Home | History | Annotate | Download | only in NVPTX
      1 //===-- GenericToNVVM.cpp - Convert generic module to NVVM module - C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Convert generic global variables into either .global or .const access based
     11 // on the variable's "constant" qualifier.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "NVPTX.h"
     16 #include "MCTargetDesc/NVPTXBaseInfo.h"
     17 #include "NVPTXUtilities.h"
     18 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
     19 #include "llvm/CodeGen/ValueTypes.h"
     20 #include "llvm/IR/Constants.h"
     21 #include "llvm/IR/DerivedTypes.h"
     22 #include "llvm/IR/IRBuilder.h"
     23 #include "llvm/IR/Instructions.h"
     24 #include "llvm/IR/Intrinsics.h"
     25 #include "llvm/IR/Module.h"
     26 #include "llvm/IR/Operator.h"
     27 #include "llvm/IR/ValueMap.h"
     28 #include "llvm/PassManager.h"
     29 
     30 using namespace llvm;
     31 
     32 namespace llvm {
     33 void initializeGenericToNVVMPass(PassRegistry &);
     34 }
     35 
     36 namespace {
     37 class GenericToNVVM : public ModulePass {
     38 public:
     39   static char ID;
     40 
     41   GenericToNVVM() : ModulePass(ID) {}
     42 
     43   bool runOnModule(Module &M) override;
     44 
     45   void getAnalysisUsage(AnalysisUsage &AU) const override {}
     46 
     47 private:
     48   Value *getOrInsertCVTA(Module *M, Function *F, GlobalVariable *GV,
     49                          IRBuilder<> &Builder);
     50   Value *remapConstant(Module *M, Function *F, Constant *C,
     51                        IRBuilder<> &Builder);
     52   Value *remapConstantVectorOrConstantAggregate(Module *M, Function *F,
     53                                                 Constant *C,
     54                                                 IRBuilder<> &Builder);
     55   Value *remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
     56                            IRBuilder<> &Builder);
     57   void remapNamedMDNode(Module *M, NamedMDNode *N);
     58   MDNode *remapMDNode(Module *M, MDNode *N);
     59 
     60   typedef ValueMap<GlobalVariable *, GlobalVariable *> GVMapTy;
     61   typedef ValueMap<Constant *, Value *> ConstantToValueMapTy;
     62   GVMapTy GVMap;
     63   ConstantToValueMapTy ConstantToValueMap;
     64 };
     65 } // end namespace
     66 
     67 char GenericToNVVM::ID = 0;
     68 
     69 ModulePass *llvm::createGenericToNVVMPass() { return new GenericToNVVM(); }
     70 
     71 INITIALIZE_PASS(
     72     GenericToNVVM, "generic-to-nvvm",
     73     "Ensure that the global variables are in the global address space", false,
     74     false)
     75 
     76 bool GenericToNVVM::runOnModule(Module &M) {
     77   // Create a clone of each global variable that has the default address space.
     78   // The clone is created with the global address space  specifier, and the pair
     79   // of original global variable and its clone is placed in the GVMap for later
     80   // use.
     81 
     82   for (Module::global_iterator I = M.global_begin(), E = M.global_end();
     83        I != E;) {
     84     GlobalVariable *GV = I++;
     85     if (GV->getType()->getAddressSpace() == llvm::ADDRESS_SPACE_GENERIC &&
     86         !llvm::isTexture(*GV) && !llvm::isSurface(*GV) &&
     87         !llvm::isSampler(*GV) && !GV->getName().startswith("llvm.")) {
     88       GlobalVariable *NewGV = new GlobalVariable(
     89           M, GV->getType()->getElementType(), GV->isConstant(),
     90           GV->getLinkage(),
     91           GV->hasInitializer() ? GV->getInitializer() : nullptr,
     92           "", GV, GV->getThreadLocalMode(), llvm::ADDRESS_SPACE_GLOBAL);
     93       NewGV->copyAttributesFrom(GV);
     94       GVMap[GV] = NewGV;
     95     }
     96   }
     97 
     98   // Return immediately, if every global variable has a specific address space
     99   // specifier.
