Home | History | Annotate | Download | only in libutils
      1 /*
      2  * Copyright (C) 2007 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 // #define LOG_NDEBUG 0
     18 #define LOG_TAG "libutils.threads"
     19 
     20 #include <assert.h>
     21 #include <errno.h>
     22 #include <memory.h>
     23 #include <stdio.h>
     24 #include <stdlib.h>
     25 #include <unistd.h>
     26 
     27 #if defined(HAVE_PTHREADS)
     28 # include <pthread.h>
     29 # include <sched.h>
     30 # include <sys/resource.h>
     31 #ifdef HAVE_ANDROID_OS
     32 # include <private/bionic_pthread.h>
     33 #endif
     34 #elif defined(HAVE_WIN32_THREADS)
     35 # include <windows.h>
     36 # include <stdint.h>
     37 # include <process.h>
     38 # define HAVE_CREATETHREAD  // Cygwin, vs. HAVE__BEGINTHREADEX for MinGW
     39 #endif
     40 
     41 #if defined(HAVE_PRCTL)
     42 #include <sys/prctl.h>
     43 #endif
     44 
     45 #include <utils/threads.h>
     46 #include <utils/Log.h>
     47 
     48 #include <cutils/sched_policy.h>
     49 
     50 #ifdef HAVE_ANDROID_OS
     51 # define __android_unused
     52 #else
     53 # define __android_unused __attribute__((__unused__))
     54 #endif
     55 
     56 /*
     57  * ===========================================================================
     58  *      Thread wrappers
     59  * ===========================================================================
     60  */
     61 
     62 using namespace android;
     63 
     64 // ----------------------------------------------------------------------------
     65 #if defined(HAVE_PTHREADS)
     66 // ----------------------------------------------------------------------------
     67 
     68 /*
     69  * Create and run a new thread.
     70  *
     71  * We create it "detached", so it cleans up after itself.
     72  */
     73 
     74 typedef void* (*android_pthread_entry)(void*);
     75 
     76 struct thread_data_t {
     77     thread_func_t   entryFunction;
     78     void*           userData;
     79     int             priority;
     80     char *          threadName;
     81 
     82     // we use this trampoline when we need to set the priority with
     83     // nice/setpriority, and name with prctl.
     84     static int trampoline(const thread_data_t* t) {
     85         thread_func_t f = t->entryFunction;
     86         void* u = t->userData;
     87         int prio = t->priority;
     88         char * name = t->threadName;
     89         delete t;
     90         setpriority(PRIO_PROCESS, 0, prio);
     91         if (prio >= ANDROID_PRIORITY_BACKGROUND) {
     92             set_sched_policy(0, SP_BACKGROUND);
     93         } else {
     94             set_sched_policy(0, SP_FOREGROUND);
     95         }
     96 
     97         if (name) {
     98             androidSetThreadName(name);
     99             free(name);
    100         }
    101         return f(u);
    102     }
    103 };
    104 
    105 void androidSetThreadName(const char* name) {
    106 #if defined(HAVE_PRCTL)
    107     // Mac OS doesn't have this, and we build libutil for the host too
    108     int hasAt = 0;
    109     int hasDot = 0;
    110     const char *s = name;
    111     while (*s) {
    112         if (*s == '.') hasDot = 1;
    113         else if (*s == '@') hasAt = 1;
    114         s++;
    115     }
    116     int len = s - name;
    117     if (len < 15 || hasAt || !hasDot) {
    118         s = name;
    119     } else {
    120         s = name + len - 15;
    121     }
    122     prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);
    123 #endif
    124 }
    125 
    126 int androidCreateRawThreadEtc(android_thread_func_t entryFunction,
    127                                void *userData,
    128                                const char* threadName __android_unused,
    129                                int32_t threadPriority,
    130                                size_t threadStackSize,
    131                                android_thread_id_t *threadId)
    132 {
    133     pthread_attr_t attr;
    134     pthread_attr_init(&attr);
    135     pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
    136 
    137 #ifdef HAVE_ANDROID_OS  /* valgrind is rejecting RT-priority create reqs */
    138     if (threadPriority != PRIORITY_DEFAULT || threadName != NULL) {
    139         // Now that the pthread_t has a method to find the associated
    140         // android_thread_id_t (pid) from pthread_t, it would be possible to avoid
    141         // this trampoline in some cases as the parent could set the properties
    142         // for the child.  However, there would be a race condition because the
    143         // child becomes ready immediately, and it doesn't work for the name.
