Home | History | Annotate | Download | only in CodeGen
      1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The LiveRangeEdit class represents changes done to a virtual register when it
     11 // is spilled or split.
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/CodeGen/LiveRangeEdit.h"
     15 #include "llvm/ADT/Statistic.h"
     16 #include "llvm/CodeGen/CalcSpillWeights.h"
     17 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     18 #include "llvm/CodeGen/MachineRegisterInfo.h"
     19 #include "llvm/CodeGen/VirtRegMap.h"
     20 #include "llvm/Support/Debug.h"
     21 #include "llvm/Support/raw_ostream.h"
     22 #include "llvm/Target/TargetInstrInfo.h"
     23 
     24 using namespace llvm;
     25 
     26 #define DEBUG_TYPE "regalloc"
     27 
     28 STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE");
     29 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
     30 STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE");
     31 
     32 void LiveRangeEdit::Delegate::anchor() { }
     33 
     34 LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(unsigned OldReg) {
     35   unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
     36   if (VRM) {
     37     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
     38   }
     39   LiveInterval &LI = LIS.createEmptyInterval(VReg);
     40   return LI;
     41 }
     42 
     43 unsigned LiveRangeEdit::createFrom(unsigned OldReg) {
     44   unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
     45   if (VRM) {
     46     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
     47   }
     48   return VReg;
     49 }
     50 
     51 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
     52                                           const MachineInstr *DefMI,
     53                                           AliasAnalysis *aa) {
     54   assert(DefMI && "Missing instruction");
     55   ScannedRemattable = true;
     56   if (!TII.isTriviallyReMaterializable(DefMI, aa))
     57     return false;
     58   Remattable.insert(VNI);
     59   return true;
     60 }
     61 
     62 void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
     63   for (LiveInterval::vni_iterator I = getParent().vni_begin(),
     64        E = getParent().vni_end(); I != E; ++I) {
     65     VNInfo *VNI = *I;
     66     if (VNI->isUnused())
     67       continue;
     68     MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def);
     69     if (!DefMI)
     70       continue;
     71     checkRematerializable(VNI, DefMI, aa);
     72   }
     73   ScannedRemattable = true;
     74 }
     75 
     76 bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
     77   if (!ScannedRemattable)
     78     scanRemattable(aa);
     79   return !Remattable.empty();
     80 }
     81 
     82 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
     83 /// OrigIdx are also available with the same value at UseIdx.
     84 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
     85                                        SlotIndex OrigIdx,
     86                                        SlotIndex UseIdx) const {
     87   OrigIdx = OrigIdx.getRegSlot(true);
     88   UseIdx = UseIdx.getRegSlot(true);
     89   for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
     90     const MachineOperand &MO = OrigMI->getOperand(i);
     91     if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
     92       continue;
     93 
     94     // We can't remat physreg uses, unless it is a constant.
     95     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
     96       if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent()))
     97         continue;
     98       return false;
     99     }
    100 
    101     LiveInterval &li = LIS.getInterval(MO.getReg());
    102     const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
    103     if (!OVNI)
    104       continue;
    105 
    106     // Don't allow rematerialization immediately after the original def.
    107     // It would be incorrect if OrigMI redefines the register.
    108     // See PR14098.
    109     if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
    110       return false;
    111 
    112     if (OVNI != li.getVNInfoAt(UseIdx))
    113       return false;
    114   }
    115   return true;
    116 }
    117 
    118 bool LiveRangeEdit::canRematerializeAt(Remat &RM,
    119                                        SlotIndex UseIdx,
    120                                        bool cheapAsAMove) {
    121   assert(ScannedRemattable && "Call anyRematerializable first");
    122 
    123   // Use scanRemattable info.
    124   if (!Remattable.count(RM.ParentVNI))
    125     return false;
    126 
    127   // No defining instruction provided.
    128   SlotIndex DefIdx;
    129   if (RM.OrigMI)
    130     DefIdx = LIS.getInstructionIndex(RM.OrigMI);
    131   else {
    132     DefIdx = RM.ParentVNI->def;
    133     RM.OrigMI = LIS.getInstructionFromIndex(DefIdx);
    134     assert(RM.OrigMI && "No defining instruction for remattable value");
    135   }
    136 
    137   // If only cheap remats were requested, bail out early.
    138   if (cheapAsAMove && !RM.OrigMI->isAsCheapAsAMove())
    139     return false;
    140 
    141   // Verify that all used registers are available with the same values.
    142   if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
    143     return false;
    144 
    145   return true;
    146 }
    147 
    148 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
    149                                          MachineBasicBlock::iterator MI,
    150                                          unsigned DestReg,
    151                                          const Remat &RM,
    152                                          const TargetRegisterInfo &tri,
    153                                          bool Late) {
    154   assert(RM.OrigMI && "Invalid remat");
    155   TII.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri);
    156   Rematted.insert(RM.ParentVNI);
    157   return LIS.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late)
    158            .getRegSlot();
    159 }
    160 
    161 void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
    162   if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
    163     LIS.removeInterval(Reg);
    164 }
    165 
    166 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
    167                                SmallVectorImpl<MachineInstr*> &Dead) {
    168   MachineInstr *DefMI = nullptr, *UseMI = nullptr;
    169 
    170   // Check that there is a single def and a single use.