    100   if (GVMap.empty()) {
    101     return false;
    102   }
    103 
    104   // Walk through the instructions in function defitinions, and replace any use
    105   // of original global variables in GVMap with a use of the corresponding
    106   // copies in GVMap.  If necessary, promote constants to instructions.
    107   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
    108     if (I->isDeclaration()) {
    109       continue;
    110     }
    111     IRBuilder<> Builder(I->getEntryBlock().getFirstNonPHIOrDbg());
    112     for (Function::iterator BBI = I->begin(), BBE = I->end(); BBI != BBE;
    113          ++BBI) {
    114       for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
    115            ++II) {
    116         for (unsigned i = 0, e = II->getNumOperands(); i < e; ++i) {
    117           Value *Operand = II->getOperand(i);
    118           if (isa<Constant>(Operand)) {
    119             II->setOperand(
    120                 i, remapConstant(&M, I, cast<Constant>(Operand), Builder));
    121           }
    122         }
    123       }
    124     }
    125     ConstantToValueMap.clear();
    126   }
    127 
    128   // Walk through the metadata section and update the debug information
    129   // associated with the global variables in the default address space.
    130   for (Module::named_metadata_iterator I = M.named_metadata_begin(),
    131                                        E = M.named_metadata_end();
    132        I != E; I++) {
    133     remapNamedMDNode(&M, I);
    134   }
    135 
    136   // Walk through the global variable  initializers, and replace any use of
    137   // original global variables in GVMap with a use of the corresponding copies
    138   // in GVMap.  The copies need to be bitcast to the original global variable
    139   // types, as we cannot use cvta in global variable initializers.
    140   for (GVMapTy::iterator I = GVMap.begin(), E = GVMap.end(); I != E;) {
    141     GlobalVariable *GV = I->first;
    142     GlobalVariable *NewGV = I->second;
    143     ++I;
    144     Constant *BitCastNewGV = ConstantExpr::getPointerCast(NewGV, GV->getType());
    145     // At this point, the remaining uses of GV should be found only in global
    146     // variable initializers, as other uses have been already been removed
    147     // while walking through the instructions in function definitions.
    148     for (Value::use_iterator UI = GV->use_begin(), UE = GV->use_end();
    149          UI != UE;)
    150       (UI++)->set(BitCastNewGV);
    151     std::string Name = GV->getName();
    152     GV->removeDeadConstantUsers();
    153     GV->eraseFromParent();
    154     NewGV->setName(Name);
    155   }
    156   GVMap.clear();
    157 
    158   return true;
    159 }
    160 
    161 Value *GenericToNVVM::getOrInsertCVTA(Module *M, Function *F,
    162                                       GlobalVariable *GV,
    163                                       IRBuilder<> &Builder) {
    164   PointerType *GVType = GV->getType();
    165   Value *CVTA = nullptr;
    166 
    167   // See if the address space conversion requires the operand to be bitcast
    168   // to i8 addrspace(n)* first.
    169   EVT ExtendedGVType = EVT::getEVT(GVType->getElementType(), true);
    170   if (!ExtendedGVType.isInteger() && !ExtendedGVType.isFloatingPoint()) {
    171     // A bitcast to i8 addrspace(n)* on the operand is needed.
    172     LLVMContext &Context = M->getContext();
    173     unsigned int AddrSpace = GVType->getAddressSpace();
    174     Type *DestTy = PointerType::get(Type::getInt8Ty(Context), AddrSpace);
    175     CVTA = Builder.CreateBitCast(GV, DestTy, "cvta");
    176     // Insert the address space conversion.
