Home | History | Annotate | Download | only in input
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #define LOG_TAG "VelocityTracker"
     18 //#define LOG_NDEBUG 0
     19 
     20 // Log debug messages about velocity tracking.
     21 #define DEBUG_VELOCITY 0
     22 
     23 // Log debug messages about the progress of the algorithm itself.
     24 #define DEBUG_STRATEGY 0
     25 
     26 #include <math.h>
     27 #include <limits.h>
     28 
     29 #include <cutils/properties.h>
     30 #include <input/VelocityTracker.h>
     31 #include <utils/BitSet.h>
     32 #include <utils/String8.h>
     33 #include <utils/Timers.h>
     34 
     35 namespace android {
     36 
     37 // Nanoseconds per milliseconds.
     38 static const nsecs_t NANOS_PER_MS = 1000000;
     39 
     40 // Threshold for determining that a pointer has stopped moving.
     41 // Some input devices do not send ACTION_MOVE events in the case where a pointer has
     42 // stopped.  We need to detect this case so that we can accurately predict the
     43 // velocity after the pointer starts moving again.
     44 static const nsecs_t ASSUME_POINTER_STOPPED_TIME = 40 * NANOS_PER_MS;
     45 
     46 
     47 static float vectorDot(const float* a, const float* b, uint32_t m) {
     48     float r = 0;
     49     while (m--) {
     50         r += *(a++) * *(b++);
     51     }
     52     return r;
     53 }
     54 
     55 static float vectorNorm(const float* a, uint32_t m) {
     56     float r = 0;
     57     while (m--) {
     58         float t = *(a++);
     59         r += t * t;
     60     }
     61     return sqrtf(r);
     62 }
     63 
     64 #if DEBUG_STRATEGY || DEBUG_VELOCITY
     65 static String8 vectorToString(const float* a, uint32_t m) {
     66     String8 str;
     67     str.append("[");
     68     while (m--) {
     69         str.appendFormat(" %f", *(a++));
     70         if (m) {
     71             str.append(",");
     72         }
     73     }
     74     str.append(" ]");
     75     return str;
     76 }
     77 
     78 static String8 matrixToString(const float* a, uint32_t m, uint32_t n, bool rowMajor) {
     79     String8 str;
     80     str.append("[");
     81     for (size_t i = 0; i < m; i++) {
     82         if (i) {
     83             str.append(",");
     84         }
     85         str.append(" [");
     86         for (size_t j = 0; j < n; j++) {
     87             if (j) {
     88                 str.append(",");
     89             }
     90             str.appendFormat(" %f", a[rowMajor ? i * n + j : j * m + i]);
     91         }
     92         str.append(" ]");
     93     }
     94     str.append(" ]");
     95     return str;
     96 }
     97 #endif
     98 
     99 
    100 // --- VelocityTracker ---
    101 
    102 // The default velocity tracker strategy.
    103 // Although other strategies are available for testing and comparison purposes,
    104 // this is the strategy that applications will actually use.  Be very careful
    105 // when adjusting the default strategy because it can dramatically affect
    106 // (often in a bad way) the user experience.
    107 const char* VelocityTracker::DEFAULT_STRATEGY = "lsq2";
    108 
    109 VelocityTracker::VelocityTracker(const char* strategy) :
    110         mLastEventTime(0), mCurrentPointerIdBits(0), mActivePointerId(-1) {
    111     char value[PROPERTY_VALUE_MAX];
    112 
    113     // Allow the default strategy to be overridden using a system property for debugging.
    114     if (!strategy) {
    115         int length = property_get("debug.velocitytracker.strategy", value, NULL);
    116         if (length > 0) {
    117             strategy = value;
    118         } else {
    119             strategy = DEFAULT_STRATEGY;
    120         }
    121     }
    122 
    123     // Configure the strategy.
    124     if (!configureStrategy(strategy)) {
    125         ALOGD("Unrecognized velocity tracker strategy name '%s'.", strategy);
    126         if (!configureStrategy(DEFAULT_STRATEGY)) {
    127             LOG_ALWAYS_FATAL("Could not create the default velocity tracker strategy '%s'!",
    128                     strategy);
    129         }
    130     }
    131 }
    132 
    133 VelocityTracker::~VelocityTracker() {
    134     delete mStrategy;
    135 }
    136 
    137 bool VelocityTracker::configureStrategy(const char* strategy) {
    138     mStrategy = createStrategy(strategy);
    139     return mStrategy != NULL;
    140 }
    141 
    142 VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) {
    143     if (!strcmp("lsq1", strategy)) {
    144         // 1st order least squares.  Quality: POOR.
