Home | History | Annotate | Download | only in Analysis
      1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the TypeBasedAliasAnalysis pass, which implements
     11 // metadata-based TBAA.
     12 //
     13 // In LLVM IR, memory does not have types, so LLVM's own type system is not
     14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
     15 // a type system of a higher level language. This can be used to implement
     16 // typical C/C++ TBAA, but it can also be used to implement custom alias
     17 // analysis behavior for other languages.
     18 //
     19 // We now support two types of metadata format: scalar TBAA and struct-path
     20 // aware TBAA. After all testing cases are upgraded to use struct-path aware
     21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
     22 // can be dropped.
     23 //
     24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
     25 // three fields, e.g.:
     26 //   !0 = metadata !{ metadata !"an example type tree" }
     27 //   !1 = metadata !{ metadata !"int", metadata !0 }
     28 //   !2 = metadata !{ metadata !"float", metadata !0 }
     29 //   !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
     30 //
     31 // The first field is an identity field. It can be any value, usually
     32 // an MDString, which uniquely identifies the type. The most important
     33 // name in the tree is the name of the root node. Two trees with
     34 // different root node names are entirely disjoint, even if they
     35 // have leaves with common names.
     36 //
     37 // The second field identifies the type's parent node in the tree, or
     38 // is null or omitted for a root node. A type is considered to alias
     39 // all of its descendants and all of its ancestors in the tree. Also,
     40 // a type is considered to alias all types in other trees, so that
     41 // bitcode produced from multiple front-ends is handled conservatively.
     42 //
     43 // If the third field is present, it's an integer which if equal to 1
     44 // indicates that the type is "constant" (meaning pointsToConstantMemory
     45 // should return true; see
     46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
     47 //
     48 // With struct-path aware TBAA, the MDNodes attached to an instruction using
     49 // "!tbaa" are called path tag nodes.
     50 //
     51 // The path tag node has 4 fields with the last field being optional.
     52 //
     53 // The first field is the base type node, it can be a struct type node
     54 // or a scalar type node. The second field is the access type node, it
     55 // must be a scalar type node. The third field is the offset into the base type.
     56 // The last field has the same meaning as the last field of our scalar TBAA:
     57 // it's an integer which if equal to 1 indicates that the access is "constant".
     58 //
     59 // The struct type node has a name and a list of pairs, one pair for each member
     60 // of the struct. The first element of each pair is a type node (a struct type
     61 // node or a sclar type node), specifying the type of the member, the second
     62 // element of each pair is the offset of the member.
     63 //
     64 // Given an example
     65 // typedef struct {
     66 //   short s;
     67 // } A;
     68 // typedef struct {
     69 //   uint16_t s;
     70 //   A a;
     71 // } B;
     72 //
     73 // For an acess to B.a.s, we attach !5 (a path tag node) to the load/store
     74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
     75 // type short) and the offset is 4.
     76 //
     77 // !0 = metadata !{metadata !"Simple C/C++ TBAA"}
     78 // !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node
     79 // !2 = metadata !{metadata !"short", metadata !1}           // Scalar type node
     80 // !3 = metadata !{metadata !"A", metadata !2, i64 0}        // Struct type node
     81 // !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4}
     82 //                                                           // Struct type node
     83 // !5 = metadata !{metadata !4, metadata !2, i64 4}          // Path tag node
     84 //
     85 // The struct type nodes and the scalar type nodes form a type DAG.
     86 //         Root (!0)
     87 //         char (!1)  -- edge to Root
     88 //         short (!2) -- edge to char
     89 //         A (!3) -- edge with offset 0 to short
     90 //         B (!4) -- edge with offset 0 to short and edge with offset 4 to A
     91 //
     92 // To check if two tags (tagX and tagY) can alias, we start from the base type
     93 // of tagX, follow the edge with the correct offset in the type DAG and adjust
     94 // the offset until we reach the base type of tagY or until we reach the Root
     95 // node.
     96 // If we reach the base type of tagY, compare the adjusted offset with
     97 // offset of tagY, return Alias if the offsets are the same, return NoAlias
     98 // otherwise.
     99 // If we reach the Root node, perform the above starting from base type of tagY
    100 // to see if we reach base type of tagX.
    101 //
    102 // If they have different roots, they're part of different potentially
    103 // unrelated type systems, so we return Alias to be conservative.
    104 // If neither node is an ancestor of the other and they have the same root,
    105 // then we say NoAlias.