    177     Type *ResultType =
    178         PointerType::get(Type::getInt8Ty(Context), llvm::ADDRESS_SPACE_GENERIC);
    179     SmallVector<Type *, 2> ParamTypes;
    180     ParamTypes.push_back(ResultType);
    181     ParamTypes.push_back(DestTy);
    182     Function *CVTAFunction = Intrinsic::getDeclaration(
    183         M, Intrinsic::nvvm_ptr_global_to_gen, ParamTypes);
    184     CVTA = Builder.CreateCall(CVTAFunction, CVTA, "cvta");
    185     // Another bitcast from i8 * to <the element type of GVType> * is
    186     // required.
    187     DestTy =
    188         PointerType::get(GVType->getElementType(), llvm::ADDRESS_SPACE_GENERIC);
    189     CVTA = Builder.CreateBitCast(CVTA, DestTy, "cvta");
    190   } else {
    191     // A simple CVTA is enough.
    192     SmallVector<Type *, 2> ParamTypes;
    193     ParamTypes.push_back(PointerType::get(GVType->getElementType(),
    194                                           llvm::ADDRESS_SPACE_GENERIC));
    195     ParamTypes.push_back(GVType);
    196     Function *CVTAFunction = Intrinsic::getDeclaration(
    197         M, Intrinsic::nvvm_ptr_global_to_gen, ParamTypes);
    198     CVTA = Builder.CreateCall(CVTAFunction, GV, "cvta");
    199   }
    200 
    201   return CVTA;
    202 }
    203 
    204 Value *GenericToNVVM::remapConstant(Module *M, Function *F, Constant *C,
    205                                     IRBuilder<> &Builder) {
    206   // If the constant C has been converted already in the given function  F, just
    207   // return the converted value.
    208   ConstantToValueMapTy::iterator CTII = ConstantToValueMap.find(C);
    209   if (CTII != ConstantToValueMap.end()) {
    210     return CTII->second;
    211   }
    212 
    213   Value *NewValue = C;
    214   if (isa<GlobalVariable>(C)) {
    215     // If the constant C is a global variable and is found in  GVMap, generate a
    216     // set set of instructions that convert the clone of C with the global
    217     // address space specifier to a generic pointer.
    218     // The constant C cannot be used here, as it will be erased from the
    219     // module eventually.  And the clone of C with the global address space
    220     // specifier cannot be used here either, as it will affect the types of
    221     // other instructions in the function.  Hence, this address space conversion
    222     // is required.
    223     GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(C));
    224     if (I != GVMap.end()) {
    225       NewValue = getOrInsertCVTA(M, F, I->second, Builder);
    226     }
    227   } else if (isa<ConstantVector>(C) || isa<ConstantArray>(C) ||
    228              isa<ConstantStruct>(C)) {
    229     // If any element in the constant vector or aggregate C is or uses a global
    230     // variable in GVMap, the constant C needs to be reconstructed, using a set
    231     // of instructions.
    232     NewValue = remapConstantVectorOrConstantAggregate(M, F, C, Builder);
    233   } else if (isa<ConstantExpr>(C)) {
    234     // If any operand in the constant expression C is or uses a global variable
    235     // in GVMap, the constant expression C needs to be reconstructed, using a
    236     // set of instructions.
    237     NewValue = remapConstantExpr(M, F, cast<ConstantExpr>(C), Builder);
    238   }
    239 
    240   ConstantToValueMap[C] = NewValue;
    241   return NewValue;
    242 }
    243 
    244 Value *GenericToNVVM::remapConstantVectorOrConstantAggregate(
    245     Module *M, Function *F, Constant *C, IRBuilder<> &Builder) {
    246   bool OperandChanged = false;
    247   SmallVector<Value *, 4> NewOperands;
    248   unsigned NumOperands = C->getNumOperands();
    249 
    250   // Check if any element is or uses a global variable in  GVMap, and thus
    251   // converted to another value.
    252   for (unsigned i = 0; i < NumOperands; ++i) {
    253     Value *Operand = C->getOperand(i);
    254     Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
    255     OperandChanged |= Operand != NewOperand;
    256     NewOperands.push_back(NewOperand);
    257   }
    258 
    259   // If none of the elements has been modified, return C as it is.