    171   for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg)) {
    172     MachineInstr *MI = MO.getParent();
    173     if (MO.isDef()) {
    174       if (DefMI && DefMI != MI)
    175         return false;
    176       if (!MI->canFoldAsLoad())
    177         return false;
    178       DefMI = MI;
    179     } else if (!MO.isUndef()) {
    180       if (UseMI && UseMI != MI)
    181         return false;
    182       // FIXME: Targets don't know how to fold subreg uses.
    183       if (MO.getSubReg())
    184         return false;
    185       UseMI = MI;
    186     }
    187   }
    188   if (!DefMI || !UseMI)
    189     return false;
    190 
    191   // Since we're moving the DefMI load, make sure we're not extending any live
    192   // ranges.
    193   if (!allUsesAvailableAt(DefMI,
    194                           LIS.getInstructionIndex(DefMI),
    195                           LIS.getInstructionIndex(UseMI)))
    196     return false;
    197 
    198   // We also need to make sure it is safe to move the load.
    199   // Assume there are stores between DefMI and UseMI.
    200   bool SawStore = true;
    201   if (!DefMI->isSafeToMove(&TII, nullptr, SawStore))
    202     return false;
    203 
    204   DEBUG(dbgs() << "Try to fold single def: " << *DefMI
    205                << "       into single use: " << *UseMI);
    206 
    207   SmallVector<unsigned, 8> Ops;
    208   if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
    209     return false;
    210 
    211   MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI);
    212   if (!FoldMI)
    213     return false;
    214   DEBUG(dbgs() << "                folded: " << *FoldMI);
    215   LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI);
    216   UseMI->eraseFromParent();
    217   DefMI->addRegisterDead(LI->reg, nullptr);
    218   Dead.push_back(DefMI);
    219   ++NumDCEFoldedLoads;
    220   return true;
    221 }
    222 
    223 /// Find all live intervals that need to shrink, then remove the instruction.
    224 void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink) {
    225   assert(MI->allDefsAreDead() && "Def isn't really dead");
    226   SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
    227 
    228   // Never delete a bundled instruction.
    229   if (MI->isBundled()) {
    230     return;
    231   }
    232   // Never delete inline asm.
    233   if (MI->isInlineAsm()) {
    234     DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
    235     return;
    236   }
    237 
    238   // Use the same criteria as DeadMachineInstructionElim.
    239   bool SawStore = false;
    240   if (!MI->isSafeToMove(&TII, nullptr, SawStore)) {
    241     DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
    242     return;
    243   }
    244 
    245   DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
    246 
    247   // Collect virtual registers to be erased after MI is gone.
    248   SmallVector<unsigned, 8> RegsToErase;
    249   bool ReadsPhysRegs = false;
    250 
    251   // Check for live intervals that may shrink
    252   for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
    253          MOE = MI->operands_end(); MOI != MOE; ++MOI) {
    254     if (!MOI->isReg())
    255       continue;
    256     unsigned Reg = MOI->getReg();
    257     if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
    258       // Check if MI reads any unreserved physregs.
    259       if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
    260         ReadsPhysRegs = true;
    261       else if (MOI->isDef()) {
    262         for (MCRegUnitIterator Units(Reg, MRI.getTargetRegisterInfo());
    263              Units.isValid(); ++Units) {
    264           if (LiveRange *LR = LIS.getCachedRegUnit(*Units)) {
    265             if (VNInfo *VNI = LR->getVNInfoAt(Idx))
    266               LR->removeValNo(VNI);
    267           }
    268         }
    269       }
    270       continue;
    271     }
    272     LiveInterval &LI = LIS.getInterval(Reg);
    273 
    274     // Shrink read registers, unless it is likely to be expensive and
    275     // unlikely to change anything. We typically don't want to shrink the
    276     // PIC base register that has lots of uses everywhere.
    277     // Always shrink COPY uses that probably come from live range splitting.
    278     if (MI->readsVirtualRegister(Reg) &&
    279         (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) ||
    280          LI.Query(Idx).isKill()))
    281       ToShrink.insert(&LI);
    282 
    283     // Remove defined value.
    284     if (MOI->isDef()) {
    285       if (VNInfo *VNI = LI.getVNInfoAt(Idx)) {
    286         if (TheDelegate)
    287           TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
    288         LI.removeValNo(VNI);
    289         if (LI.empty())
    290           RegsToErase.push_back(Reg);
    291       }
    292     }
    293   }
    294 
    295   // Currently, we don't support DCE of physreg live ranges. If MI reads
    296   // any unreserved physregs, don't erase the instruction, but turn it into
    297   // a KILL instead. This way, the physreg live ranges don't end up
    298   // dangling.