    144         // prctl(PR_SET_NAME) only works for self; prctl(PR_SET_THREAD_NAME) was
    145         // proposed but not yet accepted.
    146         thread_data_t* t = new thread_data_t;
    147         t->priority = threadPriority;
    148         t->threadName = threadName ? strdup(threadName) : NULL;
    149         t->entryFunction = entryFunction;
    150         t->userData = userData;
    151         entryFunction = (android_thread_func_t)&thread_data_t::trampoline;
    152         userData = t;
    153     }
    154 #endif
    155 
    156     if (threadStackSize) {
    157         pthread_attr_setstacksize(&attr, threadStackSize);
    158     }
    159 
    160     errno = 0;
    161     pthread_t thread;
    162     int result = pthread_create(&thread, &attr,
    163                     (android_pthread_entry)entryFunction, userData);
    164     pthread_attr_destroy(&attr);
    165     if (result != 0) {
    166         ALOGE("androidCreateRawThreadEtc failed (entry=%p, res=%d, errno=%d)\n"
    167              "(android threadPriority=%d)",
    168             entryFunction, result, errno, threadPriority);
    169         return 0;
    170     }
    171 
    172     // Note that *threadID is directly available to the parent only, as it is
    173     // assigned after the child starts.  Use memory barrier / lock if the child
    174     // or other threads also need access.
    175     if (threadId != NULL) {
    176         *threadId = (android_thread_id_t)thread; // XXX: this is not portable
    177     }
    178     return 1;
    179 }
    180 
    181 #ifdef HAVE_ANDROID_OS
    182 static pthread_t android_thread_id_t_to_pthread(android_thread_id_t thread)
    183 {
    184     return (pthread_t) thread;
    185 }
    186 #endif
    187 
    188 android_thread_id_t androidGetThreadId()
    189 {
    190     return (android_thread_id_t)pthread_self();
    191 }
    192 
    193 // ----------------------------------------------------------------------------
    194 #elif defined(HAVE_WIN32_THREADS)
    195 // ----------------------------------------------------------------------------
    196 
    197 /*
    198  * Trampoline to make us __stdcall-compliant.
    199  *
    200  * We're expected to delete "vDetails" when we're done.
    201  */
    202 struct threadDetails {
    203     int (*func)(void*);
    204     void* arg;
    205 };
    206 static __stdcall unsigned int threadIntermediary(void* vDetails)
    207 {
    208     struct threadDetails* pDetails = (struct threadDetails*) vDetails;
    209     int result;
    210 
    211     result = (*(pDetails->func))(pDetails->arg);
    212 
    213     delete pDetails;
    214 
    215     ALOG(LOG_VERBOSE, "thread", "thread exiting\n");
    216     return (unsigned int) result;
    217 }
    218 
    219 /*
    220  * Create and run a new thread.
