928                                          non_moving_space_->Limit());
   1929     // Compact the bump pointer space to a new zygote bump pointer space.
   1930     bool reset_main_space = false;
   1931     if (IsMovingGc(collector_type_)) {
   1932       zygote_collector.SetFromSpace(bump_pointer_space_);
   1933     } else {
   1934       CHECK(main_space_ != nullptr);
   1935       // Copy from the main space.
   1936       zygote_collector.SetFromSpace(main_space_);
   1937       reset_main_space = true;
   1938     }
   1939     zygote_collector.SetToSpace(&target_space);
   1940     zygote_collector.SetSwapSemiSpaces(false);
   1941     zygote_collector.Run(kGcCauseCollectorTransition, false);
   1942     if (reset_main_space) {
   1943       main_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   1944       madvise(main_space_->Begin(), main_space_->Capacity(), MADV_DONTNEED);
   1945       MemMap* mem_map = main_space_->ReleaseMemMap();
   1946       RemoveSpace(main_space_);
   1947       space::Space* old_main_space = main_space_;
   1948       CreateMainMallocSpace(mem_map, kDefaultInitialSize, mem_map->Size(), mem_map->Size());
   1949       delete old_main_space;
   1950       AddSpace(main_space_);
   1951     } else {
   1952       bump_pointer_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   1953     }
   1954     if (temp_space_ != nullptr) {
   1955       CHECK(temp_space_->IsEmpty());
   1956     }
   1957     total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
   1958     total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
   1959     // Update the end and write out image.
   1960     non_moving_space_->SetEnd(target_space.End());
   1961     non_moving_space_->SetLimit(target_space.Limit());
   1962     VLOG(heap) << "Zygote space size " << non_moving_space_->Size() << " bytes";
   1963   }
   1964   // Change the collector to the post zygote one.
   1965   ChangeCollector(foreground_collector_type_);
   1966   // Save the old space so that we can remove it after we complete creating the zygote space.
   1967   space::MallocSpace* old_alloc_space = non_moving_space_;
   1968   // Turn the current alloc space into a zygote space and obtain the new alloc space composed of
   1969   // the remaining available space.
   1970   // Remove the old space before creating the zygote space since creating the zygote space sets
   1971   // the old alloc space's bitmaps to nullptr.
   1972   RemoveSpace(old_alloc_space);
   1973   if (collector::SemiSpace::kUseRememberedSet) {
   1974     // Sanity bound check.
   1975     FindRememberedSetFromSpace(old_alloc_space)->AssertAllDirtyCardsAreWithinSpace();
   1976     // Remove the remembered set for the now zygote space (the old
   1977     // non-moving space). Note now that we have compacted objects into
   1978     // the zygote space, the data in the remembered set is no longer
   1979     // needed. The zygote space will instead have a mod-union table
   1980     // from this point on.
   1981     RemoveRememberedSet(old_alloc_space);
   1982   }
   1983   space::ZygoteSpace* zygote_space = old_alloc_space->CreateZygoteSpace("alloc space",
   1984                                                                         low_memory_mode_,
   1985                                                                         &non_moving_space_);
   1986   CHECK(!non_moving_space_->CanMoveObjects());
   1987   if (same_space) {
   1988     main_space_ = non_moving_space_;
   1989     SetSpaceAsDefault(main_space_);
   1990   }
   1991   delete old_alloc_space;
   1992   CHECK(zygote_space != nullptr) << "Failed creating zygote space";
   1993   AddSpace(zygote_space);
   1994   non_moving_space_->SetFootprintLimit(non_moving_space_->Capacity());
   1995   AddSpace(non_moving_space_);
   1996   have_zygote_space_ = true;
   1997   // Enable large object space allocations.
   1998   large_object_threshold_ = kDefaultLargeObjectThreshold;
   1999   // Create the zygote space mod union table.
   2000   accounting::ModUnionTable* mod_union_table =
   2001       new accounting::ModUnionTableCardCache("zygote space mod-union table", this, zygote_space);
   2002   CHECK(mod_union_table != nullptr) << "Failed to create zygote space mod-union table";
   2003   AddModUnionTable(mod_union_table);
   2004   if (collector::SemiSpace::kUseRememberedSet) {
   2005     // Add a new remembered set for the post-zygote non-moving space.
   2006     accounting::RememberedSet* post_zygote_non_moving_space_rem_set =
   2007         new accounting::RememberedSet("Post-zygote non-moving space remembered set", this,
   2008                                       non_moving_space_);
   2009     CHECK(post_zygote_non_moving_space_rem_set != nullptr)
   2010         << "Failed to create post-zygote non-moving space remembered set";
   2011     AddRememberedSet(post_zygote_non_moving_space_rem_set);
   2012   }
   2013 }
   2014 
   2015 void Heap::FlushAllocStack() {
   2016   MarkAllocStackAsLive(allocation_stack_.get());
   2017   allocation_stack_->Reset();
   2018 }
   2019 
   2020 void Heap::MarkAllocStack(accounting::ContinuousSpaceBitmap* bitmap1,
   2021                           accounting::ContinuousSpaceBitmap* bitmap2,
   2022                           accounting::LargeObjectBitmap* large_objects,
   2023                           accounting::ObjectStack* stack) {
   2024   DCHECK(bitmap1 != nullptr);
   2025   DCHECK(bitmap2 != nullptr);
   2026   mirror::Object** limit = stack->End();
   2027   for (mirror::Object** it = stack->Begin(); it != limit; ++it) {
   2028     const mirror::Object* obj = *it;
   2029     if (!kUseThreadLocalAllocationStack || obj != nullptr) {
   2030       if (bitmap1->HasAddress(obj)) {
   2031         bitmap1->Set(obj);
   2032       } else if (bitmap2->HasAddress(obj)) {
   2033         bitmap2->Set(obj);
   2034       } else {
   2035         large_objects->Set(obj);
   2036       }
   2037     }
   2038   }
   2039 }
   2040 
   2041 void Heap::SwapSemiSpaces() {
   2042   CHECK(bump_pointer_space_ != nullptr);
   2043   CHECK(temp_space_ != nullptr);
   2044   std::swap(bump_pointer_space_, temp_space_);
   2045 }
   2046 
   2047 void Heap::Compact(space::ContinuousMemMapAllocSpace* target_space,
   2048                    space::ContinuousMemMapAllocSpace* source_space,
   2049                    GcCause gc_cause) {
   2050   CHECK(kMovingCollector);
   2051   if (target_space != source_space) {
   2052     // Don't swap spaces since this isn't a typical semi space collection.
   2053     semi_space_collector_->SetSwapSemiSpaces(false);
   2054     semi_space_collector_->SetFromSpace(source_space);
   2055     semi_space_collector_->SetToSpace(target_space);
   2056     semi_space_collector_->Run(gc_cause, false);
   2057   } else {
   2058     CHECK(target_space->IsBumpPointerSpace())
   2059         << "In-place compaction is only supported for bump pointer spaces";
   2060     mark_compact_collector_->SetSpace(target_space->AsBumpPointerSpace());
   2061     mark_compact_collector_->Run(kGcCauseCollectorTransition, false);
   2062   }
   2063 }
   2064 
   2065 collector::GcType Heap::CollectGarbageInternal(collector::GcType gc_type, GcCause gc_cause,
   2066                                                bool clear_soft_references) {
   2067   Thread* self = Thread::Current();
   2068   Runtime* runtime = Runtime::Current();
   2069   // If the heap can't run the GC, silently fail and return that no GC was run.
   2070   switch (gc_type) {
   2071     case collector::kGcTypePartial: {
   2072       if (!have_zygote_space_) {
   2073         return collector::kGcTypeNone;
   2074       }
   2075       break;
   2076     }
   2077     default: {
   2078       // Other GC types don't have any special cases which makes them not runnable. The main case
   2079       // here is full GC.
   2080     }
   2081   }
   2082   ScopedThreadStateChange tsc(self, kWaitingPerformingGc);
   2083   Locks::mutator_lock_->AssertNotHeld(self);
   2084   if (self->IsHandlingStackOverflow()) {
   2085     LOG(WARNING) << "Performing GC on a thread that is handling a stack overflow.";
   2086   }
   2087   bool compacting_gc;
   2088   {
   2089     gc_complete_lock_->AssertNotHeld(self);
   2090     ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
   2091     MutexLock mu(self, *gc_complete_lock_);
   2092     // Ensure there is only one GC at a time.