    145         // Frequently underfits the touch data especially when the finger accelerates
    146         // or changes direction.  Often underestimates velocity.  The direction
    147         // is overly influenced by historical touch points.
    148         return new LeastSquaresVelocityTrackerStrategy(1);
    149     }
    150     if (!strcmp("lsq2", strategy)) {
    151         // 2nd order least squares.  Quality: VERY GOOD.
    152         // Pretty much ideal, but can be confused by certain kinds of touch data,
    153         // particularly if the panel has a tendency to generate delayed,
    154         // duplicate or jittery touch coordinates when the finger is released.
    155         return new LeastSquaresVelocityTrackerStrategy(2);
    156     }
    157     if (!strcmp("lsq3", strategy)) {
    158         // 3rd order least squares.  Quality: UNUSABLE.
    159         // Frequently overfits the touch data yielding wildly divergent estimates
    160         // of the velocity when the finger is released.
    161         return new LeastSquaresVelocityTrackerStrategy(3);
    162     }
    163     if (!strcmp("wlsq2-delta", strategy)) {
    164         // 2nd order weighted least squares, delta weighting.  Quality: EXPERIMENTAL
    165         return new LeastSquaresVelocityTrackerStrategy(2,
    166                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA);
    167     }
    168     if (!strcmp("wlsq2-central", strategy)) {
    169         // 2nd order weighted least squares, central weighting.  Quality: EXPERIMENTAL
    170         return new LeastSquaresVelocityTrackerStrategy(2,
    171                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL);
    172     }
    173     if (!strcmp("wlsq2-recent", strategy)) {
    174         // 2nd order weighted least squares, recent weighting.  Quality: EXPERIMENTAL
    175         return new LeastSquaresVelocityTrackerStrategy(2,
    176                 LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT);
    177     }
    178     if (!strcmp("int1", strategy)) {
    179         // 1st order integrating filter.  Quality: GOOD.
    180         // Not as good as 'lsq2' because it cannot estimate acceleration but it is
    181         // more tolerant of errors.  Like 'lsq1', this strategy tends to underestimate
    182         // the velocity of a fling but this strategy tends to respond to changes in
    183         // direction more quickly and accurately.
    184         return new IntegratingVelocityTrackerStrategy(1);
    185     }
    186     if (!strcmp("int2", strategy)) {
    187         // 2nd order integrating filter.  Quality: EXPERIMENTAL.
    188         // For comparison purposes only.  Unlike 'int1' this strategy can compensate
    189         // for acceleration but it typically overestimates the effect.
    190         return new IntegratingVelocityTrackerStrategy(2);
    191     }
    192     if (!strcmp("legacy", strategy)) {
    193         // Legacy velocity tracker algorithm.  Quality: POOR.
    194         // For comparison purposes only.  This algorithm is strongly influenced by
    195         // old data points, consistently underestimates velocity and takes a very long
    196         // time to adjust to changes in direction.
    197         return new LegacyVelocityTrackerStrategy();
    198     }
    199     return NULL;
    200 }
    201 
    202 void VelocityTracker::clear() {
    203     mCurrentPointerIdBits.clear();
    204     mActivePointerId = -1;
    205 
    206     mStrategy->clear();
    207 }
    208 
    209 void VelocityTracker::clearPointers(BitSet32 idBits) {
    210     BitSet32 remainingIdBits(mCurrentPointerIdBits.value & ~idBits.value);
    211     mCurrentPointerIdBits = remainingIdBits;
    212 
    213     if (mActivePointerId >= 0 && idBits.hasBit(mActivePointerId)) {
    214         mActivePointerId = !remainingIdBits.isEmpty() ? remainingIdBits.firstMarkedBit() : -1;
    215     }
    216 
    217     mStrategy->clearPointers(idBits);
    218 }
    219 
    220 void VelocityTracker::addMovement(nsecs_t eventTime, BitSet32 idBits, const Position* positions) {
    221     while (idBits.count() > MAX_POINTERS) {
    222         idBits.clearLastMarkedBit();
    223     }
    224 
    225     if ((mCurrentPointerIdBits.value & idBits.value)
    226             && eventTime >= mLastEventTime + ASSUME_POINTER_STOPPED_TIME) {
    227 #if DEBUG_VELOCITY
    228         ALOGD("VelocityTracker: stopped for %0.3f ms, clearing state.",
    229                 (eventTime - mLastEventTime) * 0.000001f);
    230 #endif
    231         // We have not received any movements for too long.  Assume that all pointers
    232         // have stopped.