    221  */
    222 static bool doCreateThread(android_thread_func_t fn, void* arg, android_thread_id_t *id)
    223 {
    224     HANDLE hThread;
    225     struct threadDetails* pDetails = new threadDetails; // must be on heap
    226     unsigned int thrdaddr;
    227 
    228     pDetails->func = fn;
    229     pDetails->arg = arg;
    230 
    231 #if defined(HAVE__BEGINTHREADEX)
    232     hThread = (HANDLE) _beginthreadex(NULL, 0, threadIntermediary, pDetails, 0,
    233                     &thrdaddr);
    234     if (hThread == 0)
    235 #elif defined(HAVE_CREATETHREAD)
    236     hThread = CreateThread(NULL, 0,
    237                     (LPTHREAD_START_ROUTINE) threadIntermediary,
    238                     (void*) pDetails, 0, (DWORD*) &thrdaddr);
    239     if (hThread == NULL)
    240 #endif
    241     {
    242         ALOG(LOG_WARN, "thread", "WARNING: thread create failed\n");
    243         return false;
    244     }
    245 
    246 #if defined(HAVE_CREATETHREAD)
    247     /* close the management handle */
    248     CloseHandle(hThread);
    249 #endif
    250 
    251     if (id != NULL) {
    252       	*id = (android_thread_id_t)thrdaddr;
    253     }
    254 
    255     return true;
    256 }
    257 
    258 int androidCreateRawThreadEtc(android_thread_func_t fn,
    259                                void *userData,
    260                                const char* /*threadName*/,
    261                                int32_t /*threadPriority*/,
    262                                size_t /*threadStackSize*/,
    263                                android_thread_id_t *threadId)
    264 {
    265     return doCreateThread(  fn, userData, threadId);
    266 }
    267 
    268 android_thread_id_t androidGetThreadId()
    269 {
    270     return (android_thread_id_t)GetCurrentThreadId();
    271 }
    272 
    273 // ----------------------------------------------------------------------------
    274 #else
    275 #error "Threads not supported"
    276 #endif
    277 
    278 // ----------------------------------------------------------------------------
    279 
    280 int androidCreateThread(android_thread_func_t fn, void* arg)
    281 {
    282     return createThreadEtc(fn, arg);
    283 }
    284 
    285 int androidCreateThreadGetID(android_thread_func_t fn, void *arg, android_thread_id_t *id)
    286 {
    287     return createThreadEtc(fn, arg, "android:unnamed_thread",
    288                            PRIORITY_DEFAULT, 0, id);
    289 }
    290 
    291 static android_create_thread_fn gCreateThreadFn = androidCreateRawThreadEtc;
    292 
    293 int androidCreateThreadEtc(android_thread_func_t entryFunction,
    294                             void *userData,
    295                             const char* threadName,
    296                             int32_t threadPriority,
    297                             size_t threadStackSize,
    298                             android_thread_id_t *threadId)
    299 {
    300     return gCreateThreadFn(entryFunction, userData, threadName,
    301         threadPriority, threadStackSize, threadId);
    302 }
    303 
    304 void androidSetCreateThreadFunc(android_create_thread_fn func)
    305 {
    306     gCreateThreadFn = func;
    307 }
    308 
    309 pid_t androidGetTid()
    310 {
    311 #ifdef HAVE_GETTID
    312     return gettid();
    313 #else
    314     return getpid();
    315 #endif
    316 }
    317 
    318 #ifdef HAVE_ANDROID_OS
    319 int androidSetThreadPriority(pid_t tid, int pri)
    320 {
    321     int rc = 0;
    322 
    323 #if defined(HAVE_PTHREADS)
    324     int lasterr = 0;
    325 
    326     if (pri >= ANDROID_PRIORITY_BACKGROUND) {
    327         rc = set_sched_policy(tid, SP_BACKGROUND);
    328     } else if (getpriority(PRIO_PROCESS, tid) >= ANDROID_PRIORITY_BACKGROUND) {
    329         rc = set_sched_policy(tid, SP_FOREGROUND);