    299   // FIXME: It would be better to have something like shrinkToUses() for
    300   // physregs. That could potentially enable more DCE and it would free up
    301   // the physreg. It would not happen often, though.
    302   if (ReadsPhysRegs) {
    303     MI->setDesc(TII.get(TargetOpcode::KILL));
    304     // Remove all operands that aren't physregs.
    305     for (unsigned i = MI->getNumOperands(); i; --i) {
    306       const MachineOperand &MO = MI->getOperand(i-1);
    307       if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
    308         continue;
    309       MI->RemoveOperand(i-1);
    310     }
    311     DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
    312   } else {
    313     if (TheDelegate)
    314       TheDelegate->LRE_WillEraseInstruction(MI);
    315     LIS.RemoveMachineInstrFromMaps(MI);
    316     MI->eraseFromParent();
    317     ++NumDCEDeleted;
    318   }
    319 
    320   // Erase any virtregs that are now empty and unused. There may be <undef>
    321   // uses around. Keep the empty live range in that case.
    322   for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
    323     unsigned Reg = RegsToErase[i];
    324     if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
    325       ToShrink.remove(&LIS.getInterval(Reg));
    326       eraseVirtReg(Reg);
    327     }
    328   }
    329 }
    330 
    331 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
    332                                       ArrayRef<unsigned> RegsBeingSpilled) {
    333   ToShrinkSet ToShrink;
    334 
    335   for (;;) {
    336     // Erase all dead defs.
    337     while (!Dead.empty())
    338       eliminateDeadDef(Dead.pop_back_val(), ToShrink);
    339 
    340     if (ToShrink.empty())
    341       break;
    342 
    343     // Shrink just one live interval. Then delete new dead defs.
    344     LiveInterval *LI = ToShrink.back();
    345     ToShrink.pop_back();
    346     if (foldAsLoad(LI, Dead))
    347       continue;
    348     if (TheDelegate)
    349       TheDelegate->LRE_WillShrinkVirtReg(LI->reg);
    350     if (!LIS.shrinkToUses(LI, &Dead))
    351       continue;
    352 
    353     // Don't create new intervals for a register being spilled.
    354     // The new intervals would have to be spilled anyway so its not worth it.
    355     // Also they currently aren't spilled so creating them and not spilling
    356     // them results in incorrect code.
    357     bool BeingSpilled = false;
    358     for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
    359       if (LI->reg == RegsBeingSpilled[i]) {
    360         BeingSpilled = true;
    361         break;
    362       }
    363     }
    364 
    365     if (BeingSpilled) continue;
    366 
    367     // LI may have been separated, create new intervals.
    368     LI->RenumberValues();
    369     ConnectedVNInfoEqClasses ConEQ(LIS);
    370     unsigned NumComp = ConEQ.Classify(LI);
    371     if (NumComp <= 1)
    372       continue;
    373     ++NumFracRanges;
    374     bool IsOriginal = VRM && VRM->getOriginal(LI->reg) == LI->reg;
    375     DEBUG(dbgs() << NumComp << " components: " << *LI << '\n');
    376     SmallVector<LiveInterval*, 8> Dups(1, LI);
    377     for (unsigned i = 1; i != NumComp; ++i) {
    378       Dups.push_back(&createEmptyIntervalFrom(LI->reg));
    379       // If LI is an original interval that hasn't been split yet, make the new
    380       // intervals their own originals instead of referring to LI. The original
    381       // interval must contain all the split products, and LI doesn't.
    382       if (IsOriginal)
    383         VRM->setIsSplitFromReg(Dups.back()->reg, 0);
    384       if (TheDelegate)
    385         TheDelegate->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg);
    386     }
    387     ConEQ.Distribute(&Dups[0], MRI);
    388     DEBUG({
    389       for (unsigned i = 0; i != NumComp; ++i)
    390         dbgs() << '\t' << *Dups[i] << '\n';
    391     });
    392   }
    393 }
    394 
    395 // Keep track of new virtual registers created via
    396 // MachineRegisterInfo::createVirtualRegister.
    397 void
    398 LiveRangeEdit::MRI_NoteNewVirtualRegister(unsigned VReg)
    399 {
    400   if (VRM)
    401     VRM->grow();
    402 
    403   NewRegs.push_back(VReg);
    404 }
    405 
    406 void
    407 LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
    408                                         const MachineLoopInfo &Loops,
    409                                         const MachineBlockFrequencyInfo &MBFI) {
    410   VirtRegAuxInfo VRAI(MF, LIS, Loops, MBFI);
    411   for (unsigned I = 0, Size = size(); I < Size; ++I) {
    412     LiveInterval &LI = LIS.getInterval(get(I));
    413     if (MRI.recomputeRegClass(LI.reg, MF.getTarget()))
    414       DEBUG(dbgs() << "Inflated " << PrintReg(LI.reg) << " to "
    415                    << MRI.getRegClass(LI.reg)->getName() << '\n');
    416     VRAI.calculateSpillWeightAndHint(LI);
    417   }
    418 }
    419