    260   if (!OperandChanged) {
    261     return C;
    262   }
    263 
    264   // If any of the elements has been  modified, construct the equivalent
    265   // vector or aggregate value with a set instructions and the converted
    266   // elements.
    267   Value *NewValue = UndefValue::get(C->getType());
    268   if (isa<ConstantVector>(C)) {
    269     for (unsigned i = 0; i < NumOperands; ++i) {
    270       Value *Idx = ConstantInt::get(Type::getInt32Ty(M->getContext()), i);
    271       NewValue = Builder.CreateInsertElement(NewValue, NewOperands[i], Idx);
    272     }
    273   } else {
    274     for (unsigned i = 0; i < NumOperands; ++i) {
    275       NewValue =
    276           Builder.CreateInsertValue(NewValue, NewOperands[i], makeArrayRef(i));
    277     }
    278   }
    279 
    280   return NewValue;
    281 }
    282 
    283 Value *GenericToNVVM::remapConstantExpr(Module *M, Function *F, ConstantExpr *C,
    284                                         IRBuilder<> &Builder) {
    285   bool OperandChanged = false;
    286   SmallVector<Value *, 4> NewOperands;
    287   unsigned NumOperands = C->getNumOperands();
    288 
    289   // Check if any operand is or uses a global variable in  GVMap, and thus
    290   // converted to another value.
    291   for (unsigned i = 0; i < NumOperands; ++i) {
    292     Value *Operand = C->getOperand(i);
    293     Value *NewOperand = remapConstant(M, F, cast<Constant>(Operand), Builder);
    294     OperandChanged |= Operand != NewOperand;
    295     NewOperands.push_back(NewOperand);
    296   }
    297 
    298   // If none of the operands has been modified, return C as it is.
    299   if (!OperandChanged) {
    300     return C;
    301   }
    302 
    303   // If any of the operands has been modified, construct the instruction with
    304   // the converted operands.
    305   unsigned Opcode = C->getOpcode();
    306   switch (Opcode) {
    307   case Instruction::ICmp:
    308     // CompareConstantExpr (icmp)
    309     return Builder.CreateICmp(CmpInst::Predicate(C->getPredicate()),
    310                               NewOperands[0], NewOperands[1]);
    311   case Instruction::FCmp:
    312     // CompareConstantExpr (fcmp)
    313     assert(false && "Address space conversion should have no effect "
    314                     "on float point CompareConstantExpr (fcmp)!");
    315     return C;
    316   case Instruction::ExtractElement:
    317     // ExtractElementConstantExpr
    318     return Builder.CreateExtractElement(NewOperands[0], NewOperands[1]);
    319   case Instruction::InsertElement:
    320     // InsertElementConstantExpr
    321     return Builder.CreateInsertElement(NewOperands[0], NewOperands[1],
    322                                        NewOperands[2]);
    323   case Instruction::ShuffleVector:
    324     // ShuffleVector
    325     return Builder.CreateShuffleVector(NewOperands[0], NewOperands[1],
    326                                        NewOperands[2]);
    327   case Instruction::ExtractValue:
    328     // ExtractValueConstantExpr
    329     return Builder.CreateExtractValue(NewOperands[0], C->getIndices());
    330   case Instruction::InsertValue:
    331     // InsertValueConstantExpr
    332     return Builder.CreateInsertValue(NewOperands[0], NewOperands[1],
    333                                      C->getIndices());
    334   case Instruction::GetElementPtr:
    335     // GetElementPtrConstantExpr
    336     return cast<GEPOperator>(C)->isInBounds()
    337                ? Builder.CreateGEP(
    338                      NewOperands[0],
    339                      makeArrayRef(&NewOperands[1], NumOperands - 1))
    340                : Builder.CreateInBoundsGEP(
    341                      NewOperands[0],
    342                      makeArrayRef(&NewOperands[1], NumOperands - 1));