    330     }
    331 
    332     if (rc) {
    333         lasterr = errno;
    334     }
    335 
    336     if (setpriority(PRIO_PROCESS, tid, pri) < 0) {
    337         rc = INVALID_OPERATION;
    338     } else {
    339         errno = lasterr;
    340     }
    341 #endif
    342 
    343     return rc;
    344 }
    345 
    346 int androidGetThreadPriority(pid_t tid) {
    347 #if defined(HAVE_PTHREADS)
    348     return getpriority(PRIO_PROCESS, tid);
    349 #else
    350     return ANDROID_PRIORITY_NORMAL;
    351 #endif
    352 }
    353 
    354 #endif
    355 
    356 namespace android {
    357 
    358 /*
    359  * ===========================================================================
    360  *      Mutex class
    361  * ===========================================================================
    362  */
    363 
    364 #if defined(HAVE_PTHREADS)
    365 // implemented as inlines in threads.h
    366 #elif defined(HAVE_WIN32_THREADS)
    367 
    368 Mutex::Mutex()
    369 {
    370     HANDLE hMutex;
    371 
    372     assert(sizeof(hMutex) == sizeof(mState));
    373 
    374     hMutex = CreateMutex(NULL, FALSE, NULL);
    375     mState = (void*) hMutex;
    376 }
    377 
    378 Mutex::Mutex(const char* name)
    379 {
    380     // XXX: name not used for now
    381     HANDLE hMutex;
    382 
    383     assert(sizeof(hMutex) == sizeof(mState));
    384 
    385     hMutex = CreateMutex(NULL, FALSE, NULL);
    386     mState = (void*) hMutex;
    387 }
    388 
    389 Mutex::Mutex(int type, const char* name)
    390 {
    391     // XXX: type and name not used for now
    392     HANDLE hMutex;
    393 
    394     assert(sizeof(hMutex) == sizeof(mState));
    395 
    396     hMutex = CreateMutex(NULL, FALSE, NULL);
    397     mState = (void*) hMutex;
    398 }
    399 
    400 Mutex::~Mutex()
    401 {
    402     CloseHandle((HANDLE) mState);
    403 }
    404 
    405 status_t Mutex::lock()
    406 {
    407     DWORD dwWaitResult;
    408     dwWaitResult = WaitForSingleObject((HANDLE) mState, INFINITE);
    409     return dwWaitResult != WAIT_OBJECT_0 ? -1 : NO_ERROR;
    410 }
    411 
    412 void Mutex::unlock()
    413 {
    414     if (!ReleaseMutex((HANDLE) mState))
    415         ALOG(LOG_WARN, "thread", "WARNING: bad result from unlocking mutex\n");
    416 }
    417 
    418 status_t Mutex::tryLock()
    419 {
    420     DWORD dwWaitResult;
    421 
    422     dwWaitResult = WaitForSingleObject((HANDLE) mState, 0);
    423     if (dwWaitResult != WAIT_OBJECT_0 && dwWaitResult != WAIT_TIMEOUT)
    424         ALOG(LOG_WARN, "thread", "WARNING: bad result from try-locking mutex\n");
    425     return (dwWaitResult == WAIT_OBJECT_0) ? 0 : -1;
    426 }
    427 
    428 #else
    429 #error "Somebody forgot to implement threads for this platform."
    430 #endif
    431 
    432 
    433 /*
    434  * ===========================================================================
    435  *      Condition class
    436  * ===========================================================================
    437  */
    438 
    439 #if defined(HAVE_PTHREADS)
    440 // implemented as inlines in threads.h
    441 #elif defined(HAVE_WIN32_THREADS)
    442 
    443 /*
    444  * Windows doesn't have a condition variable solution.  It's possible
    445  * to create one, but it's easy to get it wrong.  For a discussion, and
    446  * the origin of this implementation, see:
    447  *
    448  *  http://www.cs.wustl.edu/~schmidt/win32-cv-1.html
    449  *
    450  * The implementation shown on the page does NOT follow POSIX semantics.
    451  * As an optimization they require acquiring the external mutex before
    452  * calling signal() and broadcast(), whereas POSIX only requires grabbing
    453  * it before calling wait().  The implementation here has been un-optimized
    454  * to have the correct behavior.