   2093     WaitForGcToCompleteLocked(gc_cause, self);
   2094     compacting_gc = IsMovingGc(collector_type_);
   2095     // GC can be disabled if someone has a used GetPrimitiveArrayCritical.
   2096     if (compacting_gc && disable_moving_gc_count_ != 0) {
   2097       LOG(WARNING) << "Skipping GC due to disable moving GC count " << disable_moving_gc_count_;
   2098       return collector::kGcTypeNone;
   2099     }
   2100     collector_type_running_ = collector_type_;
   2101   }
   2102 
   2103   if (gc_cause == kGcCauseForAlloc && runtime->HasStatsEnabled()) {
   2104     ++runtime->GetStats()->gc_for_alloc_count;
   2105     ++self->GetStats()->gc_for_alloc_count;
   2106   }
   2107   uint64_t gc_start_time_ns = NanoTime();
   2108   uint64_t gc_start_size = GetBytesAllocated();
   2109   // Approximate allocation rate in bytes / second.
   2110   uint64_t ms_delta = NsToMs(gc_start_time_ns - last_gc_time_ns_);
   2111   // Back to back GCs can cause 0 ms of wait time in between GC invocations.
   2112   if (LIKELY(ms_delta != 0)) {
   2113     allocation_rate_ = ((gc_start_size - last_gc_size_) * 1000) / ms_delta;
   2114     ATRACE_INT("Allocation rate KB/s", allocation_rate_ / KB);
   2115     VLOG(heap) << "Allocation rate: " << PrettySize(allocation_rate_) << "/s";
   2116   }
   2117 
   2118   DCHECK_LT(gc_type, collector::kGcTypeMax);
   2119   DCHECK_NE(gc_type, collector::kGcTypeNone);
   2120 
   2121   collector::GarbageCollector* collector = nullptr;
   2122   // TODO: Clean this up.
   2123   if (compacting_gc) {
   2124     DCHECK(current_allocator_ == kAllocatorTypeBumpPointer ||
   2125            current_allocator_ == kAllocatorTypeTLAB);
   2126     switch (collector_type_) {
   2127       case kCollectorTypeSS:
   2128         // Fall-through.
   2129       case kCollectorTypeGSS:
   2130         semi_space_collector_->SetFromSpace(bump_pointer_space_);
   2131         semi_space_collector_->SetToSpace(temp_space_);
   2132         semi_space_collector_->SetSwapSemiSpaces(true);
   2133         collector = semi_space_collector_;
   2134         break;
   2135       case kCollectorTypeCC:
   2136         collector = concurrent_copying_collector_;
   2137         break;
   2138       case kCollectorTypeMC:
   2139         mark_compact_collector_->SetSpace(bump_pointer_space_);
   2140         collector = mark_compact_collector_;
   2141         break;
   2142       default:
   2143         LOG(FATAL) << "Invalid collector type " << static_cast<size_t>(collector_type_);
   2144     }
   2145     if (collector != mark_compact_collector_) {
   2146       temp_space_->GetMemMap()->Protect(PROT_READ | PROT_WRITE);
   2147       CHECK(temp_space_->IsEmpty());
   2148     }
   2149     gc_type = collector::kGcTypeFull;  // TODO: Not hard code this in.
   2150   } else if (current_allocator_ == kAllocatorTypeRosAlloc ||
   2151       current_allocator_ == kAllocatorTypeDlMalloc) {
   2152     collector = FindCollectorByGcType(gc_type);
   2153   } else {
   2154     LOG(FATAL) << "Invalid current allocator " << current_allocator_;
   2155   }
   2156   CHECK(collector != nullptr)
   2157       << "Could not find garbage collector with collector_type="
   2158       << static_cast<size_t>(collector_type_) << " and gc_type=" << gc_type;
   2159   collector->Run(gc_cause, clear_soft_references || runtime->IsZygote());
   2160   total_objects_freed_ever_ += GetCurrentGcIteration()->GetFreedObjects();
   2161   total_bytes_freed_ever_ += GetCurrentGcIteration()->GetFreedBytes();
   2162   RequestHeapTrim();
   2163   // Enqueue cleared references.
   2164   reference_processor_.EnqueueClearedReferences(self);
   2165   // Grow the heap so that we know when to perform the next GC.
   2166   GrowForUtilization(collector);
   2167   const size_t duration = GetCurrentGcIteration()->GetDurationNs();
   2168   const std::vector<uint64_t>& pause_times = GetCurrentGcIteration()->GetPauseTimes();
   2169   // Print the GC if it is an explicit GC (e.g. Runtime.gc()) or a slow GC
   2170   // (mutator time blocked >= long_pause_log_threshold_).
   2171   bool log_gc = gc_cause == kGcCauseExplicit;
   2172   if (!log_gc && CareAboutPauseTimes()) {
   2173     // GC for alloc pauses the allocating thread, so consider it as a pause.
   2174     log_gc = duration > long_gc_log_threshold_ ||
   2175         (gc_cause == kGcCauseForAlloc && duration > long_pause_log_threshold_);
   2176     for (uint64_t pause : pause_times) {
   2177       log_gc = log_gc || pause >= long_pause_log_threshold_;
   2178     }
   2179   }
   2180   if (log_gc) {
   2181     const size_t percent_free = GetPercentFree();
   2182     const size_t current_heap_size = GetBytesAllocated();
   2183     const size_t total_memory = GetTotalMemory();
   2184     std::ostringstream pause_string;
   2185     for (size_t i = 0; i < pause_times.size(); ++i) {
   2186         pause_string << PrettyDuration((pause_times[i] / 1000) * 1000)
   2187                      << ((i != pause_times.size() - 1) ? "," : "");
   2188     }
   2189     LOG(INFO) << gc_cause << " " << collector->GetName()
   2190               << " GC freed "  << current_gc_iteration_.GetFreedObjects() << "("
   2191               << PrettySize(current_gc_iteration_.GetFreedBytes()) << ") AllocSpace objects, "
   2192               << current_gc_iteration_.GetFreedLargeObjects() << "("
   2193               << PrettySize(current_gc_iteration_.GetFreedLargeObjectBytes()) << ") LOS objects, "
   2194               << percent_free << "% free, " << PrettySize(current_heap_size) << "/"
   2195               << PrettySize(total_memory) << ", " << "paused " << pause_string.str()
   2196               << " total " << PrettyDuration((duration / 1000) * 1000);
   2197     VLOG(heap) << ConstDumpable<TimingLogger>(*current_gc_iteration_.GetTimings());
   2198   }
   2199   FinishGC(self, gc_type);
   2200   // Inform DDMS that a GC completed.
   2201   Dbg::GcDidFinish();
   2202   return gc_type;
   2203 }
   2204 
   2205 void Heap::FinishGC(Thread* self, collector::GcType gc_type) {
   2206   MutexLock mu(self, *gc_complete_lock_);
   2207   collector_type_running_ = kCollectorTypeNone;
   2208   if (gc_type != collector::kGcTypeNone) {
   2209     last_gc_type_ = gc_type;
   2210   }
   2211   // Wake anyone who may have been waiting for the GC to complete.
   2212   gc_complete_cond_->Broadcast(self);
   2213 }
   2214 
   2215 static void RootMatchesObjectVisitor(mirror::Object** root, void* arg, uint32_t /*thread_id*/,
   2216                                      RootType /*root_type*/) {
   2217   mirror::Object* obj = reinterpret_cast<mirror::Object*>(arg);
   2218   if (*root == obj) {
   2219     LOG(INFO) << "Object " << obj << " is a root";
   2220   }
   2221 }
   2222 
   2223 class ScanVisitor {
   2224  public:
   2225   void operator()(const mirror::Object* obj) const {
   2226     LOG(ERROR) << "Would have rescanned object " << obj;
   2227   }
   2228 };
   2229 
   2230 // Verify a reference from an object.