    233         mStrategy->clear();
    234     }
    235     mLastEventTime = eventTime;
    236 
    237     mCurrentPointerIdBits = idBits;
    238     if (mActivePointerId < 0 || !idBits.hasBit(mActivePointerId)) {
    239         mActivePointerId = idBits.isEmpty() ? -1 : idBits.firstMarkedBit();
    240     }
    241 
    242     mStrategy->addMovement(eventTime, idBits, positions);
    243 
    244 #if DEBUG_VELOCITY
    245     ALOGD("VelocityTracker: addMovement eventTime=%lld, idBits=0x%08x, activePointerId=%d",
    246             eventTime, idBits.value, mActivePointerId);
    247     for (BitSet32 iterBits(idBits); !iterBits.isEmpty(); ) {
    248         uint32_t id = iterBits.firstMarkedBit();
    249         uint32_t index = idBits.getIndexOfBit(id);
    250         iterBits.clearBit(id);
    251         Estimator estimator;
    252         getEstimator(id, &estimator);
    253         ALOGD("  %d: position (%0.3f, %0.3f), "
    254                 "estimator (degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f)",
    255                 id, positions[index].x, positions[index].y,
    256                 int(estimator.degree),
    257                 vectorToString(estimator.xCoeff, estimator.degree + 1).string(),
    258                 vectorToString(estimator.yCoeff, estimator.degree + 1).string(),
    259                 estimator.confidence);
    260     }
    261 #endif
    262 }
    263 
    264 void VelocityTracker::addMovement(const MotionEvent* event) {
    265     int32_t actionMasked = event->getActionMasked();
    266 
    267     switch (actionMasked) {
    268     case AMOTION_EVENT_ACTION_DOWN:
    269     case AMOTION_EVENT_ACTION_HOVER_ENTER:
    270         // Clear all pointers on down before adding the new movement.
    271         clear();
    272         break;
    273     case AMOTION_EVENT_ACTION_POINTER_DOWN: {
    274         // Start a new movement trace for a pointer that just went down.
    275         // We do this on down instead of on up because the client may want to query the
    276         // final velocity for a pointer that just went up.
    277         BitSet32 downIdBits;
    278         downIdBits.markBit(event->getPointerId(event->getActionIndex()));
    279         clearPointers(downIdBits);
    280         break;
    281     }
    282     case AMOTION_EVENT_ACTION_MOVE:
    283     case AMOTION_EVENT_ACTION_HOVER_MOVE:
    284         break;
    285     default:
    286         // Ignore all other actions because they do not convey any new information about
    287         // pointer movement.  We also want to preserve the last known velocity of the pointers.
    288         // Note that ACTION_UP and ACTION_POINTER_UP always report the last known position
    289         // of the pointers that went up.  ACTION_POINTER_UP does include the new position of
    290         // pointers that remained down but we will also receive an ACTION_MOVE with this
    291         // information if any of them actually moved.  Since we don't know how many pointers
    292         // will be going up at once it makes sense to just wait for the following ACTION_MOVE
    293         // before adding the movement.
    294         return;
    295     }
    296 
    297     size_t pointerCount = event->getPointerCount();
    298     if (pointerCount > MAX_POINTERS) {
    299         pointerCount = MAX_POINTERS;
    300     }
    301 
    302     BitSet32 idBits;
    303     for (size_t i = 0; i < pointerCount; i++) {
    304         idBits.markBit(event->getPointerId(i));
    305     }
    306 
    307     uint32_t pointerIndex[MAX_POINTERS];
    308     for (size_t i = 0; i < pointerCount; i++) {
    309         pointerIndex[i] = idBits.getIndexOfBit(event->getPointerId(i));
    310     }
    311 
    312     nsecs_t eventTime;
    313     Position positions[pointerCount];
    314 
    315     size_t historySize = event->getHistorySize();
    316     for (size_t h = 0; h < historySize; h++) {
    317         eventTime = event->getHistoricalEventTime(h);
    318         for (size_t i = 0; i < pointerCount; i++) {
    319             uint32_t index = pointerIndex[i];
    320             positions[index].x = event->getHistoricalX(i, h);
    321             positions[index].y = event->getHistoricalY(i, h);
    322         }
    323         addMovement(eventTime, idBits, positions);
    324     }
    325 
    326     eventTime = event->getEventTime();
    327     for (size_t i = 0; i < pointerCount; i++) {
    328         uint32_t index = pointerIndex[i];
    329         positions[index].x = event->getX(i);
    330         positions[index].y = event->getY(i);
    331     }
    332     addMovement(eventTime, idBits, positions);
    333 }
    334 
    335 bool VelocityTracker::getVelocity(uint32_t id, float* outVx, float* outVy) const {
    336     Estimator estimator;
    337     if (getEstimator(id, &estimator) && estimator.degree >= 1) {
    338         *outVx = estimator.xCoeff[1];
    339         *outVy = estimator.yCoeff[1];
    340         return true;
    341     }
    342     *outVx = 0;
    343     *outVy = 0;
    344     return false;
    345 }
    346 
    347 bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const {
