Home | History | Annotate | Download | only in NEON
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud (at) inria.fr>
      5 // Copyright (C) 2010 Konstantinos Margaritis <markos (at) codex.gr>
      6 // Heavily based on Gael's SSE version.
      7 //
      8 // This Source Code Form is subject to the terms of the Mozilla
      9 // Public License v. 2.0. If a copy of the MPL was not distributed
     10 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     11 
     12 #ifndef EIGEN_PACKET_MATH_NEON_H
     13 #define EIGEN_PACKET_MATH_NEON_H
     14 
     15 namespace Eigen {
     16 
     17 namespace internal {
     18 
     19 #ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
     20 #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
     21 #endif
     22 
     23 // FIXME NEON has 16 quad registers, but since the current register allocator
     24 // is so bad, it is much better to reduce it to 8
     25 #ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
     26 #define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 8
     27 #endif
     28 
     29 typedef float32x4_t Packet4f;
     30 typedef int32x4_t   Packet4i;
     31 typedef uint32x4_t  Packet4ui;
     32 
     33 #define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
     34   const Packet4f p4f_##NAME = pset1<Packet4f>(X)
     35 
     36 #define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
     37   const Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1<int>(X))
     38 
     39 #define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
     40   const Packet4i p4i_##NAME = pset1<Packet4i>(X)
     41 
     42 #if defined(__llvm__) && !defined(__clang__)
     43   //Special treatment for Apple's llvm-gcc, its NEON packet types are unions
     44   #define EIGEN_INIT_NEON_PACKET2(X, Y)       {{X, Y}}
     45   #define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {{X, Y, Z, W}}
     46 #else
     47   //Default initializer for packets
     48   #define EIGEN_INIT_NEON_PACKET2(X, Y)       {X, Y}
     49   #define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {X, Y, Z, W}
     50 #endif
     51 
     52 #ifndef __pld
     53 #define __pld(x) asm volatile ( "   pld [%[addr]]\n" :: [addr] "r" (x) : "cc" );
     54 #endif
     55 
     56 template<> struct packet_traits<float>  : default_packet_traits
     57 {
     58   typedef Packet4f type;
     59   enum {
     60     Vectorizable = 1,
     61     AlignedOnScalar = 1,
     62     size = 4,
     63 
     64     HasDiv  = 1,
     65     // FIXME check the Has*
     66     HasSin  = 0,
     67     HasCos  = 0,
     68     HasLog  = 0,
     69     HasExp  = 0,
     70     HasSqrt = 0
     71   };
     72 };
     73 template<> struct packet_traits<int>    : default_packet_traits
     74 {
     75   typedef Packet4i type;
     76   enum {
     77     Vectorizable = 1,
     78     AlignedOnScalar = 1,
     79     size=4
     80     // FIXME check the Has*
     81   };
     82 };
     83 
     84 #if EIGEN_GNUC_AT_MOST(4,4) && !defined(__llvm__)
     85 // workaround gcc 4.2, 4.3 and 4.4 compilatin issue
     86 EIGEN_STRONG_INLINE float32x4_t vld1q_f32(const float* x) { return ::vld1q_f32((const float32_t*)x); }
     87 EIGEN_STRONG_INLINE float32x2_t vld1_f32 (const float* x) { return ::vld1_f32 ((const float32_t*)x); }
     88 EIGEN_STRONG_INLINE void        vst1q_f32(float* to, float32x4_t from) { ::vst1q_f32((float32_t*)to,from); }
     89 EIGEN_STRONG_INLINE void        vst1_f32 (float* to, float32x2_t from) { ::vst1_f32 ((float32_t*)to,from); }
     90 #endif
     91 
     92 template<> struct unpacket_traits<Packet4f> { typedef float  type; enum {size=4}; };
     93 template<> struct unpacket_traits<Packet4i> { typedef int    type; enum {size=4}; };
     94 
     95 template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float&  from) { return vdupq_n_f32(from); }
     96 template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int&    from)   { return vdupq_n_s32(from); }
     97 
     98 template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a)
     99 {
    100   Packet4f countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3);
    101   return vaddq_f32(pset1<Packet4f>(a), countdown);
    102 }
    103 template<> EIGEN_STRONG_INLINE Packet4i plset<int>(const int& a)
    104 {
    105   Packet4i countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3);
    106   return vaddq_s32(pset1<Packet4i>(a), countdown);
    107 }
    108 
    109 template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return vaddq_f32(a,b); }
    110 template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return vaddq_s32(a,b); }
    111 
    112 template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return vsubq_f32(a,b); }
    113 template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return vsubq_s32(a,b); }
    114 
    115 template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return vnegq_f32(a); }
    116 template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return vnegq_s32(a); }