    106 //
    107 // TODO: The current metadata format doesn't support struct
    108 // fields. For example:
    109 //   struct X {
    110 //     double d;
    111 //     int i;
    112 //   };
    113 //   void foo(struct X *x, struct X *y, double *p) {
    114 //     *x = *y;
    115 //     *p = 0.0;
    116 //   }
    117 // Struct X has a double member, so the store to *x can alias the store to *p.
    118 // Currently it's not possible to precisely describe all the things struct X
    119 // aliases, so struct assignments must use conservative TBAA nodes. There's
    120 // no scheme for attaching metadata to @llvm.memcpy yet either.
    121 //
    122 //===----------------------------------------------------------------------===//
    123 
    124 #include "llvm/Analysis/Passes.h"
    125 #include "llvm/Analysis/AliasAnalysis.h"
    126 #include "llvm/IR/Constants.h"
    127 #include "llvm/IR/LLVMContext.h"
    128 #include "llvm/IR/Metadata.h"
    129 #include "llvm/IR/Module.h"
    130 #include "llvm/Pass.h"
    131 #include "llvm/Support/CommandLine.h"
    132 using namespace llvm;
    133 
    134 // A handy option for disabling TBAA functionality. The same effect can also be
    135 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
    136 // more convenient.
    137 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
    138 
    139 namespace {
    140   /// TBAANode - This is a simple wrapper around an MDNode which provides a
    141   /// higher-level interface by hiding the details of how alias analysis
    142   /// information is encoded in its operands.
    143   class TBAANode {
    144     const MDNode *Node;
    145 
    146   public:
    147     TBAANode() : Node(nullptr) {}
    148     explicit TBAANode(const MDNode *N) : Node(N) {}
    149 
    150     /// getNode - Get the MDNode for this TBAANode.
    151     const MDNode *getNode() const { return Node; }
    152 
    153     /// getParent - Get this TBAANode's Alias tree parent.
    154     TBAANode getParent() const {
    155       if (Node->getNumOperands() < 2)
    156         return TBAANode();
    157       MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
    158       if (!P)
    159         return TBAANode();
    160       // Ok, this node has a valid parent. Return it.
    161       return TBAANode(P);
    162     }
    163 
    164     /// TypeIsImmutable - Test if this TBAANode represents a type for objects
    165     /// which are not modified (by any means) in the context where this
    166     /// AliasAnalysis is relevant.
    167     bool TypeIsImmutable() const {
    168       if (Node->getNumOperands() < 3)
    169         return false;
    170       ConstantInt *CI = dyn_cast<ConstantInt>(Node->getOperand(2));
    171       if (!CI)
    172         return false;
    173       return CI->getValue()[0];
    174     }
    175   };
    176 
    177   /// This is a simple wrapper around an MDNode which provides a
    178   /// higher-level interface by hiding the details of how alias analysis
    179   /// information is encoded in its operands.
    180   class TBAAStructTagNode {
    181     /// This node should be created with createTBAAStructTagNode.
    182     const MDNode *Node;
    183 
    184   public:
    185     explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
    186 
    187     /// Get the MDNode for this TBAAStructTagNode.
    188     const MDNode *getNode() const { return Node; }
    189 
    190     const MDNode *getBaseType() const {
    191       return dyn_cast_or_null<MDNode>(Node->getOperand(0));
    192     }
    193     const MDNode *getAccessType() const {
    194       return dyn_cast_or_null<MDNode>(Node->getOperand(1));
    195     }
    196     uint64_t getOffset() const {
    197       return cast<ConstantInt>(Node->getOperand(2))->getZExtValue();
    198     }
    199     /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
    200     /// objects which are not modified (by any means) in the context where this
    201     /// AliasAnalysis is relevant.
    202     bool TypeIsImmutable() const {
    203       if (Node->getNumOperands() < 4)
    204         return false;
    205       ConstantInt *CI = dyn_cast<ConstantInt>(Node->getOperand(3));
    206       if (!CI)
    207         return false;
    208       return CI->getValue()[0];
    209     }
    210   };
    211 
    212   /// This is a simple wrapper around an MDNode which provides a
    213   /// higher-level interface by hiding the details of how alias analysis
    214   /// information is encoded in its operands.
    215   class TBAAStructTypeNode {
    216     /// This node should be created with createTBAAStructTypeNode.
    217     const MDNode *Node;
    218 
    219   public:
    220     TBAAStructTypeNode() : Node(nullptr) {}
    221     explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
    222 
    223     /// Get the MDNode for this TBAAStructTypeNode.
    224     const MDNode *getNode() const { return Node; }
    225 
    226     /// Get this TBAAStructTypeNode's field in the type DAG with
    227     /// given offset. Update the offset to be relative to the field type.
