Home | History | Annotate | Download | only in base
      1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // This defines a set of argument wrappers and related factory methods that
      6 // can be used specify the refcounting and reference semantics of arguments
      7 // that are bound by the Bind() function in base/bind.h.
      8 //
      9 // It also defines a set of simple functions and utilities that people want
     10 // when using Callback<> and Bind().
     11 //
     12 //
     13 // ARGUMENT BINDING WRAPPERS
     14 //
     15 // The wrapper functions are base::Unretained(), base::Owned(), base::Passed(),
     16 // base::ConstRef(), and base::IgnoreResult().
     17 //
     18 // Unretained() allows Bind() to bind a non-refcounted class, and to disable
     19 // refcounting on arguments that are refcounted objects.
     20 //
     21 // Owned() transfers ownership of an object to the Callback resulting from
     22 // bind; the object will be deleted when the Callback is deleted.
     23 //
     24 // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
     25 // through a Callback. Logically, this signifies a destructive transfer of
     26 // the state of the argument into the target function.  Invoking
     27 // Callback::Run() twice on a Callback that was created with a Passed()
     28 // argument will CHECK() because the first invocation would have already
     29 // transferred ownership to the target function.
     30 //
     31 // ConstRef() allows binding a constant reference to an argument rather
     32 // than a copy.
     33 //
     34 // IgnoreResult() is used to adapt a function or Callback with a return type to
     35 // one with a void return. This is most useful if you have a function with,
     36 // say, a pesky ignorable bool return that you want to use with PostTask or
     37 // something else that expect a Callback with a void return.
     38 //
     39 // EXAMPLE OF Unretained():
     40 //
     41 //   class Foo {
     42 //    public:
     43 //     void func() { cout << "Foo:f" << endl; }
     44 //   };
     45 //
     46 //   // In some function somewhere.
     47 //   Foo foo;
     48 //   Closure foo_callback =
     49 //       Bind(&Foo::func, Unretained(&foo));
     50 //   foo_callback.Run();  // Prints "Foo:f".
     51 //
     52 // Without the Unretained() wrapper on |&foo|, the above call would fail
     53 // to compile because Foo does not support the AddRef() and Release() methods.
     54 //
     55 //
     56 // EXAMPLE OF Owned():
     57 //
     58 //   void foo(int* arg) { cout << *arg << endl }
     59 //
     60 //   int* pn = new int(1);
     61 //   Closure foo_callback = Bind(&foo, Owned(pn));
     62 //
     63 //   foo_callback.Run();  // Prints "1"
     64 //   foo_callback.Run();  // Prints "1"
     65 //   *n = 2;
     66 //   foo_callback.Run();  // Prints "2"
     67 //
     68 //   foo_callback.Reset();  // |pn| is deleted.  Also will happen when
     69 //                          // |foo_callback| goes out of scope.
     70 //
     71 // Without Owned(), someone would have to know to delete |pn| when the last
     72 // reference to the Callback is deleted.
     73 //
     74 //
     75 // EXAMPLE OF ConstRef():
     76 //
     77 //   void foo(int arg) { cout << arg << endl }
     78 //
     79 //   int n = 1;
     80 //   Closure no_ref = Bind(&foo, n);
     81 //   Closure has_ref = Bind(&foo, ConstRef(n));
     82 //
     83 //   no_ref.Run();  // Prints "1"
     84 //   has_ref.Run();  // Prints "1"
     85 //
     86 //   n = 2;
     87 //   no_ref.Run();  // Prints "1"
     88 //   has_ref.Run();  // Prints "2"
     89 //
     90 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all
     91 // its bound callbacks.
     92 //
     93 //
     94 // EXAMPLE OF IgnoreResult():
     95 //
     96 //   int DoSomething(int arg) { cout << arg << endl; }
     97 //
     98 //   // Assign to a Callback with a void return type.
     99 //   Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
    100 //   cb->Run(1);  // Prints "1".
    101 //
    102 //   // Prints "1" on |ml|.