    348     return mStrategy->getEstimator(id, outEstimator);
    349 }
    350 
    351 
    352 // --- LeastSquaresVelocityTrackerStrategy ---
    353 
    354 const nsecs_t LeastSquaresVelocityTrackerStrategy::HORIZON;
    355 const uint32_t LeastSquaresVelocityTrackerStrategy::HISTORY_SIZE;
    356 
    357 LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
    358         uint32_t degree, Weighting weighting) :
    359         mDegree(degree), mWeighting(weighting) {
    360     clear();
    361 }
    362 
    363 LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
    364 }
    365 
    366 void LeastSquaresVelocityTrackerStrategy::clear() {
    367     mIndex = 0;
    368     mMovements[0].idBits.clear();
    369 }
    370 
    371 void LeastSquaresVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
    372     BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
    373     mMovements[mIndex].idBits = remainingIdBits;
    374 }
    375 
    376 void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
    377         const VelocityTracker::Position* positions) {
    378     if (++mIndex == HISTORY_SIZE) {
    379         mIndex = 0;
    380     }
    381 
    382     Movement& movement = mMovements[mIndex];
    383     movement.eventTime = eventTime;
    384     movement.idBits = idBits;
    385     uint32_t count = idBits.count();
    386     for (uint32_t i = 0; i < count; i++) {
    387         movement.positions[i] = positions[i];
    388     }
    389 }
    390 
    391 /**
    392  * Solves a linear least squares problem to obtain a N degree polynomial that fits
    393  * the specified input data as nearly as possible.
    394  *
    395  * Returns true if a solution is found, false otherwise.
    396  *
    397  * The input consists of two vectors of data points X and Y with indices 0..m-1
    398  * along with a weight vector W of the same size.
    399  *
    400  * The output is a vector B with indices 0..n that describes a polynomial
    401  * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i]
    402  * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized.
    403  *
    404  * Accordingly, the weight vector W should be initialized by the caller with the
    405  * reciprocal square root of the variance of the error in each input data point.
    406  * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]).
    407  * The weights express the relative importance of each data point.  If the weights are
    408  * all 1, then the data points are considered to be of equal importance when fitting
    409  * the polynomial.  It is a good idea to choose weights that diminish the importance
    410  * of data points that may have higher than usual error margins.
    411  *
    412  * Errors among data points are assumed to be independent.  W is represented here
    413  * as a vector although in the literature it is typically taken to be a diagonal matrix.
    414  *
    415  * That is to say, the function that generated the input data can be approximated
    416  * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
    417  *
    418  * The coefficient of determination (R^2) is also returned to describe the goodness
    419  * of fit of the model for the given data.  It is a value between 0 and 1, where 1
    420  * indicates perfect correspondence.
    421  *
    422  * This function first expands the X vector to a m by n matrix A such that
    423  * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
    424  * multiplies it by w[i]./
    425  *
    426  * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
    427  * and an m by n upper triangular matrix R.  Because R is upper triangular (lower
    428  * part is all zeroes), we can simplify the decomposition into an m by n matrix
    429  * Q1 and a n by n matrix R1 such that A = Q1 R1.
    430  *
    431  * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y)
    432  * to find B.
    433  *
    434  * For efficiency, we lay out A and Q column-wise in memory because we frequently
    435  * operate on the column vectors.  Conversely, we lay out R row-wise.
    436  *
    437  * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
    438  * http://en.wikipedia.org/wiki/Gram-Schmidt
    439  */
    440 static bool solveLeastSquares(const float* x, const float* y,
    441         const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) {
    442 #if DEBUG_STRATEGY
    443     ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
    444             vectorToString(x, m).string(), vectorToString(y, m).string(),
    445             vectorToString(w, m).string());
    446 #endif
    447 
    448     // Expand the X vector to a matrix A, pre-multiplied by the weights.
    449     float a[n][m]; // column-major order
    450     for (uint32_t h = 0; h < m; h++) {
    451         a[0][h] = w[h];
    452         for (uint32_t i = 1; i < n; i++) {
    453             a[i][h] = a[i - 1][h] * x[h];
    454         }
    455     }
    456 #if DEBUG_STRATEGY
    457     ALOGD("  - a=%s", matrixToString(&a[0][0], m, n, false /*rowMajor*/).string());
    458 #endif
    459 
    460     // Apply the Gram-Schmidt process to A to obtain its QR decomposition.