    228     TBAAStructTypeNode getParent(uint64_t &Offset) const {
    229       // Parent can be omitted for the root node.
    230       if (Node->getNumOperands() < 2)
    231         return TBAAStructTypeNode();
    232 
    233       // Fast path for a scalar type node and a struct type node with a single
    234       // field.
    235       if (Node->getNumOperands() <= 3) {
    236         uint64_t Cur = Node->getNumOperands() == 2 ? 0 :
    237                        cast<ConstantInt>(Node->getOperand(2))->getZExtValue();
    238         Offset -= Cur;
    239         MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
    240         if (!P)
    241           return TBAAStructTypeNode();
    242         return TBAAStructTypeNode(P);
    243       }
    244 
    245       // Assume the offsets are in order. We return the previous field if
    246       // the current offset is bigger than the given offset.
    247       unsigned TheIdx = 0;
    248       for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
    249         uint64_t Cur = cast<ConstantInt>(Node->getOperand(Idx + 1))->
    250                          getZExtValue();
    251         if (Cur > Offset) {
    252           assert(Idx >= 3 &&
    253                  "TBAAStructTypeNode::getParent should have an offset match!");
    254           TheIdx = Idx - 2;
    255           break;
    256         }
    257       }
    258       // Move along the last field.
    259       if (TheIdx == 0)
    260         TheIdx = Node->getNumOperands() - 2;
    261       uint64_t Cur = cast<ConstantInt>(Node->getOperand(TheIdx + 1))->
    262                        getZExtValue();
    263       Offset -= Cur;
    264       MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
    265       if (!P)
    266         return TBAAStructTypeNode();
    267       return TBAAStructTypeNode(P);
    268     }
    269   };
    270 }
    271 
    272 namespace {
    273   /// TypeBasedAliasAnalysis - This is a simple alias analysis
    274   /// implementation that uses TypeBased to answer queries.
    275   class TypeBasedAliasAnalysis : public ImmutablePass,
    276                                  public AliasAnalysis {
    277   public:
    278     static char ID; // Class identification, replacement for typeinfo
    279     TypeBasedAliasAnalysis() : ImmutablePass(ID) {
    280       initializeTypeBasedAliasAnalysisPass(*PassRegistry::getPassRegistry());
    281     }
    282 
    283     void initializePass() override {
    284       InitializeAliasAnalysis(this);
    285     }
    286 
    287     /// getAdjustedAnalysisPointer - This method is used when a pass implements
    288     /// an analysis interface through multiple inheritance.  If needed, it
    289     /// should override this to adjust the this pointer as needed for the
    290     /// specified pass info.
    291     void *getAdjustedAnalysisPointer(const void *PI) override {
    292       if (PI == &AliasAnalysis::ID)
    293         return (AliasAnalysis*)this;
    294       return this;
    295     }
    296 
    297     bool Aliases(const MDNode *A, const MDNode *B) const;
    298     bool PathAliases(const MDNode *A, const MDNode *B) const;
    299 
    300   private:
    301     void getAnalysisUsage(AnalysisUsage &AU) const override;
    302     AliasResult alias(const Location &LocA, const Location &LocB) override;
    303     bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
    304     ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
    305     ModRefBehavior getModRefBehavior(const Function *F) override;
    306     ModRefResult getModRefInfo(ImmutableCallSite CS,
    307                                const Location &Loc) override;
    308     ModRefResult getModRefInfo(ImmutableCallSite CS1,
    309                                ImmutableCallSite CS2) override;
    310   };
    311 }  // End of anonymous namespace
    312 
    313 // Register this pass...
    314 char TypeBasedAliasAnalysis::ID = 0;
    315 INITIALIZE_AG_PASS(TypeBasedAliasAnalysis, AliasAnalysis, "tbaa",
    316                    "Type-Based Alias Analysis", false, true, false)
    317 
    318 ImmutablePass *llvm::createTypeBasedAliasAnalysisPass() {
    319   return new TypeBasedAliasAnalysis();
    320 }
    321 
    322 void
    323 TypeBasedAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
    324   AU.setPreservesAll();
    325   AliasAnalysis::getAnalysisUsage(AU);
    326 }
    327 
    328 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
    329 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
    330 /// format.
    331 static bool isStructPathTBAA(const MDNode *MD) {
    332   // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
    333   // a TBAA tag.
    334   return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
    335 }
    336 
    337 /// Aliases - Test whether the type represented by A may alias the
    338 /// type represented by B.
    339 bool
    340 TypeBasedAliasAnalysis::Aliases(const MDNode *A,
    341                                 const MDNode *B) const {
    342   // Make sure that both MDNodes are struct-path aware.