    103 //   ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
    104 //
    105 //
    106 // EXAMPLE OF Passed():
    107 //
    108 //   void TakesOwnership(scoped_ptr<Foo> arg) { }
    109 //   scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); }
    110 //
    111 //   scoped_ptr<Foo> f(new Foo());
    112 //
    113 //   // |cb| is given ownership of Foo(). |f| is now NULL.
    114 //   // You can use f.Pass() in place of &f, but it's more verbose.
    115 //   Closure cb = Bind(&TakesOwnership, Passed(&f));
    116 //
    117 //   // Run was never called so |cb| still owns Foo() and deletes
    118 //   // it on Reset().
    119 //   cb.Reset();
    120 //
    121 //   // |cb| is given a new Foo created by CreateFoo().
    122 //   cb = Bind(&TakesOwnership, Passed(CreateFoo()));
    123 //
    124 //   // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
    125 //   // no longer owns Foo() and, if reset, would not delete Foo().
    126 //   cb.Run();  // Foo() is now transferred to |arg| and deleted.
    127 //   cb.Run();  // This CHECK()s since Foo() already been used once.
    128 //
    129 // Passed() is particularly useful with PostTask() when you are transferring
    130 // ownership of an argument into a task, but don't necessarily know if the
    131 // task will always be executed. This can happen if the task is cancellable
    132 // or if it is posted to a MessageLoopProxy.
    133 //
    134 //
    135 // SIMPLE FUNCTIONS AND UTILITIES.
    136 //
    137 //   DoNothing() - Useful for creating a Closure that does nothing when called.
    138 //   DeletePointer<T>() - Useful for creating a Closure that will delete a
    139 //                        pointer when invoked. Only use this when necessary.
    140 //                        In most cases MessageLoop::DeleteSoon() is a better
    141 //                        fit.
    142 
    143 #ifndef BASE_BIND_HELPERS_H_
    144 #define BASE_BIND_HELPERS_H_
    145 
    146 #include "base/basictypes.h"
    147 #include "base/callback.h"
    148 #include "base/memory/weak_ptr.h"
    149 #include "base/template_util.h"
    150 
    151 namespace base {
    152 namespace internal {
    153 
    154 // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
    155 // for the existence of AddRef() and Release() functions of the correct
    156 // signature.
    157 //
    158 // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
    159 // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
    160 // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
    161 // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
    162 //
    163 // The last link in particular show the method used below.
    164 //
    165 // For SFINAE to work with inherited methods, we need to pull some extra tricks
    166 // with multiple inheritance.  In the more standard formulation, the overloads
    167 // of Check would be:
    168 //
    169 //   template <typename C>
    170 //   Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
    171 //
    172 //   template <typename C>
    173 //   No NotTheCheckWeWant(...);
    174 //
    175 //   static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
    176 //
    177 // The problem here is that template resolution will not match
    178 // C::TargetFunc if TargetFunc does not exist directly in C.  That is, if
    179 // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
    180 // |value| will be false.  This formulation only checks for whether or
    181 // not TargetFunc exist directly in the class being introspected.
    182 //
    183 // To get around this, we play a dirty trick with multiple inheritance.
    184 // First, We create a class BaseMixin that declares each function that we
    185 // want to probe for.  Then we create a class Base that inherits from both T
    186 // (the class we wish to probe) and BaseMixin.  Note that the function
    187 // signature in BaseMixin does not need to match the signature of the function
    188 // we are probing for; thus it's easiest to just use void(void).
    189 //
    190 // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
    191 // ambiguous resolution between BaseMixin and T.  This lets us write the
    192 // following:
    193 //
    194 //   template <typename C>
    195 //   No GoodCheck(Helper<&C::TargetFunc>*);
    196 //
    197 //   template <typename C>
    198 //   Yes GoodCheck(...);
    199 //
    200 //   static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
    201 //
    202 // Notice here that the variadic version of GoodCheck() returns Yes here
    203 // instead of No like the previous one. Also notice that we calculate |value|
    204 // by specializing GoodCheck() on Base instead of T.
    205 //
    206 // We've reversed the roles of the variadic, and Helper overloads.