    343   case Instruction::Select:
    344     // SelectConstantExpr
    345     return Builder.CreateSelect(NewOperands[0], NewOperands[1], NewOperands[2]);
    346   default:
    347     // BinaryConstantExpr
    348     if (Instruction::isBinaryOp(Opcode)) {
    349       return Builder.CreateBinOp(Instruction::BinaryOps(C->getOpcode()),
    350                                  NewOperands[0], NewOperands[1]);
    351     }
    352     // UnaryConstantExpr
    353     if (Instruction::isCast(Opcode)) {
    354       return Builder.CreateCast(Instruction::CastOps(C->getOpcode()),
    355                                 NewOperands[0], C->getType());
    356     }
    357     assert(false && "GenericToNVVM encountered an unsupported ConstantExpr");
    358     return C;
    359   }
    360 }
    361 
    362 void GenericToNVVM::remapNamedMDNode(Module *M, NamedMDNode *N) {
    363 
    364   bool OperandChanged = false;
    365   SmallVector<MDNode *, 16> NewOperands;
    366   unsigned NumOperands = N->getNumOperands();
    367 
    368   // Check if any operand is or contains a global variable in  GVMap, and thus
    369   // converted to another value.
    370   for (unsigned i = 0; i < NumOperands; ++i) {
    371     MDNode *Operand = N->getOperand(i);
    372     MDNode *NewOperand = remapMDNode(M, Operand);
    373     OperandChanged |= Operand != NewOperand;
    374     NewOperands.push_back(NewOperand);
    375   }
    376 
    377   // If none of the operands has been modified, return immediately.
    378   if (!OperandChanged) {
    379     return;
    380   }
    381 
    382   // Replace the old operands with the new operands.
    383   N->dropAllReferences();
    384   for (SmallVectorImpl<MDNode *>::iterator I = NewOperands.begin(),
    385                                            E = NewOperands.end();
    386        I != E; ++I) {
    387     N->addOperand(*I);
    388   }
    389 }
    390 
    391 MDNode *GenericToNVVM::remapMDNode(Module *M, MDNode *N) {
    392 
    393   bool OperandChanged = false;
    394   SmallVector<Value *, 8> NewOperands;
    395   unsigned NumOperands = N->getNumOperands();
    396 
    397   // Check if any operand is or contains a global variable in  GVMap, and thus
    398   // converted to another value.
    399   for (unsigned i = 0; i < NumOperands; ++i) {
    400     Value *Operand = N->getOperand(i);
    401     Value *NewOperand = Operand;
    402     if (Operand) {
    403       if (isa<GlobalVariable>(Operand)) {
    404         GVMapTy::iterator I = GVMap.find(cast<GlobalVariable>(Operand));
    405         if (I != GVMap.end()) {
    406           NewOperand = I->second;
    407           if (++i < NumOperands) {
    408             NewOperands.push_back(NewOperand);
    409             // Address space of the global variable follows the global variable
    410             // in the global variable debug info (see createGlobalVariable in
    411             // lib/Analysis/DIBuilder.cpp).
    412             NewOperand =
    413                 ConstantInt::get(Type::getInt32Ty(M->getContext()),
    414                                  I->second->getType()->getAddressSpace());
    415           }
    416         }
    417       } else if (isa<MDNode>(Operand)) {
    418         NewOperand = remapMDNode(M, cast<MDNode>(Operand));
    419       }
    420     }
    421     OperandChanged |= Operand != NewOperand;
    422     NewOperands.push_back(NewOperand);
    423   }
    424 
    425   // If none of the operands has been modified, return N as it is.
    426   if (!OperandChanged) {
    427     return N;
    428   }
    429 
    430   // If any of the operands has been modified, create a new MDNode with the new
    431   // operands.
    432   return MDNode::get(M->getContext(), makeArrayRef(NewOperands));
    433 }
    434