    117 
    118 template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; }
    119 template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; }
    120 
    121 template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmulq_f32(a,b); }
    122 template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmulq_s32(a,b); }
    123 
    124 template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b)
    125 {
    126   Packet4f inv, restep, div;
    127 
    128   // NEON does not offer a divide instruction, we have to do a reciprocal approximation
    129   // However NEON in contrast to other SIMD engines (AltiVec/SSE), offers
    130   // a reciprocal estimate AND a reciprocal step -which saves a few instructions
    131   // vrecpeq_f32() returns an estimate to 1/b, which we will finetune with
    132   // Newton-Raphson and vrecpsq_f32()
    133   inv = vrecpeq_f32(b);
    134 
    135   // This returns a differential, by which we will have to multiply inv to get a better
    136   // approximation of 1/b.
    137   restep = vrecpsq_f32(b, inv);
    138   inv = vmulq_f32(restep, inv);
    139 
    140   // Finally, multiply a by 1/b and get the wanted result of the division.
    141   div = vmulq_f32(a, inv);
    142 
    143   return div;
    144 }
    145 template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
    146 { eigen_assert(false && "packet integer division are not supported by NEON");
    147   return pset1<Packet4i>(0);
    148 }
    149 
    150 // for some weird raisons, it has to be overloaded for packet of integers
    151 template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vmlaq_f32(c,a,b); }
    152 template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return vmlaq_s32(c,a,b); }
    153 
    154 template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return vminq_f32(a,b); }
    155 template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vminq_s32(a,b); }
    156 
    157 template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmaxq_f32(a,b); }
    158 template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmaxq_s32(a,b); }
    159 
    160 // Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
    161 template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b)
    162 {
    163   return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
    164 }
    165 template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vandq_s32(a,b); }
    166 
    167 template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b)
    168 {
    169   return vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
    170 }
    171 template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return vorrq_s32(a,b); }
    172 
    173 template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b)
    174 {
    175   return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
    176 }
    177 template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return veorq_s32(a,b); }
    178 
    179 template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b)
    180 {
    181   return vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
    182 }
    183 template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return vbicq_s32(a,b); }
    184 
    185 template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f32(from); }
    186 template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int*   from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s32(from); }
    187 
    188 template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f32(from); }
    189 template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from)   { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_s32(from); }
    190 
    191 template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float*   from)
    192 {
    193   float32x2_t lo, hi;
    194   lo = vld1_dup_f32(from);
    195   hi = vld1_dup_f32(from+1);
    196   return vcombine_f32(lo, hi);
    197 }
    198 template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int*     from)
    199 {
    200   int32x2_t lo, hi;
    201   lo = vld1_dup_s32(from);
    202   hi = vld1_dup_s32(from+1);
    203   return vcombine_s32(lo, hi);
    204 }
    205 
    206 template<> EIGEN_STRONG_INLINE void pstore<float>(float*   to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f32(to, from); }
    207 template<> EIGEN_STRONG_INLINE void pstore<int>(int*       to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_s32(to, from); }
    208 
    209 template<> EIGEN_STRONG_INLINE void pstoreu<float>(float*  to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to, from); }
    210 template<> EIGEN_STRONG_INLINE void pstoreu<int>(int*      to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to, from); }
    211 
    212 template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { __pld(addr); }
    213 template<> EIGEN_STRONG_INLINE void prefetch<int>(const int*     addr) { __pld(addr); }
    214 
    215 // FIXME only store the 2 first elements ?