    207 // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
    208 // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
    209 // to the variadic version if T has TargetFunc.  If T::TargetFunc does not
    210 // exist, then &C::TargetFunc is not ambiguous, and the overload resolution
    211 // will prefer GoodCheck(Helper<&C::TargetFunc>*).
    212 //
    213 // This method of SFINAE will correctly probe for inherited names, but it cannot
    214 // typecheck those names.  It's still a good enough sanity check though.
    215 //
    216 // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
    217 //
    218 // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
    219 // this works well.
    220 //
    221 // TODO(ajwong): Make this check for Release() as well.
    222 // See http://crbug.com/82038.
    223 template <typename T>
    224 class SupportsAddRefAndRelease {
    225   typedef char Yes[1];
    226   typedef char No[2];
    227 
    228   struct BaseMixin {
    229     void AddRef();
    230   };
    231 
    232 // MSVC warns when you try to use Base if T has a private destructor, the
    233 // common pattern for refcounted types. It does this even though no attempt to
    234 // instantiate Base is made.  We disable the warning for this definition.
    235 #if defined(OS_WIN)
    236 #pragma warning(push)
    237 #pragma warning(disable:4624)
    238 #endif
    239   struct Base : public T, public BaseMixin {
    240   };
    241 #if defined(OS_WIN)
    242 #pragma warning(pop)
    243 #endif
    244 
    245   template <void(BaseMixin::*)(void)> struct Helper {};
    246 
    247   template <typename C>
    248   static No& Check(Helper<&C::AddRef>*);
    249 
    250   template <typename >
    251   static Yes& Check(...);
    252 
    253  public:
    254   static const bool value = sizeof(Check<Base>(0)) == sizeof(Yes);
    255 };
    256 
    257 // Helpers to assert that arguments of a recounted type are bound with a
    258 // scoped_refptr.
    259 template <bool IsClasstype, typename T>
    260 struct UnsafeBindtoRefCountedArgHelper : false_type {
    261 };
    262 
    263 template <typename T>
    264 struct UnsafeBindtoRefCountedArgHelper<true, T>
    265     : integral_constant<bool, SupportsAddRefAndRelease<T>::value> {
    266 };
    267 
    268 template <typename T>
    269 struct UnsafeBindtoRefCountedArg : false_type {
    270 };
    271 
    272 template <typename T>
    273 struct UnsafeBindtoRefCountedArg<T*>
    274     : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> {
    275 };
    276 
    277 template <typename T>
    278 class HasIsMethodTag {
    279   typedef char Yes[1];
    280   typedef char No[2];
    281 
    282   template <typename U>
    283   static Yes& Check(typename U::IsMethod*);
    284 
    285   template <typename U>
    286   static No& Check(...);
    287 
    288  public:
    289   static const bool value = sizeof(Check<T>(0)) == sizeof(Yes);
    290 };
    291 
    292 template <typename T>
    293 class UnretainedWrapper {
    294  public:
    295   explicit UnretainedWrapper(T* o) : ptr_(o) {}
    296   T* get() const { return ptr_; }
    297  private:
    298   T* ptr_;
    299 };
    300 
    301 template <typename T>
    302 class ConstRefWrapper {
    303  public:
    304   explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
    305   const T& get() const { return *ptr_; }
    306  private:
    307   const T* ptr_;
    308 };
    309 
    310 template <typename T>
    311 struct IgnoreResultHelper {
    312   explicit IgnoreResultHelper(T functor) : functor_(functor) {}
    313 
    314   T functor_;
    315 };
    316 
    317 template <typename T>
    318 struct IgnoreResultHelper<Callback<T> > {
    319   explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {}
    320 
    321   const Callback<T>& functor_;
    322 };
    323 
    324 // An alternate implementation is to avoid the destructive copy, and instead
    325 // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
    326 // a class that is essentially a scoped_ptr<>.
    327 //
    328 // The current implementation has the benefit though of leaving ParamTraits<>
    329 // fully in callback_internal.h as well as avoiding type conversions during
    330 // storage.