   2231 class VerifyReferenceVisitor {
   2232  public:
   2233   explicit VerifyReferenceVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
   2234       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_)
   2235       : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {}
   2236 
   2237   size_t GetFailureCount() const {
   2238     return fail_count_->LoadSequentiallyConsistent();
   2239   }
   2240 
   2241   void operator()(mirror::Class* klass, mirror::Reference* ref) const
   2242       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2243     if (verify_referent_) {
   2244       VerifyReference(ref, ref->GetReferent(), mirror::Reference::ReferentOffset());
   2245     }
   2246   }
   2247 
   2248   void operator()(mirror::Object* obj, MemberOffset offset, bool /*is_static*/) const
   2249       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2250     VerifyReference(obj, obj->GetFieldObject<mirror::Object>(offset), offset);
   2251   }
   2252 
   2253   bool IsLive(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
   2254     return heap_->IsLiveObjectLocked(obj, true, false, true);
   2255   }
   2256 
   2257   static void VerifyRootCallback(mirror::Object** root, void* arg, uint32_t thread_id,
   2258                                  RootType root_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
   2259     VerifyReferenceVisitor* visitor = reinterpret_cast<VerifyReferenceVisitor*>(arg);
   2260     if (!visitor->VerifyReference(nullptr, *root, MemberOffset(0))) {
   2261       LOG(ERROR) << "Root " << *root << " is dead with type " << PrettyTypeOf(*root)
   2262           << " thread_id= " << thread_id << " root_type= " << root_type;
   2263     }
   2264   }
   2265 
   2266  private:
   2267   // TODO: Fix the no thread safety analysis.
   2268   // Returns false on failure.
   2269   bool VerifyReference(mirror::Object* obj, mirror::Object* ref, MemberOffset offset) const
   2270       NO_THREAD_SAFETY_ANALYSIS {
   2271     if (ref == nullptr || IsLive(ref)) {
   2272       // Verify that the reference is live.
   2273       return true;
   2274     }
   2275     if (fail_count_->FetchAndAddSequentiallyConsistent(1) == 0) {
   2276       // Print message on only on first failure to prevent spam.
   2277       LOG(ERROR) << "!!!!!!!!!!!!!!Heap corruption detected!!!!!!!!!!!!!!!!!!!";
   2278     }
   2279     if (obj != nullptr) {
   2280       // Only do this part for non roots.
   2281       accounting::CardTable* card_table = heap_->GetCardTable();
   2282       accounting::ObjectStack* alloc_stack = heap_->allocation_stack_.get();
   2283       accounting::ObjectStack* live_stack = heap_->live_stack_.get();
   2284       byte* card_addr = card_table->CardFromAddr(obj);
   2285       LOG(ERROR) << "Object " << obj << " references dead object " << ref << " at offset "
   2286                  << offset << "\n card value = " << static_cast<int>(*card_addr);
   2287       if (heap_->IsValidObjectAddress(obj->GetClass())) {
   2288         LOG(ERROR) << "Obj type " << PrettyTypeOf(obj);
   2289       } else {
   2290         LOG(ERROR) << "Object " << obj << " class(" << obj->GetClass() << ") not a heap address";
   2291       }
   2292 
   2293       // Attempt to find the class inside of the recently freed objects.
   2294       space::ContinuousSpace* ref_space = heap_->FindContinuousSpaceFromObject(ref, true);
   2295       if (ref_space != nullptr && ref_space->IsMallocSpace()) {
   2296         space::MallocSpace* space = ref_space->AsMallocSpace();
   2297         mirror::Class* ref_class = space->FindRecentFreedObject(ref);
   2298         if (ref_class != nullptr) {
   2299           LOG(ERROR) << "Reference " << ref << " found as a recently freed object with class "
   2300                      << PrettyClass(ref_class);
   2301         } else {
   2302           LOG(ERROR) << "Reference " << ref << " not found as a recently freed object";
   2303         }
   2304       }
   2305 
   2306       if (ref->GetClass() != nullptr && heap_->IsValidObjectAddress(ref->GetClass()) &&
   2307           ref->GetClass()->IsClass()) {
   2308         LOG(ERROR) << "Ref type " << PrettyTypeOf(ref);
   2309       } else {
   2310         LOG(ERROR) << "Ref " << ref << " class(" << ref->GetClass()
   2311                    << ") is not a valid heap address";
   2312       }
   2313 
   2314       card_table->CheckAddrIsInCardTable(reinterpret_cast<const byte*>(obj));
   2315       void* cover_begin = card_table->AddrFromCard(card_addr);
   2316       void* cover_end = reinterpret_cast<void*>(reinterpret_cast<size_t>(cover_begin) +
   2317           accounting::CardTable::kCardSize);
   2318       LOG(ERROR) << "Card " << reinterpret_cast<void*>(card_addr) << " covers " << cover_begin
   2319           << "-" << cover_end;
   2320       accounting::ContinuousSpaceBitmap* bitmap =
   2321           heap_->GetLiveBitmap()->GetContinuousSpaceBitmap(obj);
   2322 
   2323       if (bitmap == nullptr) {
   2324         LOG(ERROR) << "Object " << obj << " has no bitmap";
   2325         if (!VerifyClassClass(obj->GetClass())) {
   2326           LOG(ERROR) << "Object " << obj << " failed class verification!";
   2327         }
   2328       } else {
   2329         // Print out how the object is live.
   2330         if (bitmap->Test(obj)) {
   2331           LOG(ERROR) << "Object " << obj << " found in live bitmap";
   2332         }
   2333         if (alloc_stack->Contains(const_cast<mirror::Object*>(obj))) {
   2334           LOG(ERROR) << "Object " << obj << " found in allocation stack";
   2335         }
   2336         if (live_stack->Contains(const_cast<mirror::Object*>(obj))) {
   2337           LOG(ERROR) << "Object " << obj << " found in live stack";
   2338         }
   2339         if (alloc_stack->Contains(const_cast<mirror::Object*>(ref))) {
   2340           LOG(ERROR) << "Ref " << ref << " found in allocation stack";
   2341         }
   2342         if (live_stack->Contains(const_cast<mirror::Object*>(ref))) {
   2343           LOG(ERROR) << "Ref " << ref << " found in live stack";
   2344         }
   2345         // Attempt to see if the card table missed the reference.
   2346         ScanVisitor scan_visitor;
   2347         byte* byte_cover_begin = reinterpret_cast<byte*>(card_table->AddrFromCard(card_addr));
   2348         card_table->Scan(bitmap, byte_cover_begin,
   2349                          byte_cover_begin + accounting::CardTable::kCardSize, scan_visitor);
   2350       }
   2351 
   2352       // Search to see if any of the roots reference our object.
   2353       void* arg = const_cast<void*>(reinterpret_cast<const void*>(obj));
   2354       Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
   2355 
   2356       // Search to see if any of the roots reference our reference.
   2357       arg = const_cast<void*>(reinterpret_cast<const void*>(ref));
   2358       Runtime::Current()->VisitRoots(&RootMatchesObjectVisitor, arg);
   2359     }
   2360     return false;
   2361   }
   2362 
   2363   Heap* const heap_;
   2364   Atomic<size_t>* const fail_count_;
   2365   const bool verify_referent_;
   2366 };
   2367 
   2368 // Verify all references within an object, for use with HeapBitmap::Visit.
   2369 class VerifyObjectVisitor {
   2370  public:
   2371   explicit VerifyObjectVisitor(Heap* heap, Atomic<size_t>* fail_count, bool verify_referent)
   2372       : heap_(heap), fail_count_(fail_count), verify_referent_(verify_referent) {
   2373   }
   2374 
   2375   void operator()(mirror::Object* obj) const
   2376       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   2377     // Note: we are verifying the references in obj but not obj itself, this is because obj must
   2378     // be live or else how did we find it in the live bitmap?
   2379     VerifyReferenceVisitor visitor(heap_, fail_count_, verify_referent_);
   2380     // The class doesn't count as a reference but we should verify it anyways.
   2381     obj->VisitReferences<true>(visitor, visitor);
   2382   }
   2383 
   2384   static void VisitCallback(mirror::Object* obj, void* arg)
   2385       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   2386     VerifyObjectVisitor* visitor = reinterpret_cast<VerifyObjectVisitor*>(arg);
   2387     visitor->operator()(obj);
   2388   }
   2389 
   2390   size_t GetFailureCount() const {
   2391     return fail_count_->LoadSequentiallyConsistent();
   2392   }
   2393 
   2394  private:
   2395   Heap* const heap_;
   2396   Atomic<size_t>* const fail_count_;
   2397   const bool verify_referent_;
   2398 };
   2399 
   2400 void Heap::PushOnAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
   2401   // Slow path, the allocation stack push back must have already failed.