    216 template<> EIGEN_STRONG_INLINE float  pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vst1q_f32(x, a); return x[0]; }
    217 template<> EIGEN_STRONG_INLINE int    pfirst<Packet4i>(const Packet4i& a) { int   EIGEN_ALIGN16 x[4]; vst1q_s32(x, a); return x[0]; }
    218 
    219 template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) {
    220   float32x2_t a_lo, a_hi;
    221   Packet4f a_r64;
    222 
    223   a_r64 = vrev64q_f32(a);
    224   a_lo = vget_low_f32(a_r64);
    225   a_hi = vget_high_f32(a_r64);
    226   return vcombine_f32(a_hi, a_lo);
    227 }
    228 template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) {
    229   int32x2_t a_lo, a_hi;
    230   Packet4i a_r64;
    231 
    232   a_r64 = vrev64q_s32(a);
    233   a_lo = vget_low_s32(a_r64);
    234   a_hi = vget_high_s32(a_r64);
    235   return vcombine_s32(a_hi, a_lo);
    236 }
    237 template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vabsq_f32(a); }
    238 template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vabsq_s32(a); }
    239 
    240 template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
    241 {
    242   float32x2_t a_lo, a_hi, sum;
    243 
    244   a_lo = vget_low_f32(a);
    245   a_hi = vget_high_f32(a);
    246   sum = vpadd_f32(a_lo, a_hi);
    247   sum = vpadd_f32(sum, sum);
    248   return vget_lane_f32(sum, 0);
    249 }
    250 
    251 template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
    252 {
    253   float32x4x2_t vtrn1, vtrn2, res1, res2;
    254   Packet4f sum1, sum2, sum;
    255 
    256   // NEON zip performs interleaving of the supplied vectors.
    257   // We perform two interleaves in a row to acquire the transposed vector
    258   vtrn1 = vzipq_f32(vecs[0], vecs[2]);
    259   vtrn2 = vzipq_f32(vecs[1], vecs[3]);
    260   res1 = vzipq_f32(vtrn1.val[0], vtrn2.val[0]);
    261   res2 = vzipq_f32(vtrn1.val[1], vtrn2.val[1]);
    262 
    263   // Do the addition of the resulting vectors
    264   sum1 = vaddq_f32(res1.val[0], res1.val[1]);
    265   sum2 = vaddq_f32(res2.val[0], res2.val[1]);
    266   sum = vaddq_f32(sum1, sum2);
    267 
    268   return sum;
    269 }
    270 
    271 template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
    272 {
    273   int32x2_t a_lo, a_hi, sum;
    274 
    275   a_lo = vget_low_s32(a);
    276   a_hi = vget_high_s32(a);
    277   sum = vpadd_s32(a_lo, a_hi);
    278   sum = vpadd_s32(sum, sum);
    279   return vget_lane_s32(sum, 0);
    280 }
    281 
    282 template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
    283 {
    284   int32x4x2_t vtrn1, vtrn2, res1, res2;
    285   Packet4i sum1, sum2, sum;
    286 
    287   // NEON zip performs interleaving of the supplied vectors.