    455  */
    456 typedef struct WinCondition {
    457     // Number of waiting threads.
    458     int                 waitersCount;
    459 
    460     // Serialize access to waitersCount.
    461     CRITICAL_SECTION    waitersCountLock;
    462 
    463     // Semaphore used to queue up threads waiting for the condition to
    464     // become signaled.
    465     HANDLE              sema;
    466 
    467     // An auto-reset event used by the broadcast/signal thread to wait
    468     // for all the waiting thread(s) to wake up and be released from
    469     // the semaphore.
    470     HANDLE              waitersDone;
    471 
    472     // This mutex wouldn't be necessary if we required that the caller
    473     // lock the external mutex before calling signal() and broadcast().
    474     // I'm trying to mimic pthread semantics though.
    475     HANDLE              internalMutex;
    476 
    477     // Keeps track of whether we were broadcasting or signaling.  This
    478     // allows us to optimize the code if we're just signaling.
    479     bool                wasBroadcast;
    480 
    481     status_t wait(WinCondition* condState, HANDLE hMutex, nsecs_t* abstime)
    482     {
    483         // Increment the wait count, avoiding race conditions.
    484         EnterCriticalSection(&condState->waitersCountLock);
    485         condState->waitersCount++;
    486         //printf("+++ wait: incr waitersCount to %d (tid=%ld)\n",
    487         //    condState->waitersCount, getThreadId());
    488         LeaveCriticalSection(&condState->waitersCountLock);
    489 
    490         DWORD timeout = INFINITE;
    491         if (abstime) {
    492             nsecs_t reltime = *abstime - systemTime();
    493             if (reltime < 0)
    494                 reltime = 0;
    495             timeout = reltime/1000000;
    496         }
    497 
    498         // Atomically release the external mutex and wait on the semaphore.
    499         DWORD res =
    500             SignalObjectAndWait(hMutex, condState->sema, timeout, FALSE);
    501 
    502         //printf("+++ wait: awake (tid=%ld)\n", getThreadId());
    503 
    504         // Reacquire lock to avoid race conditions.
    505         EnterCriticalSection(&condState->waitersCountLock);
    506 
    507         // No longer waiting.
    508         condState->waitersCount--;
    509 
    510         // Check to see if we're the last waiter after a broadcast.
    511         bool lastWaiter = (condState->wasBroadcast && condState->waitersCount == 0);
    512 
    513         //printf("+++ wait: lastWaiter=%d (wasBc=%d wc=%d)\n",
    514         //    lastWaiter, condState->wasBroadcast, condState->waitersCount);
    515 
    516         LeaveCriticalSection(&condState->waitersCountLock);
    517 
    518         // If we're the last waiter thread during this particular broadcast
    519         // then signal broadcast() that we're all awake.  It'll drop the
    520         // internal mutex.
    521         if (lastWaiter) {
    522             // Atomically signal the "waitersDone" event and wait until we
    523             // can acquire the internal mutex.  We want to do this in one step
    524             // because it ensures that everybody is in the mutex FIFO before
    525             // any thread has a chance to run.  Without it, another thread
    526             // could wake up, do work, and hop back in ahead of us.
    527             SignalObjectAndWait(condState->waitersDone, condState->internalMutex,
    528                 INFINITE, FALSE);
    529         } else {
    530             // Grab the internal mutex.
    531             WaitForSingleObject(condState->internalMutex, INFINITE);
    532         }
    533 
    534         // Release the internal and grab the external.
    535         ReleaseMutex(condState->internalMutex);
    536         WaitForSingleObject(hMutex, INFINITE);
    537 
    538         return res == WAIT_OBJECT_0 ? NO_ERROR : -1;
    539     }
    540 } WinCondition;
    541 
    542 /*
    543  * Constructor.  Set up the WinCondition stuff.