    461     float q[n][m]; // orthonormal basis, column-major order
    462     float r[n][n]; // upper triangular matrix, row-major order
    463     for (uint32_t j = 0; j < n; j++) {
    464         for (uint32_t h = 0; h < m; h++) {
    465             q[j][h] = a[j][h];
    466         }
    467         for (uint32_t i = 0; i < j; i++) {
    468             float dot = vectorDot(&q[j][0], &q[i][0], m);
    469             for (uint32_t h = 0; h < m; h++) {
    470                 q[j][h] -= dot * q[i][h];
    471             }
    472         }
    473 
    474         float norm = vectorNorm(&q[j][0], m);
    475         if (norm < 0.000001f) {
    476             // vectors are linearly dependent or zero so no solution
    477 #if DEBUG_STRATEGY
    478             ALOGD("  - no solution, norm=%f", norm);
    479 #endif
    480             return false;
    481         }
    482 
    483         float invNorm = 1.0f / norm;
    484         for (uint32_t h = 0; h < m; h++) {
    485             q[j][h] *= invNorm;
    486         }
    487         for (uint32_t i = 0; i < n; i++) {
    488             r[j][i] = i < j ? 0 : vectorDot(&q[j][0], &a[i][0], m);
    489         }
    490     }
    491 #if DEBUG_STRATEGY
    492     ALOGD("  - q=%s", matrixToString(&q[0][0], m, n, false /*rowMajor*/).string());
    493     ALOGD("  - r=%s", matrixToString(&r[0][0], n, n, true /*rowMajor*/).string());
    494 
    495     // calculate QR, if we factored A correctly then QR should equal A
    496     float qr[n][m];
    497     for (uint32_t h = 0; h < m; h++) {
    498         for (uint32_t i = 0; i < n; i++) {
    499             qr[i][h] = 0;
    500             for (uint32_t j = 0; j < n; j++) {
    501                 qr[i][h] += q[j][h] * r[j][i];
    502             }
    503         }
    504     }
    505     ALOGD("  - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string());
    506 #endif
    507 
    508     // Solve R B = Qt W Y to find B.  This is easy because R is upper triangular.
    509     // We just work from bottom-right to top-left calculating B's coefficients.
    510     float wy[m];
    511     for (uint32_t h = 0; h < m; h++) {
    512         wy[h] = y[h] * w[h];
    513     }
    514     for (uint32_t i = n; i-- != 0; ) {
    515         outB[i] = vectorDot(&q[i][0], wy, m);
    516         for (uint32_t j = n - 1; j > i; j--) {
    517             outB[i] -= r[i][j] * outB[j];
    518         }
    519         outB[i] /= r[i][i];
    520     }
    521 #if DEBUG_STRATEGY
    522     ALOGD("  - b=%s", vectorToString(outB, n).string());
    523 #endif
    524 
    525     // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
    526     // SSerr is the residual sum of squares (variance of the error),
    527     // and SStot is the total sum of squares (variance of the data) where each
    528     // has been weighted.
    529     float ymean = 0;
    530     for (uint32_t h = 0; h < m; h++) {
    531         ymean += y[h];
    532     }
    533     ymean /= m;
    534 
    535     float sserr = 0;
    536     float sstot = 0;
    537     for (uint32_t h = 0; h < m; h++) {
    538         float err = y[h] - outB[0];
    539         float term = 1;
    540         for (uint32_t i = 1; i < n; i++) {
    541             term *= x[h];
    542             err -= term * outB[i];
    543         }
    544         sserr += w[h] * w[h] * err * err;
    545         float var = y[h] - ymean;
    546         sstot += w[h] * w[h] * var * var;
    547     }
    548     *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
    549 #if DEBUG_STRATEGY
    550     ALOGD("  - sserr=%f", sserr);
    551     ALOGD("  - sstot=%f", sstot);
    552     ALOGD("  - det=%f", *outDet);
    553 #endif
    554     return true;
    555 }
    556 
    557 bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
    558         VelocityTracker::Estimator* outEstimator) const {
    559     outEstimator->clear();
    560 
    561     // Iterate over movement samples in reverse time order and collect samples.