   2402   DCHECK(!allocation_stack_->AtomicPushBack(*obj));
   2403   do {
   2404     // TODO: Add handle VerifyObject.
   2405     StackHandleScope<1> hs(self);
   2406     HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
   2407     // Push our object into the reserve region of the allocaiton stack. This is only required due
   2408     // to heap verification requiring that roots are live (either in the live bitmap or in the
   2409     // allocation stack).
   2410     CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
   2411     CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
   2412   } while (!allocation_stack_->AtomicPushBack(*obj));
   2413 }
   2414 
   2415 void Heap::PushOnThreadLocalAllocationStackWithInternalGC(Thread* self, mirror::Object** obj) {
   2416   // Slow path, the allocation stack push back must have already failed.
   2417   DCHECK(!self->PushOnThreadLocalAllocationStack(*obj));
   2418   mirror::Object** start_address;
   2419   mirror::Object** end_address;
   2420   while (!allocation_stack_->AtomicBumpBack(kThreadLocalAllocationStackSize, &start_address,
   2421                                             &end_address)) {
   2422     // TODO: Add handle VerifyObject.
   2423     StackHandleScope<1> hs(self);
   2424     HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
   2425     // Push our object into the reserve region of the allocaiton stack. This is only required due
   2426     // to heap verification requiring that roots are live (either in the live bitmap or in the
   2427     // allocation stack).
   2428     CHECK(allocation_stack_->AtomicPushBackIgnoreGrowthLimit(*obj));
   2429     // Push into the reserve allocation stack.
   2430     CollectGarbageInternal(collector::kGcTypeSticky, kGcCauseForAlloc, false);
   2431   }
   2432   self->SetThreadLocalAllocationStack(start_address, end_address);
   2433   // Retry on the new thread-local allocation stack.
   2434   CHECK(self->PushOnThreadLocalAllocationStack(*obj));  // Must succeed.
   2435 }
   2436 
   2437 // Must do this with mutators suspended since we are directly accessing the allocation stacks.
   2438 size_t Heap::VerifyHeapReferences(bool verify_referents) {
   2439   Thread* self = Thread::Current();
   2440   Locks::mutator_lock_->AssertExclusiveHeld(self);
   2441   // Lets sort our allocation stacks so that we can efficiently binary search them.
   2442   allocation_stack_->Sort();
   2443   live_stack_->Sort();
   2444   // Since we sorted the allocation stack content, need to revoke all
   2445   // thread-local allocation stacks.
   2446   RevokeAllThreadLocalAllocationStacks(self);
   2447   Atomic<size_t> fail_count_(0);
   2448   VerifyObjectVisitor visitor(this, &fail_count_, verify_referents);
   2449   // Verify objects in the allocation stack since these will be objects which were:
   2450   // 1. Allocated prior to the GC (pre GC verification).
   2451   // 2. Allocated during the GC (pre sweep GC verification).
   2452   // We don't want to verify the objects in the live stack since they themselves may be
   2453   // pointing to dead objects if they are not reachable.
   2454   VisitObjects(VerifyObjectVisitor::VisitCallback, &visitor);
   2455   // Verify the roots:
   2456   Runtime::Current()->VisitRoots(VerifyReferenceVisitor::VerifyRootCallback, &visitor);
   2457   if (visitor.GetFailureCount() > 0) {
   2458     // Dump mod-union tables.
   2459     for (const auto& table_pair : mod_union_tables_) {
   2460       accounting::ModUnionTable* mod_union_table = table_pair.second;
   2461       mod_union_table->Dump(LOG(ERROR) << mod_union_table->GetName() << ": ");
   2462     }
   2463     // Dump remembered sets.
   2464     for (const auto& table_pair : remembered_sets_) {
   2465       accounting::RememberedSet* remembered_set = table_pair.second;
   2466       remembered_set->Dump(LOG(ERROR) << remembered_set->GetName() << ": ");
   2467     }
   2468     DumpSpaces(LOG(ERROR));
   2469   }
   2470   return visitor.GetFailureCount();
   2471 }
   2472 
   2473 class VerifyReferenceCardVisitor {
   2474  public:
   2475   VerifyReferenceCardVisitor(Heap* heap, bool* failed)
   2476       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_,
   2477                             Locks::heap_bitmap_lock_)
   2478       : heap_(heap), failed_(failed) {
   2479   }
   2480 
   2481   // TODO: Fix lock analysis to not use NO_THREAD_SAFETY_ANALYSIS, requires support for
   2482   // annotalysis on visitors.
   2483   void operator()(mirror::Object* obj, MemberOffset offset, bool is_static) const
   2484       NO_THREAD_SAFETY_ANALYSIS {
   2485     mirror::Object* ref = obj->GetFieldObject<mirror::Object>(offset);
   2486     // Filter out class references since changing an object's class does not mark the card as dirty.
   2487     // Also handles large objects, since the only reference they hold is a class reference.
   2488     if (ref != nullptr && !ref->IsClass()) {
   2489       accounting::CardTable* card_table = heap_->GetCardTable();
   2490       // If the object is not dirty and it is referencing something in the live stack other than
   2491       // class, then it must be on a dirty card.
   2492       if (!card_table->AddrIsInCardTable(obj)) {
   2493         LOG(ERROR) << "Object " << obj << " is not in the address range of the card table";
   2494         *failed_ = true;
   2495       } else if (!card_table->IsDirty(obj)) {
   2496         // TODO: Check mod-union tables.
   2497         // Card should be either kCardDirty if it got re-dirtied after we aged it, or
   2498         // kCardDirty - 1 if it didnt get touched since we aged it.
   2499         accounting::ObjectStack* live_stack = heap_->live_stack_.get();
   2500         if (live_stack->ContainsSorted(ref)) {
   2501           if (live_stack->ContainsSorted(obj)) {
   2502             LOG(ERROR) << "Object " << obj << " found in live stack";
   2503           }
   2504           if (heap_->GetLiveBitmap()->Test(obj)) {
   2505             LOG(ERROR) << "Object " << obj << " found in live bitmap";
   2506           }
   2507           LOG(ERROR) << "Object " << obj << " " << PrettyTypeOf(obj)
   2508                     << " references " << ref << " " << PrettyTypeOf(ref) << " in live stack";
   2509 
   2510           // Print which field of the object is dead.
   2511           if (!obj->IsObjectArray()) {
   2512             mirror::Class* klass = is_static ? obj->AsClass() : obj->GetClass();
   2513             CHECK(klass != NULL);
   2514             mirror::ObjectArray<mirror::ArtField>* fields = is_static ? klass->GetSFields()
   2515                                                                       : klass->GetIFields();
   2516             CHECK(fields != NULL);
   2517             for (int32_t i = 0; i < fields->GetLength(); ++i) {
   2518               mirror::ArtField* cur = fields->Get(i);
   2519               if (cur->GetOffset().Int32Value() == offset.Int32Value()) {
   2520                 LOG(ERROR) << (is_static ? "Static " : "") << "field in the live stack is "
   2521                           << PrettyField(cur);
   2522                 break;
   2523               }
   2524             }
   2525           } else {
   2526             mirror::ObjectArray<mirror::Object>* object_array =
   2527                 obj->AsObjectArray<mirror::Object>();
   2528             for (int32_t i = 0; i < object_array->GetLength(); ++i) {
   2529               if (object_array->Get(i) == ref) {
   2530                 LOG(ERROR) << (is_static ? "Static " : "") << "obj[" << i << "] = ref";
   2531               }
   2532             }
   2533           }
   2534 
   2535           *failed_ = true;
   2536         }
   2537       }
   2538     }
   2539   }
   2540 
   2541  private:
   2542   Heap* const heap_;
   2543   bool* const failed_;
   2544 };
   2545 
   2546 class VerifyLiveStackReferences {
   2547  public:
   2548   explicit VerifyLiveStackReferences(Heap* heap)
   2549       : heap_(heap),
   2550         failed_(false) {}
   2551 
   2552   void operator()(mirror::Object* obj) const
   2553       SHARED_LOCKS_REQUIRED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
   2554     VerifyReferenceCardVisitor visitor(heap_, const_cast<bool*>(&failed_));
   2555     obj->VisitReferences<true>(visitor, VoidFunctor());
   2556   }
   2557 
   2558   bool Failed() const {
   2559     return failed_;
   2560   }
   2561 
   2562  private:
   2563   Heap* const heap_;
   2564   bool failed_;
   2565 };
   2566 
   2567 bool Heap::VerifyMissingCardMarks() {
   2568   Thread* self = Thread::Current();
   2569   Locks::mutator_lock_->AssertExclusiveHeld(self);
   2570   // We need to sort the live stack since we binary search it.