    331 template <typename T>
    332 class OwnedWrapper {
    333  public:
    334   explicit OwnedWrapper(T* o) : ptr_(o) {}
    335   ~OwnedWrapper() { delete ptr_; }
    336   T* get() const { return ptr_; }
    337   OwnedWrapper(const OwnedWrapper& other) {
    338     ptr_ = other.ptr_;
    339     other.ptr_ = NULL;
    340   }
    341 
    342  private:
    343   mutable T* ptr_;
    344 };
    345 
    346 // PassedWrapper is a copyable adapter for a scoper that ignores const.
    347 //
    348 // It is needed to get around the fact that Bind() takes a const reference to
    349 // all its arguments.  Because Bind() takes a const reference to avoid
    350 // unnecessary copies, it is incompatible with movable-but-not-copyable
    351 // types; doing a destructive "move" of the type into Bind() would violate
    352 // the const correctness.
    353 //
    354 // This conundrum cannot be solved without either C++11 rvalue references or
    355 // a O(2^n) blowup of Bind() templates to handle each combination of regular
    356 // types and movable-but-not-copyable types.  Thus we introduce a wrapper type
    357 // that is copyable to transmit the correct type information down into
    358 // BindState<>. Ignoring const in this type makes sense because it is only
    359 // created when we are explicitly trying to do a destructive move.
    360 //
    361 // Two notes:
    362 //  1) PassedWrapper supports any type that has a "Pass()" function.
    363 //     This is intentional. The whitelisting of which specific types we
    364 //     support is maintained by CallbackParamTraits<>.
    365 //  2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
    366 //     scoper to a Callback and allow the Callback to execute once.
    367 template <typename T>
    368 class PassedWrapper {
    369  public:
    370   explicit PassedWrapper(T scoper) : is_valid_(true), scoper_(scoper.Pass()) {}
    371   PassedWrapper(const PassedWrapper& other)
    372       : is_valid_(other.is_valid_), scoper_(other.scoper_.Pass()) {
    373   }
    374   T Pass() const {
    375     CHECK(is_valid_);
    376     is_valid_ = false;
    377     return scoper_.Pass();
    378   }
    379 
    380  private:
    381   mutable bool is_valid_;
    382   mutable T scoper_;
    383 };
    384 
    385 // Unwrap the stored parameters for the wrappers above.
    386 template <typename T>
    387 struct UnwrapTraits {
    388   typedef const T& ForwardType;
    389   static ForwardType Unwrap(const T& o) { return o; }
    390 };
    391 
    392 template <typename T>
    393 struct UnwrapTraits<UnretainedWrapper<T> > {
    394   typedef T* ForwardType;
    395   static ForwardType Unwrap(UnretainedWrapper<T> unretained) {
    396     return unretained.get();
    397   }
    398 };
    399 
    400 template <typename T>
    401 struct UnwrapTraits<ConstRefWrapper<T> > {
    402   typedef const T& ForwardType;
    403   static ForwardType Unwrap(ConstRefWrapper<T> const_ref) {
    404     return const_ref.get();
    405   }
    406 };
    407 
    408 template <typename T>
    409 struct UnwrapTraits<scoped_refptr<T> > {
    410   typedef T* ForwardType;
    411   static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); }
    412 };
    413 
    414 template <typename T>
    415 struct UnwrapTraits<WeakPtr<T> > {
    416   typedef const WeakPtr<T>& ForwardType;
    417   static ForwardType Unwrap(const WeakPtr<T>& o) { return o; }
    418 };
    419 
    420 template <typename T>
    421 struct UnwrapTraits<OwnedWrapper<T> > {
    422   typedef T* ForwardType;
    423   static ForwardType Unwrap(const OwnedWrapper<T>& o) {
    424     return o.get();
    425   }
    426 };
    427 
    428 template <typename T>
    429 struct UnwrapTraits<PassedWrapper<T> > {
    430   typedef T ForwardType;
    431   static T Unwrap(PassedWrapper<T>& o) {
    432     return o.Pass();
    433   }
    434 };
    435 
    436 // Utility for handling different refcounting semantics in the Bind()
    437 // function.