    288   // We perform two interleaves in a row to acquire the transposed vector
    289   vtrn1 = vzipq_s32(vecs[0], vecs[2]);
    290   vtrn2 = vzipq_s32(vecs[1], vecs[3]);
    291   res1 = vzipq_s32(vtrn1.val[0], vtrn2.val[0]);
    292   res2 = vzipq_s32(vtrn1.val[1], vtrn2.val[1]);
    293 
    294   // Do the addition of the resulting vectors
    295   sum1 = vaddq_s32(res1.val[0], res1.val[1]);
    296   sum2 = vaddq_s32(res2.val[0], res2.val[1]);
    297   sum = vaddq_s32(sum1, sum2);
    298 
    299   return sum;
    300 }
    301 
    302 // Other reduction functions:
    303 // mul
    304 template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
    305 {
    306   float32x2_t a_lo, a_hi, prod;
    307 
    308   // Get a_lo = |a1|a2| and a_hi = |a3|a4|
    309   a_lo = vget_low_f32(a);
    310   a_hi = vget_high_f32(a);
    311   // Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
    312   prod = vmul_f32(a_lo, a_hi);
    313   // Multiply prod with its swapped value |a2*a4|a1*a3|
    314   prod = vmul_f32(prod, vrev64_f32(prod));
    315 
    316   return vget_lane_f32(prod, 0);
    317 }
    318 template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
    319 {
    320   int32x2_t a_lo, a_hi, prod;
    321 
    322   // Get a_lo = |a1|a2| and a_hi = |a3|a4|
    323   a_lo = vget_low_s32(a);
    324   a_hi = vget_high_s32(a);
    325   // Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
    326   prod = vmul_s32(a_lo, a_hi);
    327   // Multiply prod with its swapped value |a2*a4|a1*a3|
    328   prod = vmul_s32(prod, vrev64_s32(prod));
    329 
    330   return vget_lane_s32(prod, 0);
    331 }
    332 
    333 // min
    334 template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
    335 {
    336   float32x2_t a_lo, a_hi, min;
    337 
    338   a_lo = vget_low_f32(a);
    339   a_hi = vget_high_f32(a);
    340   min = vpmin_f32(a_lo, a_hi);
    341   min = vpmin_f32(min, min);
    342 
    343   return vget_lane_f32(min, 0);
    344 }
    345 
    346 template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
    347 {
    348   int32x2_t a_lo, a_hi, min;
    349 
    350   a_lo = vget_low_s32(a);
    351   a_hi = vget_high_s32(a);
    352   min = vpmin_s32(a_lo, a_hi);
    353   min = vpmin_s32(min, min);
    354 
    355   return vget_lane_s32(min, 0);
    356 }
    357 
    358 // max
    359 template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
    360 {
    361   float32x2_t a_lo, a_hi, max;
    362 
    363   a_lo = vget_low_f32(a);
    364   a_hi = vget_high_f32(a);
    365   max = vpmax_f32(a_lo, a_hi);
    366   max = vpmax_f32(max, max);
    367 
    368   return vget_lane_f32(max, 0);
    369 }
    370 
    371 template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
    372 {
    373   int32x2_t a_lo, a_hi, max;
    374 
    375   a_lo = vget_low_s32(a);
    376   a_hi = vget_high_s32(a);
    377   max = vpmax_s32(a_lo, a_hi);
    378 
    379   return vget_lane_s32(max, 0);
    380 }
    381 
    382 // this PALIGN_NEON business is to work around a bug in LLVM Clang 3.0 causing incorrect compilation errors,
    383 // see bug 347 and this LLVM bug: http://llvm.org/bugs/show_bug.cgi?id=11074
    384 #define PALIGN_NEON(Offset,Type,Command) \
    385 template<>\
    386 struct palign_impl<Offset,Type>\
    387 {\
    388     EIGEN_STRONG_INLINE static void run(Type& first, const Type& second)\
    389     {\
    390         if (Offset!=0)\
    391             first = Command(first, second, Offset);\
    392     }\
    393 };\
    394 
    395 PALIGN_NEON(0,Packet4f,vextq_f32)
    396 PALIGN_NEON(1,Packet4f,vextq_f32)
    397 PALIGN_NEON(2,Packet4f,vextq_f32)
    398 PALIGN_NEON(3,Packet4f,vextq_f32)
    399 PALIGN_NEON(0,Packet4i,vextq_s32)
    400 PALIGN_NEON(1,Packet4i,vextq_s32)
    401 PALIGN_NEON(2,Packet4i,vextq_s32)
    402 PALIGN_NEON(3,Packet4i,vextq_s32)
    403 
    404 #undef PALIGN_NEON
    405 
    406 } // end namespace internal
    407 
    408 } // end namespace Eigen
    409 
    410 #endif // EIGEN_PACKET_MATH_NEON_H
    411