    562     float x[HISTORY_SIZE];
    563     float y[HISTORY_SIZE];
    564     float w[HISTORY_SIZE];
    565     float time[HISTORY_SIZE];
    566     uint32_t m = 0;
    567     uint32_t index = mIndex;
    568     const Movement& newestMovement = mMovements[mIndex];
    569     do {
    570         const Movement& movement = mMovements[index];
    571         if (!movement.idBits.hasBit(id)) {
    572             break;
    573         }
    574 
    575         nsecs_t age = newestMovement.eventTime - movement.eventTime;
    576         if (age > HORIZON) {
    577             break;
    578         }
    579 
    580         const VelocityTracker::Position& position = movement.getPosition(id);
    581         x[m] = position.x;
    582         y[m] = position.y;
    583         w[m] = chooseWeight(index);
    584         time[m] = -age * 0.000000001f;
    585         index = (index == 0 ? HISTORY_SIZE : index) - 1;
    586     } while (++m < HISTORY_SIZE);
    587 
    588     if (m == 0) {
    589         return false; // no data
    590     }
    591 
    592     // Calculate a least squares polynomial fit.
    593     uint32_t degree = mDegree;
    594     if (degree > m - 1) {
    595         degree = m - 1;
    596     }
    597     if (degree >= 1) {
    598         float xdet, ydet;
    599         uint32_t n = degree + 1;
    600         if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet)
    601                 && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) {
    602             outEstimator->time = newestMovement.eventTime;
    603             outEstimator->degree = degree;
    604             outEstimator->confidence = xdet * ydet;
    605 #if DEBUG_STRATEGY
    606             ALOGD("estimate: degree=%d, xCoeff=%s, yCoeff=%s, confidence=%f",
    607                     int(outEstimator->degree),
    608                     vectorToString(outEstimator->xCoeff, n).string(),
    609                     vectorToString(outEstimator->yCoeff, n).string(),
    610                     outEstimator->confidence);
    611 #endif
    612             return true;
    613         }
    614     }
    615 
    616     // No velocity data available for this pointer, but we do have its current position.
    617     outEstimator->xCoeff[0] = x[0];
    618     outEstimator->yCoeff[0] = y[0];
    619     outEstimator->time = newestMovement.eventTime;
    620     outEstimator->degree = 0;
    621     outEstimator->confidence = 1;
    622     return true;
    623 }
    624 
    625 float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const {
    626     switch (mWeighting) {
    627     case WEIGHTING_DELTA: {
    628         // Weight points based on how much time elapsed between them and the next
    629         // point so that points that "cover" a shorter time span are weighed less.
    630         //   delta  0ms: 0.5
    631         //   delta 10ms: 1.0
    632         if (index == mIndex) {
    633             return 1.0f;
    634         }
    635         uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
    636         float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime)
    637                 * 0.000001f;
    638         if (deltaMillis < 0) {
    639             return 0.5f;
    640         }
    641         if (deltaMillis < 10) {
    642             return 0.5f + deltaMillis * 0.05;
    643         }
    644         return 1.0f;
    645     }
    646 
    647     case WEIGHTING_CENTRAL: {
    648         // Weight points based on their age, weighing very recent and very old points less.
    649         //   age  0ms: 0.5
    650         //   age 10ms: 1.0
    651         //   age 50ms: 1.0
    652         //   age 60ms: 0.5
    653         float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
    654                 * 0.000001f;
    655         if (ageMillis < 0) {
    656             return 0.5f;
    657         }
    658         if (ageMillis < 10) {
    659             return 0.5f + ageMillis * 0.05;
    660         }
    661         if (ageMillis < 50) {
    662             return 1.0f;
    663         }
    664         if (ageMillis < 60) {
    665             return 0.5f + (60 - ageMillis) * 0.05;
    666         }
    667         return 0.5f;
    668     }
    669 
    670     case WEIGHTING_RECENT: {
    671         // Weight points based on their age, weighing older points less.