    544  */
    545 Condition::Condition()
    546 {
    547     WinCondition* condState = new WinCondition;
    548 
    549     condState->waitersCount = 0;
    550     condState->wasBroadcast = false;
    551     // semaphore: no security, initial value of 0
    552     condState->sema = CreateSemaphore(NULL, 0, 0x7fffffff, NULL);
    553     InitializeCriticalSection(&condState->waitersCountLock);
    554     // auto-reset event, not signaled initially
    555     condState->waitersDone = CreateEvent(NULL, FALSE, FALSE, NULL);
    556     // used so we don't have to lock external mutex on signal/broadcast
    557     condState->internalMutex = CreateMutex(NULL, FALSE, NULL);
    558 
    559     mState = condState;
    560 }
    561 
    562 /*
    563  * Destructor.  Free Windows resources as well as our allocated storage.
    564  */
    565 Condition::~Condition()
    566 {
    567     WinCondition* condState = (WinCondition*) mState;
    568     if (condState != NULL) {
    569         CloseHandle(condState->sema);
    570         CloseHandle(condState->waitersDone);
    571         delete condState;
    572     }
    573 }
    574 
    575 
    576 status_t Condition::wait(Mutex& mutex)
    577 {
    578     WinCondition* condState = (WinCondition*) mState;
    579     HANDLE hMutex = (HANDLE) mutex.mState;
    580 
    581     return ((WinCondition*)mState)->wait(condState, hMutex, NULL);
    582 }
    583 
    584 status_t Condition::waitRelative(Mutex& mutex, nsecs_t reltime)
    585 {
    586     WinCondition* condState = (WinCondition*) mState;
    587     HANDLE hMutex = (HANDLE) mutex.mState;
    588     nsecs_t absTime = systemTime()+reltime;
    589 
    590     return ((WinCondition*)mState)->wait(condState, hMutex, &absTime);
    591 }
    592 
    593 /*
    594  * Signal the condition variable, allowing one thread to continue.
    595  */
    596 void Condition::signal()
    597 {
    598     WinCondition* condState = (WinCondition*) mState;
    599 
    600     // Lock the internal mutex.  This ensures that we don't clash with
    601     // broadcast().
    602     WaitForSingleObject(condState->internalMutex, INFINITE);
    603 
    604     EnterCriticalSection(&condState->waitersCountLock);
    605     bool haveWaiters = (condState->waitersCount > 0);
    606     LeaveCriticalSection(&condState->waitersCountLock);
    607 
    608     // If no waiters, then this is a no-op.  Otherwise, knock the semaphore
    609     // down a notch.
    610     if (haveWaiters)
    611         ReleaseSemaphore(condState->sema, 1, 0);
    612 
    613     // Release internal mutex.
    614     ReleaseMutex(condState->internalMutex);
    615 }
    616 
    617 /*
    618  * Signal the condition variable, allowing all threads to continue.
    619  *
    620  * First we have to wake up all threads waiting on the semaphore, then
    621  * we wait until all of the threads have actually been woken before
    622  * releasing the internal mutex.  This ensures that all threads are woken.
    623  */
    624 void Condition::broadcast()
    625 {
    626     WinCondition* condState = (WinCondition*) mState;
    627 
    628     // Lock the internal mutex.  This keeps the guys we're waking up
    629     // from getting too far.
    630     WaitForSingleObject(condState->internalMutex, INFINITE);
    631 
    632     EnterCriticalSection(&condState->waitersCountLock);
    633     bool haveWaiters = false;
    634 
    635     if (condState->waitersCount > 0) {
    636         haveWaiters = true;
    637         condState->wasBroadcast = true;
    638     }
    639 
    640     if (haveWaiters) {
    641         // Wake up all the waiters.
    642         ReleaseSemaphore(condState->sema, condState->waitersCount, 0);
    643 
    644         LeaveCriticalSection(&condState->waitersCountLock);
    645 
    646         // Wait for all awakened threads to acquire the counting semaphore.