    438 template <bool is_method, typename T>
    439 struct MaybeRefcount;
    440 
    441 template <typename T>
    442 struct MaybeRefcount<false, T> {
    443   static void AddRef(const T&) {}
    444   static void Release(const T&) {}
    445 };
    446 
    447 template <typename T, size_t n>
    448 struct MaybeRefcount<false, T[n]> {
    449   static void AddRef(const T*) {}
    450   static void Release(const T*) {}
    451 };
    452 
    453 template <typename T>
    454 struct MaybeRefcount<true, T> {
    455   static void AddRef(const T&) {}
    456   static void Release(const T&) {}
    457 };
    458 
    459 template <typename T>
    460 struct MaybeRefcount<true, T*> {
    461   static void AddRef(T* o) { o->AddRef(); }
    462   static void Release(T* o) { o->Release(); }
    463 };
    464 
    465 // No need to additionally AddRef() and Release() since we are storing a
    466 // scoped_refptr<> inside the storage object already.
    467 template <typename T>
    468 struct MaybeRefcount<true, scoped_refptr<T> > {
    469   static void AddRef(const scoped_refptr<T>& o) {}
    470   static void Release(const scoped_refptr<T>& o) {}
    471 };
    472 
    473 template <typename T>
    474 struct MaybeRefcount<true, const T*> {
    475   static void AddRef(const T* o) { o->AddRef(); }
    476   static void Release(const T* o) { o->Release(); }
    477 };
    478 
    479 // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
    480 // method.  It is used internally by Bind() to select the correct
    481 // InvokeHelper that will no-op itself in the event the WeakPtr<> for
    482 // the target object is invalidated.
    483 //
    484 // P1 should be the type of the object that will be received of the method.
    485 template <bool IsMethod, typename P1>
    486 struct IsWeakMethod : public false_type {};
    487 
    488 template <typename T>
    489 struct IsWeakMethod<true, WeakPtr<T> > : public true_type {};
    490 
    491 template <typename T>
    492 struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T> > > : public true_type {};
    493 
    494 }  // namespace internal
    495 
    496 template <typename T>
    497 static inline internal::UnretainedWrapper<T> Unretained(T* o) {
    498   return internal::UnretainedWrapper<T>(o);
    499 }
    500 
    501 template <typename T>
    502 static inline internal::ConstRefWrapper<T> ConstRef(const T& o) {
    503   return internal::ConstRefWrapper<T>(o);
    504 }
    505 
    506 template <typename T>
    507 static inline internal::OwnedWrapper<T> Owned(T* o) {
    508   return internal::OwnedWrapper<T>(o);
    509 }
    510 
    511 // We offer 2 syntaxes for calling Passed().  The first takes a temporary and
    512 // is best suited for use with the return value of a function. The second
    513 // takes a pointer to the scoper and is just syntactic sugar to avoid having
    514 // to write Passed(scoper.Pass()).
    515 template <typename T>
    516 static inline internal::PassedWrapper<T> Passed(T scoper) {
    517   return internal::PassedWrapper<T>(scoper.Pass());
    518 }
    519 template <typename T>
    520 static inline internal::PassedWrapper<T> Passed(T* scoper) {
    521   return internal::PassedWrapper<T>(scoper->Pass());
    522 }
    523 
    524 template <typename T>
    525 static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) {
    526   return internal::IgnoreResultHelper<T>(data);
    527 }
    528 
    529 template <typename T>
    530 static inline internal::IgnoreResultHelper<Callback<T> >
    531 IgnoreResult(const Callback<T>& data) {
    532   return internal::IgnoreResultHelper<Callback<T> >(data);
    533 }
    534 
    535 BASE_EXPORT void DoNothing();
    536 
    537 template<typename T>
    538 void DeletePointer(T* obj) {
    539   delete obj;
    540 }
    541 
    542 }  // namespace base
    543 
    544 #endif  // BASE_BIND_HELPERS_H_
    545