    672         //   age   0ms: 1.0
    673         //   age  50ms: 1.0
    674         //   age 100ms: 0.5
    675         float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
    676                 * 0.000001f;
    677         if (ageMillis < 50) {
    678             return 1.0f;
    679         }
    680         if (ageMillis < 100) {
    681             return 0.5f + (100 - ageMillis) * 0.01f;
    682         }
    683         return 0.5f;
    684     }
    685 
    686     case WEIGHTING_NONE:
    687     default:
    688         return 1.0f;
    689     }
    690 }
    691 
    692 
    693 // --- IntegratingVelocityTrackerStrategy ---
    694 
    695 IntegratingVelocityTrackerStrategy::IntegratingVelocityTrackerStrategy(uint32_t degree) :
    696         mDegree(degree) {
    697 }
    698 
    699 IntegratingVelocityTrackerStrategy::~IntegratingVelocityTrackerStrategy() {
    700 }
    701 
    702 void IntegratingVelocityTrackerStrategy::clear() {
    703     mPointerIdBits.clear();
    704 }
    705 
    706 void IntegratingVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
    707     mPointerIdBits.value &= ~idBits.value;
    708 }
    709 
    710 void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
    711         const VelocityTracker::Position* positions) {
    712     uint32_t index = 0;
    713     for (BitSet32 iterIdBits(idBits); !iterIdBits.isEmpty();) {
    714         uint32_t id = iterIdBits.clearFirstMarkedBit();
    715         State& state = mPointerState[id];
    716         const VelocityTracker::Position& position = positions[index++];
    717         if (mPointerIdBits.hasBit(id)) {
    718             updateState(state, eventTime, position.x, position.y);
    719         } else {
    720             initState(state, eventTime, position.x, position.y);
    721         }
    722     }
    723 
    724     mPointerIdBits = idBits;
    725 }
    726 
    727 bool IntegratingVelocityTrackerStrategy::getEstimator(uint32_t id,
    728         VelocityTracker::Estimator* outEstimator) const {
    729     outEstimator->clear();
    730 
    731     if (mPointerIdBits.hasBit(id)) {
    732         const State& state = mPointerState[id];
    733         populateEstimator(state, outEstimator);
    734         return true;
    735     }
    736 
    737     return false;
    738 }
    739 
    740 void IntegratingVelocityTrackerStrategy::initState(State& state,
    741         nsecs_t eventTime, float xpos, float ypos) const {
    742     state.updateTime = eventTime;
    743     state.degree = 0;
    744 
    745     state.xpos = xpos;
    746     state.xvel = 0;
    747     state.xaccel = 0;
    748     state.ypos = ypos;
    749     state.yvel = 0;
    750     state.yaccel = 0;
    751 }
    752 
    753 void IntegratingVelocityTrackerStrategy::updateState(State& state,
    754         nsecs_t eventTime, float xpos, float ypos) const {
    755     const nsecs_t MIN_TIME_DELTA = 2 * NANOS_PER_MS;
    756     const float FILTER_TIME_CONSTANT = 0.010f; // 10 milliseconds
    757 
    758     if (eventTime <= state.updateTime + MIN_TIME_DELTA) {
    759         return;
    760     }
    761 
    762     float dt = (eventTime - state.updateTime) * 0.000000001f;
    763     state.updateTime = eventTime;
    764 
    765     float xvel = (xpos - state.xpos) / dt;
    766     float yvel = (ypos - state.ypos) / dt;
    767     if (state.degree == 0) {
    768         state.xvel = xvel;
    769         state.yvel = yvel;
    770         state.degree = 1;
    771     } else {
    772         float alpha = dt / (FILTER_TIME_CONSTANT + dt);
    773         if (mDegree == 1) {
    774             state.xvel += (xvel - state.xvel) * alpha;
    775             state.yvel += (yvel - state.yvel) * alpha;
    776         } else {
    777             float xaccel = (xvel - state.xvel) / dt;
    778             float yaccel = (yvel - state.yvel) / dt;
    779             if (state.degree == 1) {
    780                 state.xaccel = xaccel;
    781                 state.yaccel = yaccel;
    782                 state.degree = 2;
    783             } else {
    784                 state.xaccel += (xaccel - state.xaccel) * alpha;
    785                 state.yaccel += (yaccel - state.yaccel) * alpha;
    786             }
    787             state.xvel += (state.xaccel * dt) * alpha;
    788             state.yvel += (state.yaccel * dt) * alpha;
    789         }
    790     }
    791     state.xpos = xpos;
    792     state.ypos = ypos;
    793 }
    794 
    795 void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
    796         VelocityTracker::Estimator* outEstimator) const {
    797     outEstimator->time = state.updateTime;
    798     outEstimator->confidence = 1.0f;
    799     outEstimator->degree = state.degree;
    800     outEstimator->xCoeff[0] = state.xpos;
    801     outEstimator->xCoeff[1] = state.xvel;
    802     outEstimator->xCoeff[2] = state.xaccel / 2;
    803     outEstimator->yCoeff[0] = state.ypos;
    804     outEstimator->yCoeff[1] = state.yvel;
    805     outEstimator->yCoeff[2] = state.yaccel / 2;
    806 }
    807 
    808 
    809 // --- LegacyVelocityTrackerStrategy ---
    810 
    811 const nsecs_t LegacyVelocityTrackerStrategy::HORIZON;
    812 const uint32_t LegacyVelocityTrackerStrategy::HISTORY_SIZE;
    813 const nsecs_t LegacyVelocityTrackerStrategy::MIN_DURATION;
    814 
    815 LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {
    816     clear();
    817 }
    818 
    819 LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() {
    820 }
    821 
    822 void LegacyVelocityTrackerStrategy::clear() {
    823     mIndex = 0;
    824     mMovements[0].idBits.clear();
    825 }
    826 
    827 void LegacyVelocityTrackerStrategy::clearPointers(BitSet32 idBits) {
    828     BitSet32 remainingIdBits(mMovements[mIndex].idBits.value & ~idBits.value);
    829     mMovements[mIndex].idBits = remainingIdBits;
    830 }
    831 
    832 void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet32 idBits,
    833         const VelocityTracker::Position* positions) {
    834     if (++mIndex == HISTORY_SIZE) {
    835         mIndex = 0;
    836     }
    837 
    838     Movement& movement = mMovements[mIndex];
    839     movement.eventTime = eventTime;
    840     movement.idBits = idBits;
    841     uint32_t count = idBits.count();
    842     for (uint32_t i = 0; i < count; i++) {
    843         movement.positions[i] = positions[i];
    844     }
    845 }
    846 
    847 bool LegacyVelocityTrackerStrategy::getEstimator(uint32_t id,
    848         VelocityTracker::Estimator* outEstimator) const {
    849     outEstimator->clear();
    850 
    851     const Movement& newestMovement = mMovements[mIndex];
    852     if (!newestMovement.idBits.hasBit(id)) {
    853         return false; // no data
    854     }
    855 
    856     // Find the oldest sample that contains the pointer and that is not older than HORIZON.