    647         // The last guy who was waiting sets this.
    648         WaitForSingleObject(condState->waitersDone, INFINITE);
    649 
    650         // Reset wasBroadcast.  (No crit section needed because nobody
    651         // else can wake up to poke at it.)
    652         condState->wasBroadcast = 0;
    653     } else {
    654         // nothing to do
    655         LeaveCriticalSection(&condState->waitersCountLock);
    656     }
    657 
    658     // Release internal mutex.
    659     ReleaseMutex(condState->internalMutex);
    660 }
    661 
    662 #else
    663 #error "condition variables not supported on this platform"
    664 #endif
    665 
    666 // ----------------------------------------------------------------------------
    667 
    668 /*
    669  * This is our thread object!
    670  */
    671 
    672 Thread::Thread(bool canCallJava)
    673     :   mCanCallJava(canCallJava),
    674         mThread(thread_id_t(-1)),
    675         mLock("Thread::mLock"),
    676         mStatus(NO_ERROR),
    677         mExitPending(false), mRunning(false)
    678 #ifdef HAVE_ANDROID_OS
    679         , mTid(-1)
    680 #endif
    681 {
    682 }
    683 
    684 Thread::~Thread()
    685 {
    686 }
    687 
    688 status_t Thread::readyToRun()
    689 {
    690     return NO_ERROR;
    691 }
    692 
    693 status_t Thread::run(const char* name, int32_t priority, size_t stack)
    694 {
    695     Mutex::Autolock _l(mLock);
    696 
    697     if (mRunning) {
    698         // thread already started
    699         return INVALID_OPERATION;
    700     }
    701 
    702     // reset status and exitPending to their default value, so we can
    703     // try again after an error happened (either below, or in readyToRun())
    704     mStatus = NO_ERROR;
    705     mExitPending = false;
    706     mThread = thread_id_t(-1);
    707 
    708     // hold a strong reference on ourself
    709     mHoldSelf = this;
    710 
    711     mRunning = true;
    712 
    713     bool res;
    714     if (mCanCallJava) {
    715         res = createThreadEtc(_threadLoop,
    716                 this, name, priority, stack, &mThread);
    717     } else {
    718         res = androidCreateRawThreadEtc(_threadLoop,
    719                 this, name, priority, stack, &mThread);
    720     }
    721 
    722     if (res == false) {
    723         mStatus = UNKNOWN_ERROR;   // something happened!
    724         mRunning = false;
    725         mThread = thread_id_t(-1);
    726         mHoldSelf.clear();  // "this" may have gone away after this.
    727 
    728         return UNKNOWN_ERROR;
    729     }
    730 
    731     // Do not refer to mStatus here: The thread is already running (may, in fact
    732     // already have exited with a valid mStatus result). The NO_ERROR indication
    733     // here merely indicates successfully starting the thread and does not
    734     // imply successful termination/execution.
    735     return NO_ERROR;
    736 
    737     // Exiting scope of mLock is a memory barrier and allows new thread to run
    738 }
    739 
    740 int Thread::_threadLoop(void* user)
    741 {
    742     Thread* const self = static_cast<Thread*>(user);
    743 
    744     sp<Thread> strong(self->mHoldSelf);
    745     wp<Thread> weak(strong);
    746     self->mHoldSelf.clear();
    747 
    748 #ifdef HAVE_ANDROID_OS
    749     // this is very useful for debugging with gdb
    750     self->mTid = gettid();
    751 #endif
    752 
    753     bool first = true;
    754 
    755     do {
    756         bool result;
    757         if (first) {
    758             first = false;
    759             self->mStatus = self->readyToRun();
    760             result = (self->mStatus == NO_ERROR);
    761 
    762             if (result && !self->exitPending()) {
    763                 // Binder threads (and maybe others) rely on threadLoop
    764                 // running at least once after a successful ::readyToRun()
    765                 // (unless, of course, the thread has already been asked to exit
    766                 // at that point).