   2571   live_stack_->Sort();
   2572   // Since we sorted the allocation stack content, need to revoke all
   2573   // thread-local allocation stacks.
   2574   RevokeAllThreadLocalAllocationStacks(self);
   2575   VerifyLiveStackReferences visitor(this);
   2576   GetLiveBitmap()->Visit(visitor);
   2577   // We can verify objects in the live stack since none of these should reference dead objects.
   2578   for (mirror::Object** it = live_stack_->Begin(); it != live_stack_->End(); ++it) {
   2579     if (!kUseThreadLocalAllocationStack || *it != nullptr) {
   2580       visitor(*it);
   2581     }
   2582   }
   2583   return !visitor.Failed();
   2584 }
   2585 
   2586 void Heap::SwapStacks(Thread* self) {
   2587   if (kUseThreadLocalAllocationStack) {
   2588     live_stack_->AssertAllZero();
   2589   }
   2590   allocation_stack_.swap(live_stack_);
   2591 }
   2592 
   2593 void Heap::RevokeAllThreadLocalAllocationStacks(Thread* self) {
   2594   // This must be called only during the pause.
   2595   CHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
   2596   MutexLock mu(self, *Locks::runtime_shutdown_lock_);
   2597   MutexLock mu2(self, *Locks::thread_list_lock_);
   2598   std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
   2599   for (Thread* t : thread_list) {
   2600     t->RevokeThreadLocalAllocationStack();
   2601   }
   2602 }
   2603 
   2604 void Heap::AssertAllBumpPointerSpaceThreadLocalBuffersAreRevoked() {
   2605   if (kIsDebugBuild) {
   2606     if (bump_pointer_space_ != nullptr) {
   2607       bump_pointer_space_->AssertAllThreadLocalBuffersAreRevoked();
   2608     }
   2609   }
   2610 }
   2611 
   2612 accounting::ModUnionTable* Heap::FindModUnionTableFromSpace(space::Space* space) {
   2613   auto it = mod_union_tables_.find(space);
   2614   if (it == mod_union_tables_.end()) {
   2615     return nullptr;
   2616   }
   2617   return it->second;
   2618 }
   2619 
   2620 accounting::RememberedSet* Heap::FindRememberedSetFromSpace(space::Space* space) {
   2621   auto it = remembered_sets_.find(space);
   2622   if (it == remembered_sets_.end()) {
   2623     return nullptr;
   2624   }
   2625   return it->second;
   2626 }
   2627 
   2628 void Heap::ProcessCards(TimingLogger* timings, bool use_rem_sets) {
   2629   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   2630   // Clear cards and keep track of cards cleared in the mod-union table.
   2631   for (const auto& space : continuous_spaces_) {
   2632     accounting::ModUnionTable* table = FindModUnionTableFromSpace(space);
   2633     accounting::RememberedSet* rem_set = FindRememberedSetFromSpace(space);
   2634     if (table != nullptr) {
   2635       const char* name = space->IsZygoteSpace() ? "ZygoteModUnionClearCards" :
   2636           "ImageModUnionClearCards";
   2637       TimingLogger::ScopedTiming t(name, timings);
   2638       table->ClearCards();
   2639     } else if (use_rem_sets && rem_set != nullptr) {
   2640       DCHECK(collector::SemiSpace::kUseRememberedSet && collector_type_ == kCollectorTypeGSS)
   2641           << static_cast<int>(collector_type_);
   2642       TimingLogger::ScopedTiming t("AllocSpaceRemSetClearCards", timings);
   2643       rem_set->ClearCards();
   2644     } else if (space->GetType() != space::kSpaceTypeBumpPointerSpace) {
   2645       TimingLogger::ScopedTiming t("AllocSpaceClearCards", timings);
   2646       // No mod union table for the AllocSpace. Age the cards so that the GC knows that these cards
   2647       // were dirty before the GC started.
   2648       // TODO: Need to use atomic for the case where aged(cleaning thread) -> dirty(other thread)
   2649       // -> clean(cleaning thread).
   2650       // The races are we either end up with: Aged card, unaged card. Since we have the checkpoint
   2651       // roots and then we scan / update mod union tables after. We will always scan either card.
   2652       // If we end up with the non aged card, we scan it it in the pause.
   2653       card_table_->ModifyCardsAtomic(space->Begin(), space->End(), AgeCardVisitor(),
   2654                                      VoidFunctor());
   2655     }
   2656   }
   2657 }
   2658 
   2659 static void IdentityMarkHeapReferenceCallback(mirror::HeapReference<mirror::Object>*, void*) {
   2660 }
   2661 
   2662 void Heap::PreGcVerificationPaused(collector::GarbageCollector* gc) {
   2663   Thread* const self = Thread::Current();
   2664   TimingLogger* const timings = current_gc_iteration_.GetTimings();
   2665   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   2666   if (verify_pre_gc_heap_) {
   2667     TimingLogger::ScopedTiming t("(Paused)PreGcVerifyHeapReferences", timings);
   2668     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
   2669     size_t failures = VerifyHeapReferences();
   2670     if (failures > 0) {
   2671       LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
   2672           << " failures";
   2673     }
   2674   }
   2675   // Check that all objects which reference things in the live stack are on dirty cards.
   2676   if (verify_missing_card_marks_) {
   2677     TimingLogger::ScopedTiming t("(Paused)PreGcVerifyMissingCardMarks", timings);
   2678     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
   2679     SwapStacks(self);
   2680     // Sort the live stack so that we can quickly binary search it later.
   2681     CHECK(VerifyMissingCardMarks()) << "Pre " << gc->GetName()
   2682                                     << " missing card mark verification failed\n" << DumpSpaces();
   2683     SwapStacks(self);
   2684   }
   2685   if (verify_mod_union_table_) {
   2686     TimingLogger::ScopedTiming t("(Paused)PreGcVerifyModUnionTables", timings);
   2687     ReaderMutexLock reader_lock(self, *Locks::heap_bitmap_lock_);
   2688     for (const auto& table_pair : mod_union_tables_) {
   2689       accounting::ModUnionTable* mod_union_table = table_pair.second;
   2690       mod_union_table->UpdateAndMarkReferences(IdentityMarkHeapReferenceCallback, nullptr);
   2691       mod_union_table->Verify();
   2692     }
   2693   }
   2694 }
   2695 
   2696 void Heap::PreGcVerification(collector::GarbageCollector* gc) {
   2697   if (verify_pre_gc_heap_ || verify_missing_card_marks_ || verify_mod_union_table_) {
   2698     collector::GarbageCollector::ScopedPause pause(gc);
   2699     PreGcVerificationPaused(gc);
   2700   }
   2701 }
   2702 
   2703 void Heap::PrePauseRosAllocVerification(collector::GarbageCollector* gc) {
   2704   // TODO: Add a new runtime option for this?
   2705   if (verify_pre_gc_rosalloc_) {
   2706     RosAllocVerification(current_gc_iteration_.GetTimings(), "PreGcRosAllocVerification");
   2707   }
   2708 }
   2709 
   2710 void Heap::PreSweepingGcVerification(collector::GarbageCollector* gc) {
   2711   Thread* const self = Thread::Current();
   2712   TimingLogger* const timings = current_gc_iteration_.GetTimings();
   2713   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   2714   // Called before sweeping occurs since we want to make sure we are not going so reclaim any
   2715   // reachable objects.