    857     nsecs_t minTime = newestMovement.eventTime - HORIZON;
    858     uint32_t oldestIndex = mIndex;
    859     uint32_t numTouches = 1;
    860     do {
    861         uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1;
    862         const Movement& nextOldestMovement = mMovements[nextOldestIndex];
    863         if (!nextOldestMovement.idBits.hasBit(id)
    864                 || nextOldestMovement.eventTime < minTime) {
    865             break;
    866         }
    867         oldestIndex = nextOldestIndex;
    868     } while (++numTouches < HISTORY_SIZE);
    869 
    870     // Calculate an exponentially weighted moving average of the velocity estimate
    871     // at different points in time measured relative to the oldest sample.
    872     // This is essentially an IIR filter.  Newer samples are weighted more heavily
    873     // than older samples.  Samples at equal time points are weighted more or less
    874     // equally.
    875     //
    876     // One tricky problem is that the sample data may be poorly conditioned.
    877     // Sometimes samples arrive very close together in time which can cause us to
    878     // overestimate the velocity at that time point.  Most samples might be measured
    879     // 16ms apart but some consecutive samples could be only 0.5sm apart because
    880     // the hardware or driver reports them irregularly or in bursts.
    881     float accumVx = 0;
    882     float accumVy = 0;
    883     uint32_t index = oldestIndex;
    884     uint32_t samplesUsed = 0;
    885     const Movement& oldestMovement = mMovements[oldestIndex];
    886     const VelocityTracker::Position& oldestPosition = oldestMovement.getPosition(id);
    887     nsecs_t lastDuration = 0;
    888 
    889     while (numTouches-- > 1) {
    890         if (++index == HISTORY_SIZE) {
    891             index = 0;
    892         }
    893         const Movement& movement = mMovements[index];
    894         nsecs_t duration = movement.eventTime - oldestMovement.eventTime;
    895 
    896         // If the duration between samples is small, we may significantly overestimate
    897         // the velocity.  Consequently, we impose a minimum duration constraint on the
    898         // samples that we include in the calculation.
    899         if (duration >= MIN_DURATION) {
    900             const VelocityTracker::Position& position = movement.getPosition(id);
    901             float scale = 1000000000.0f / duration; // one over time delta in seconds
    902             float vx = (position.x - oldestPosition.x) * scale;
    903             float vy = (position.y - oldestPosition.y) * scale;
    904             accumVx = (accumVx * lastDuration + vx * duration) / (duration + lastDuration);
    905             accumVy = (accumVy * lastDuration + vy * duration) / (duration + lastDuration);
    906             lastDuration = duration;
    907             samplesUsed += 1;
    908         }
    909     }
    910 
    911     // Report velocity.
    912     const VelocityTracker::Position& newestPosition = newestMovement.getPosition(id);
    913     outEstimator->time = newestMovement.eventTime;
    914     outEstimator->confidence = 1;
    915     outEstimator->xCoeff[0] = newestPosition.x;
    916     outEstimator->yCoeff[0] = newestPosition.y;
    917     if (samplesUsed) {
    918         outEstimator->xCoeff[1] = accumVx;
    919         outEstimator->yCoeff[1] = accumVy;
    920         outEstimator->degree = 1;
    921     } else {
    922         outEstimator->degree = 0;
    923     }
    924     return true;
    925 }
    926 
    927 } // namespace android
    928