    767                 // This is because threads are essentially used like this:
    768                 //   (new ThreadSubclass())->run();
    769                 // The caller therefore does not retain a strong reference to
    770                 // the thread and the thread would simply disappear after the
    771                 // successful ::readyToRun() call instead of entering the
    772                 // threadLoop at least once.
    773                 result = self->threadLoop();
    774             }
    775         } else {
    776             result = self->threadLoop();
    777         }
    778 
    779         // establish a scope for mLock
    780         {
    781         Mutex::Autolock _l(self->mLock);
    782         if (result == false || self->mExitPending) {
    783             self->mExitPending = true;
    784             self->mRunning = false;
    785             // clear thread ID so that requestExitAndWait() does not exit if
    786             // called by a new thread using the same thread ID as this one.
    787             self->mThread = thread_id_t(-1);
    788             // note that interested observers blocked in requestExitAndWait are
    789             // awoken by broadcast, but blocked on mLock until break exits scope
    790             self->mThreadExitedCondition.broadcast();
    791             break;
    792         }
    793         }
    794 
    795         // Release our strong reference, to let a chance to the thread
    796         // to die a peaceful death.
    797         strong.clear();
    798         // And immediately, re-acquire a strong reference for the next loop
    799         strong = weak.promote();
    800     } while(strong != 0);
    801 
    802     return 0;
    803 }
    804 
    805 void Thread::requestExit()
    806 {
    807     Mutex::Autolock _l(mLock);
    808     mExitPending = true;
    809 }
    810 
    811 status_t Thread::requestExitAndWait()
    812 {
    813     Mutex::Autolock _l(mLock);
    814     if (mThread == getThreadId()) {
    815         ALOGW(
    816         "Thread (this=%p): don't call waitForExit() from this "
    817         "Thread object's thread. It's a guaranteed deadlock!",
    818         this);
    819 
    820         return WOULD_BLOCK;
    821     }
    822 
    823     mExitPending = true;
    824 
    825     while (mRunning == true) {
    826         mThreadExitedCondition.wait(mLock);
    827     }
    828     // This next line is probably not needed any more, but is being left for
    829     // historical reference. Note that each interested party will clear flag.
    830     mExitPending = false;
    831 
    832     return mStatus;
    833 }
    834 
    835 status_t Thread::join()
    836 {
    837     Mutex::Autolock _l(mLock);
    838     if (mThread == getThreadId()) {
    839         ALOGW(
    840         "Thread (this=%p): don't call join() from this "
    841         "Thread object's thread. It's a guaranteed deadlock!",
    842         this);
    843 
    844         return WOULD_BLOCK;
    845     }
    846 
    847     while (mRunning == true) {
    848         mThreadExitedCondition.wait(mLock);
    849     }
    850 
    851     return mStatus;
    852 }
    853 
    854 bool Thread::isRunning() const {
    855     Mutex::Autolock _l(mLock);
    856     return mRunning;
    857 }
    858 
    859 #ifdef HAVE_ANDROID_OS
    860 pid_t Thread::getTid() const
    861 {
    862     // mTid is not defined until the child initializes it, and the caller may need it earlier
    863     Mutex::Autolock _l(mLock);
    864     pid_t tid;
    865     if (mRunning) {
    866         pthread_t pthread = android_thread_id_t_to_pthread(mThread);
    867         tid = __pthread_gettid(pthread);
    868     } else {
    869         ALOGW("Thread (this=%p): getTid() is undefined before run()", this);
    870         tid = -1;
    871     }
    872     return tid;
    873 }
    874 #endif
    875 
    876 bool Thread::exitPending() const
    877 {
    878     Mutex::Autolock _l(mLock);
    879     return mExitPending;
    880 }
    881 
    882 
    883 
    884 };  // namespace android
    885