   2716   if (verify_pre_sweeping_heap_) {
   2717     TimingLogger::ScopedTiming t("(Paused)PostSweepingVerifyHeapReferences", timings);
   2718     CHECK_NE(self->GetState(), kRunnable);
   2719     WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
   2720     // Swapping bound bitmaps does nothing.
   2721     gc->SwapBitmaps();
   2722     // Pass in false since concurrent reference processing can mean that the reference referents
   2723     // may point to dead objects at the point which PreSweepingGcVerification is called.
   2724     size_t failures = VerifyHeapReferences(false);
   2725     if (failures > 0) {
   2726       LOG(FATAL) << "Pre sweeping " << gc->GetName() << " GC verification failed with " << failures
   2727           << " failures";
   2728     }
   2729     gc->SwapBitmaps();
   2730   }
   2731   if (verify_pre_sweeping_rosalloc_) {
   2732     RosAllocVerification(timings, "PreSweepingRosAllocVerification");
   2733   }
   2734 }
   2735 
   2736 void Heap::PostGcVerificationPaused(collector::GarbageCollector* gc) {
   2737   // Only pause if we have to do some verification.
   2738   Thread* const self = Thread::Current();
   2739   TimingLogger* const timings = GetCurrentGcIteration()->GetTimings();
   2740   TimingLogger::ScopedTiming t(__FUNCTION__, timings);
   2741   if (verify_system_weaks_) {
   2742     ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
   2743     collector::MarkSweep* mark_sweep = down_cast<collector::MarkSweep*>(gc);
   2744     mark_sweep->VerifySystemWeaks();
   2745   }
   2746   if (verify_post_gc_rosalloc_) {
   2747     RosAllocVerification(timings, "(Paused)PostGcRosAllocVerification");
   2748   }
   2749   if (verify_post_gc_heap_) {
   2750     TimingLogger::ScopedTiming t("(Paused)PostGcVerifyHeapReferences", timings);
   2751     ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
   2752     size_t failures = VerifyHeapReferences();
   2753     if (failures > 0) {
   2754       LOG(FATAL) << "Pre " << gc->GetName() << " heap verification failed with " << failures
   2755           << " failures";
   2756     }
   2757   }
   2758 }
   2759 
   2760 void Heap::PostGcVerification(collector::GarbageCollector* gc) {
   2761   if (verify_system_weaks_ || verify_post_gc_rosalloc_ || verify_post_gc_heap_) {
   2762     collector::GarbageCollector::ScopedPause pause(gc);
   2763     PostGcVerificationPaused(gc);
   2764   }
   2765 }
   2766 
   2767 void Heap::RosAllocVerification(TimingLogger* timings, const char* name) {
   2768   TimingLogger::ScopedTiming t(name, timings);
   2769   for (const auto& space : continuous_spaces_) {
   2770     if (space->IsRosAllocSpace()) {
   2771       VLOG(heap) << name << " : " << space->GetName();
   2772       space->AsRosAllocSpace()->Verify();
   2773     }
   2774   }
   2775 }
   2776 
   2777 collector::GcType Heap::WaitForGcToComplete(GcCause cause, Thread* self) {
   2778   ScopedThreadStateChange tsc(self, kWaitingForGcToComplete);
   2779   MutexLock mu(self, *gc_complete_lock_);
   2780   return WaitForGcToCompleteLocked(cause, self);
   2781 }
   2782 
   2783 collector::GcType Heap::WaitForGcToCompleteLocked(GcCause cause, Thread* self) {
   2784   collector::GcType last_gc_type = collector::kGcTypeNone;
   2785   uint64_t wait_start = NanoTime();
   2786   while (collector_type_running_ != kCollectorTypeNone) {
   2787     ATRACE_BEGIN("GC: Wait For Completion");
   2788     // We must wait, change thread state then sleep on gc_complete_cond_;
   2789     gc_complete_cond_->Wait(self);
   2790     last_gc_type = last_gc_type_;
   2791     ATRACE_END();
   2792   }
   2793   uint64_t wait_time = NanoTime() - wait_start;
   2794   total_wait_time_ += wait_time;
   2795   if (wait_time > long_pause_log_threshold_) {
   2796     LOG(INFO) << "WaitForGcToComplete blocked for " << PrettyDuration(wait_time)
   2797         << " for cause " << cause;
   2798   }
   2799   return last_gc_type;
   2800 }
   2801 
   2802 void Heap::DumpForSigQuit(std::ostream& os) {
   2803   os << "Heap: " << GetPercentFree() << "% free, " << PrettySize(GetBytesAllocated()) << "/"
   2804      << PrettySize(GetTotalMemory()) << "; " << GetObjectsAllocated() << " objects\n";
   2805   DumpGcPerformanceInfo(os);
   2806 }
   2807 
   2808 size_t Heap::GetPercentFree() {
   2809   return static_cast<size_t>(100.0f * static_cast<float>(GetFreeMemory()) / max_allowed_footprint_);
   2810 }
   2811 
   2812 void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
   2813   if (max_allowed_footprint > GetMaxMemory()) {
   2814     VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint) << " to "
   2815              << PrettySize(GetMaxMemory());
   2816     max_allowed_footprint = GetMaxMemory();
   2817   }
   2818   max_allowed_footprint_ = max_allowed_footprint;
   2819 }
   2820 
   2821 bool Heap::IsMovableObject(const mirror::Object* obj) const {
   2822   if (kMovingCollector) {
   2823     space::Space* space = FindContinuousSpaceFromObject(obj, true);
   2824     if (space != nullptr) {
   2825       // TODO: Check large object?
   2826       return space->CanMoveObjects();
   2827     }
   2828   }
   2829   return false;
   2830 }
   2831 
   2832 void Heap::UpdateMaxNativeFootprint() {
   2833   size_t native_size = native_bytes_allocated_.LoadRelaxed();
   2834   // TODO: Tune the native heap utilization to be a value other than the java heap utilization.
   2835   size_t target_size = native_size / GetTargetHeapUtilization();
   2836   if (target_size > native_size + max_free_) {
   2837     target_size = native_size + max_free_;
   2838   } else if (target_size < native_size + min_free_) {
   2839     target_size = native_size + min_free_;
   2840   }
   2841   native_footprint_gc_watermark_ = std::min(growth_limit_, target_size);
   2842 }
   2843 
   2844 collector::GarbageCollector* Heap::FindCollectorByGcType(collector::GcType gc_type) {
   2845   for (const auto& collector : garbage_collectors_) {
   2846     if (collector->GetCollectorType() == collector_type_ &&
   2847         collector->GetGcType() == gc_type) {
   2848       return collector;
   2849     }
   2850   }
   2851   return nullptr;
   2852 }
   2853 
   2854 double Heap::HeapGrowthMultiplier() const {
   2855   // If we don't care about pause times we are background, so return 1.0.
   2856   if (!CareAboutPauseTimes() || IsLowMemoryMode()) {
   2857     return 1.0;
   2858   }
   2859   return foreground_heap_growth_multiplier_;
   2860 }
   2861 
   2862 void Heap::GrowForUtilization(collector::GarbageCollector* collector_ran) {
   2863   // We know what our utilization is at this moment.
   2864   // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
   2865   const uint64_t bytes_allocated = GetBytesAllocated();
   2866   last_gc_size_ = bytes_allocated;
   2867   last_gc_time_ns_ = NanoTime();
   2868   uint64_t target_size;
   2869   collector::GcType gc_type = collector_ran->GetGcType();
   2870   if (gc_type != collector::kGcTypeSticky) {
   2871     // Grow the heap for non sticky GC.
   2872     const float multiplier = HeapGrowthMultiplier();  // Use the multiplier to grow more for
   2873     // foreground.
   2874     intptr_t delta = bytes_allocated / GetTargetHeapUtilization() - bytes_allocated;
   2875     CHECK_GE(delta, 0);
   2876     target_size = bytes_allocated + delta * multiplier;
   2877     target_size = std::min(target_size,
   2878                            bytes_allocated + static_cast<uint64_t>(max_free_ * multiplier));
   2879     target_size = std::max(target_size,
   2880                            bytes_allocated + static_cast<uint64_t>(min_free_ * multiplier));
   2881     native_need_to_run_finalization_ = true;
   2882     next_gc_type_ = collector::kGcTypeSticky;
   2883   } else {
   2884     collector::GcType non_sticky_gc_type =
   2885         have_zygote_space_ ? collector::kGcTypePartial : collector::kGcTypeFull;
   2886     // Find what the next non sticky collector will be.
   2887     collector::GarbageCollector* non_sticky_collector = FindCollectorByGcType(non_sticky_gc_type);
   2888     // If the throughput of the current sticky GC >= throughput of the non sticky collector, then
   2889     // do another sticky collection next.
   2890     // We also check that the bytes allocated aren't over the footprint limit in order to prevent a
   2891     // pathological case where dead objects which aren't reclaimed by sticky could get accumulated
   2892     // if the sticky GC throughput always remained >= the full/partial throughput.
   2893     if (current_gc_iteration_.GetEstimatedThroughput() * kStickyGcThroughputAdjustment >=
   2894         non_sticky_collector->GetEstimatedMeanThroughput() &&
   2895         non_sticky_collector->NumberOfIterations() > 0 &&
   2896         bytes_allocated <= max_allowed_footprint_) {
   2897       next_gc_type_ = collector::kGcTypeSticky;
   2898     } else {
   2899       next_gc_type_ = non_sticky_gc_type;
   2900     }
   2901     // If we have freed enough memory, shrink the heap back down.
   2902     if (bytes_allocated + max_free_ < max_allowed_footprint_) {
   2903       target_size = bytes_allocated + max_free_;
   2904     } else {
   2905       target_size = std::max(bytes_allocated, static_cast<uint64_t>(max_allowed_footprint_));
   2906     }
   2907   }
   2908   if (!ignore_max_footprint_) {
   2909     SetIdealFootprint(target_size);
   2910     if (IsGcConcurrent()) {
   2911       // Calculate when to perform the next ConcurrentGC.
   2912       // Calculate the estimated GC duration.
   2913       const double gc_duration_seconds = NsToMs(current_gc_iteration_.GetDurationNs()) / 1000.0;
   2914       // Estimate how many remaining bytes we will have when we need to start the next GC.
   2915       size_t remaining_bytes = allocation_rate_ * gc_duration_seconds;
   2916       remaining_bytes = std::min(remaining_bytes, kMaxConcurrentRemainingBytes);
   2917       remaining_bytes = std::max(remaining_bytes, kMinConcurrentRemainingBytes);
   2918       if (UNLIKELY(remaining_bytes > max_allowed_footprint_)) {
   2919         // A never going to happen situation that from the estimated allocation rate we will exceed
   2920         // the applications entire footprint with the given estimated allocation rate. Schedule
   2921         // another GC nearly straight away.
   2922         remaining_bytes = kMinConcurrentRemainingBytes;
   2923       }
   2924       DCHECK_LE(remaining_bytes, max_allowed_footprint_);
   2925       DCHECK_LE(max_allowed_footprint_, GetMaxMemory());
   2926       // Start a concurrent GC when we get close to the estimated remaining bytes. When the
   2927       // allocation rate is very high, remaining_bytes could tell us that we should start a GC
   2928       // right away.
   2929       concurrent_start_bytes_ = std::max(max_allowed_footprint_ - remaining_bytes,
   2930                                          static_cast<size_t>(bytes_allocated));
   2931     }
   2932   }
   2933 }
   2934 
   2935 void Heap::ClearGrowthLimit() {
   2936   growth_limit_ = capacity_;
   2937   non_moving_space_->ClearGrowthLimit();
   2938 }
   2939 
   2940 void Heap::AddFinalizerReference(Thread* self, mirror::Object** object) {
   2941   ScopedObjectAccess soa(self);
   2942   ScopedLocalRef<jobject> arg(self->GetJniEnv(), soa.AddLocalReference<jobject>(*object));
   2943   jvalue args[1];
   2944   args[0].l = arg.get();
   2945   InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_FinalizerReference_add, args);
   2946   // Restore object in case it gets moved.
   2947   *object = soa.Decode<mirror::Object*>(arg.get());
   2948 }
   2949 
   2950 void Heap::RequestConcurrentGCAndSaveObject(Thread* self, mirror::Object** obj) {
   2951   StackHandleScope<1> hs(self);
   2952   HandleWrapper<mirror::Object> wrapper(hs.NewHandleWrapper(obj));
   2953   RequestConcurrentGC(self);
   2954 }
   2955 
   2956 void Heap::RequestConcurrentGC(Thread* self) {
   2957   // Make sure that we can do a concurrent GC.
   2958   Runtime* runtime = Runtime::Current();
   2959   if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
   2960       self->IsHandlingStackOverflow()) {
   2961     return;
   2962   }
   2963   // We already have a request pending, no reason to start more until we update
   2964   // concurrent_start_bytes_.
   2965   concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
   2966   JNIEnv* env = self->GetJniEnv();
   2967   DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
   2968   DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != nullptr);
   2969   env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
   2970                             WellKnownClasses::java_lang_Daemons_requestGC);
   2971   CHECK(!env->ExceptionCheck());
   2972 }
   2973 
   2974 void Heap::ConcurrentGC(Thread* self) {
   2975   if (Runtime::Current()->IsShuttingDown(self)) {
   2976     return;
   2977   }
   2978   // Wait for any GCs currently running to finish.
   2979   if (WaitForGcToComplete(kGcCauseBackground, self) == collector::kGcTypeNone) {
   2980     // If the we can't run the GC type we wanted to run, find the next appropriate one and try that
   2981     // instead. E.g. can't do partial, so do full instead.
   2982     if (CollectGarbageInternal(next_gc_type_, kGcCauseBackground, false) ==
   2983         collector::kGcTypeNone) {
   2984       for (collector::GcType gc_type : gc_plan_) {
   2985         // Attempt to run the collector, if we succeed, we are done.
   2986         if (gc_type > next_gc_type_ &&
   2987             CollectGarbageInternal(gc_type, kGcCauseBackground, false) != collector::kGcTypeNone) {
   2988           break;
   2989         }
   2990       }
   2991     }
   2992   }
   2993 }
   2994 
   2995 void Heap::RequestCollectorTransition(CollectorType desired_collector_type, uint64_t delta_time) {
   2996   Thread* self = Thread::Current();
   2997   {
   2998     MutexLock mu(self, *heap_trim_request_lock_);
   2999     if (desired_collector_type_ == desired_collector_type) {
   3000       return;
   3001     }
   3002     heap_transition_or_trim_target_time_ =
   3003         std::max(heap_transition_or_trim_target_time_, NanoTime() + delta_time);
   3004     desired_collector_type_ = desired_collector_type;
   3005   }
   3006   SignalHeapTrimDaemon(self);
   3007 }
   3008 
   3009 void Heap::RequestHeapTrim() {
   3010   // GC completed and now we must decide whether to request a heap trim (advising pages back to the
   3011   // kernel) or not. Issuing a request will also cause trimming of the libc heap. As a trim scans
   3012   // a space it will hold its lock and can become a cause of jank.
   3013   // Note, the large object space self trims and the Zygote space was trimmed and unchanging since
   3014   // forking.
   3015 
   3016   // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
   3017   // because that only marks object heads, so a large array looks like lots of empty space. We
   3018   // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
   3019   // to utilization (which is probably inversely proportional to how much benefit we can expect).
   3020   // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
   3021   // not how much use we're making of those pages.
   3022 
   3023   Thread* self = Thread::Current();
   3024   Runtime* runtime = Runtime::Current();
   3025   if (runtime == nullptr || !runtime->IsFinishedStarting() || runtime->IsShuttingDown(self) ||
   3026       runtime->IsZygote()) {
   3027     // Ignore the request if we are the zygote to prevent app launching lag due to sleep in heap
   3028     // trimmer daemon. b/17310019
   3029     // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
   3030     // Also: we do not wish to start a heap trim if the runtime is shutting down (a racy check
   3031     // as we don't hold the lock while requesting the trim).
   3032     return;
   3033   }
   3034   {
   3035     MutexLock mu(self, *heap_trim_request_lock_);
   3036     if (last_trim_time_ + kHeapTrimWait >= NanoTime()) {
   3037       // We have done a heap trim in the last kHeapTrimWait nanosecs, don't request another one
   3038       // just yet.
   3039       return;
   3040     }
   3041     heap_trim_request_pending_ = true;
   3042     uint64_t current_time = NanoTime();
   3043     if (heap_transition_or_trim_target_time_ < current_time) {
   3044       heap_transition_or_trim_target_time_ = current_time + kHeapTrimWait;
   3045     }
   3046   }
   3047   // Notify the daemon thread which will actually do the heap trim.
   3048   SignalHeapTrimDaemon(self);
   3049 }
   3050 
   3051 void Heap::SignalHeapTrimDaemon(Thread* self) {
   3052   JNIEnv* env = self->GetJniEnv();
   3053   DCHECK(WellKnownClasses::java_lang_Daemons != nullptr);
   3054   DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != nullptr);
   3055   env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
   3056                             WellKnownClasses::java_lang_Daemons_requestHeapTrim);
   3057   CHECK(!env->ExceptionCheck());
   3058 }
   3059 
   3060 void Heap::RevokeThreadLocalBuffers(Thread* thread) {
   3061   if (rosalloc_space_ != nullptr) {
   3062     rosalloc_space_->RevokeThreadLocalBuffers(thread);
   3063   }
   3064   if (bump_pointer_space_ != nullptr) {
   3065     bump_pointer_space_->RevokeThreadLocalBuffers(thread);
   3066   }
   3067 }
   3068 
   3069 void Heap::RevokeRosAllocThreadLocalBuffers(Thread* thread) {
   3070   if (rosalloc_space_ != nullptr) {
   3071     rosalloc_space_->RevokeThreadLocalBuffers(thread);
   3072   }
   3073 }
   3074 
   3075 void Heap::RevokeAllThreadLocalBuffers() {
   3076   if (rosalloc_space_ != nullptr) {
   3077     rosalloc_space_->RevokeAllThreadLocalBuffers();
   3078   }
   3079   if (bump_pointer_space_ != nullptr) {
   3080     bump_pointer_space_->RevokeAllThreadLocalBuffers();
   3081   }
   3082 }
   3083 
   3084 bool Heap::IsGCRequestPending() const {
   3085   return concurrent_start_bytes_ != std::numeric_limits<size_t>::max();
   3086 }
   3087 
   3088 void Heap::RunFinalization(JNIEnv* env) {
   3089   // Can't do this in WellKnownClasses::Init since System is not properly set up at that point.
   3090   if (WellKnownClasses::java_lang_System_runFinalization == nullptr) {
   3091     CHECK(WellKnownClasses::java_lang_System != nullptr);
   3092     WellKnownClasses::java_lang_System_runFinalization =
   3093         CacheMethod(env, WellKnownClasses::java_lang_System, true, "runFinalization", "()V");
   3094     CHECK(WellKnownClasses::java_lang_System_runFinalization != nullptr);
   3095   }
   3096   env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
   3097                             WellKnownClasses::java_lang_System_runFinalization);
   3098   env->CallStaticVoidMethod(WellKnownClasses::java_lang_System,
   3099                             WellKnownClasses::java_lang_System_runFinalization);
   3100 }
   3101 
   3102 void Heap::RegisterNativeAllocation(JNIEnv* env, size_t bytes) {
   3103   Thread* self = ThreadForEnv(env);
   3104   if (native_need_to_run_finalization_) {
   3105     RunFinalization(env);
   3106     UpdateMaxNativeFootprint();
   3107     native_need_to_run_finalization_ = false;
   3108   }
   3109   // Total number of native bytes allocated.
   3110   size_t new_native_bytes_allocated = native_bytes_allocated_.FetchAndAddSequentiallyConsistent(bytes);
   3111   new_native_bytes_allocated += bytes;
   3112   if (new_native_bytes_allocated > native_footprint_gc_watermark_) {
   3113     collector::GcType gc_type = have_zygote_space_ ? collector::kGcTypePartial :
   3114         collector::kGcTypeFull;
   3115 
   3116     // The second watermark is higher than the gc watermark. If you hit this it means you are
   3117     // allocating native objects faster than the GC can keep up with.
   3118     if (new_native_bytes_allocated > growth_limit_) {
   3119       if (WaitForGcToComplete(kGcCauseForNativeAlloc, self) != collector::kGcTypeNone) {
   3120         // Just finished a GC, attempt to run finalizers.
   3121         RunFinalization(env);
   3122         CHECK(!env->ExceptionCheck());
   3123       }
   3124       // If we still are over the watermark, attempt a GC for alloc and run finalizers.
   3125       if (new_native_bytes_allocated > growth_limit_) {
   3126         CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
   3127         RunFinalization(env);
   3128         native_need_to_run_finalization_ = false;
   3129         CHECK(!env->ExceptionCheck());
   3130       }
   3131       // We have just run finalizers, update the native watermark since it is very likely that
   3132       // finalizers released native managed allocations.
   3133       UpdateMaxNativeFootprint();
   3134     } else if (!IsGCRequestPending()) {
   3135       if (IsGcConcurrent()) {
   3136         RequestConcurrentGC(self);
   3137       } else {
   3138         CollectGarbageInternal(gc_type, kGcCauseForNativeAlloc, false);
   3139       }
   3140     }
   3141   }
   3142 }
   3143 
   3144 void Heap::RegisterNativeFree(JNIEnv* env, size_t bytes) {
   3145   size_t expected_size;
   3146   do {
   3147     expected_size = native_bytes_allocated_.LoadRelaxed();
   3148     if (UNLIKELY(bytes > expected_size)) {
   3149       ScopedObjectAccess soa(env);
   3150       env->ThrowNew(WellKnownClasses::java_lang_RuntimeException,
   3151                     StringPrintf("Attempted to free %zd native bytes with only %zd native bytes "
   3152                                  "registered as allocated", bytes, expected_size).c_str());
   3153       break;
   3154     }
   3155   } while (!native_bytes_allocated_.CompareExchangeWeakRelaxed(expected_size,
   3156                                                                expected_size - bytes));
   3157 }
   3158 
   3159 size_t Heap::GetTotalMemory() const {
   3160   return std::max(max_allowed_footprint_, GetBytesAllocated());
   3161 }
   3162 
   3163 void Heap::AddModUnionTable(accounting::ModUnionTable* mod_union_table) {
   3164   DCHECK(mod_union_table != nullptr);
   3165   mod_union_tables_.Put(mod_union_table->GetSpace(), mod_union_table);
   3166 }
   3167 
   3168 void Heap::CheckPreconditionsForAllocObject(mirror::Class* c, size_t byte_count) {
   3169   CHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(mirror::Class)) ||
   3170         (c->IsVariableSize() || c->GetObjectSize() == byte_count));
   3171   CHECK_GE(byte_count, sizeof(mirror::Object));
   3172 }
   3173 
   3174 void Heap::AddRememberedSet(accounting::RememberedSet* remembered_set) {
   3175   CHECK(remembered_set != nullptr);
   3176   space::Space* space = remembered_set->GetSpace();
   3177   CHECK(space != nullptr);
   3178   CHECK(remembered_sets_.find(space) == remembered_sets_.end()) << space;
   3179   remembered_sets_.Put(space, remembered_set);
   3180   CHECK(remembered_sets_.find(space) != remembered_sets_.end()) << space;
   3181 }
   3182 
   3183 void Heap::RemoveRememberedSet(space::Space* space) {
   3184   CHECK(space != nullptr);
   3185   auto it = remembered_sets_.find(space);
   3186   CHECK(it != remembered_sets_.end());
   3187   delete it->second;
   3188   remembered_sets_.erase(it);
   3189   CHECK(remembered_sets_.find(space) == remembered_sets_.end());
   3190 }
   3191 
   3192 void Heap::ClearMarkedObjects() {
   3193   // Clear all of the spaces' mark bitmaps.
   3194   for (const auto& space : GetContinuousSpaces()) {
   3195     accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
   3196     if (space->GetLiveBitmap() != mark_bitmap) {
   3197       mark_bitmap->Clear();
   3198     }
   3199   }
   3200   // Clear the marked objects in the discontinous space object sets.
   3201   for (const auto& space : GetDiscontinuousSpaces()) {
   3202     space->GetMarkBitmap()->Clear();
   3203   }
   3204 }
   3205 
   3206 }  // namespace gc
   3207 }  // namespace art
   3208