    343   if (isStructPathTBAA(A) && isStructPathTBAA(B))
    344     return PathAliases(A, B);
    345 
    346   // Keep track of the root node for A and B.
    347   TBAANode RootA, RootB;
    348 
    349   // Climb the tree from A to see if we reach B.
    350   for (TBAANode T(A); ; ) {
    351     if (T.getNode() == B)
    352       // B is an ancestor of A.
    353       return true;
    354 
    355     RootA = T;
    356     T = T.getParent();
    357     if (!T.getNode())
    358       break;
    359   }
    360 
    361   // Climb the tree from B to see if we reach A.
    362   for (TBAANode T(B); ; ) {
    363     if (T.getNode() == A)
    364       // A is an ancestor of B.
    365       return true;
    366 
    367     RootB = T;
    368     T = T.getParent();
    369     if (!T.getNode())
    370       break;
    371   }
    372 
    373   // Neither node is an ancestor of the other.
    374 
    375   // If they have different roots, they're part of different potentially
    376   // unrelated type systems, so we must be conservative.
    377   if (RootA.getNode() != RootB.getNode())
    378     return true;
    379 
    380   // If they have the same root, then we've proved there's no alias.
    381   return false;
    382 }
    383 
    384 /// Test whether the struct-path tag represented by A may alias the
    385 /// struct-path tag represented by B.
    386 bool
    387 TypeBasedAliasAnalysis::PathAliases(const MDNode *A,
    388                                     const MDNode *B) const {
    389   // Verify that both input nodes are struct-path aware.
    390   assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware.");
    391   assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware.");
    392 
    393   // Keep track of the root node for A and B.
    394   TBAAStructTypeNode RootA, RootB;
    395   TBAAStructTagNode TagA(A), TagB(B);
    396 
    397   // TODO: We need to check if AccessType of TagA encloses AccessType of
    398   // TagB to support aggregate AccessType. If yes, return true.
    399 
    400   // Start from the base type of A, follow the edge with the correct offset in
    401   // the type DAG and adjust the offset until we reach the base type of B or
    402   // until we reach the Root node.
    403   // Compare the adjusted offset once we have the same base.
    404 
    405   // Climb the type DAG from base type of A to see if we reach base type of B.
    406   const MDNode *BaseA = TagA.getBaseType();
    407   const MDNode *BaseB = TagB.getBaseType();
    408   uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
    409   for (TBAAStructTypeNode T(BaseA); ; ) {
    410     if (T.getNode() == BaseB)
    411       // Base type of A encloses base type of B, check if the offsets match.
    412       return OffsetA == OffsetB;
    413 
    414     RootA = T;
    415     // Follow the edge with the correct offset, OffsetA will be adjusted to
    416     // be relative to the field type.
    417     T = T.getParent(OffsetA);
    418     if (!T.getNode())
    419       break;
    420   }
    421 
    422   // Reset OffsetA and climb the type DAG from base type of B to see if we reach
    423   // base type of A.
    424   OffsetA = TagA.getOffset();
    425   for (TBAAStructTypeNode T(BaseB); ; ) {
    426     if (T.getNode() == BaseA)
    427       // Base type of B encloses base type of A, check if the offsets match.
    428       return OffsetA == OffsetB;
    429 
    430     RootB = T;
    431     // Follow the edge with the correct offset, OffsetB will be adjusted to
    432     // be relative to the field type.
    433     T = T.getParent(OffsetB);
    434     if (!T.getNode())
    435       break;
    436   }
    437 
    438   // Neither node is an ancestor of the other.
    439 
    440   // If they have different roots, they're part of different potentially
    441   // unrelated type systems, so we must be conservative.
    442   if (RootA.getNode() != RootB.getNode())
    443     return true;
    444 
    445   // If they have the same root, then we've proved there's no alias.
    446   return false;
    447 }
    448 
    449 AliasAnalysis::AliasResult
    450 TypeBasedAliasAnalysis::alias(const Location &LocA,
    451                               const Location &LocB) {
    452   if (!EnableTBAA)
    453     return AliasAnalysis::alias(LocA, LocB);
    454 
    455   // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
    456   // be conservative.
    457   const MDNode *AM = LocA.TBAATag;
    458   if (!AM) return AliasAnalysis::alias(LocA, LocB);
    459   const MDNode *BM = LocB.TBAATag;
    460   if (!BM) return AliasAnalysis::alias(LocA, LocB);
    461 
    462   // If they may alias, chain to the next AliasAnalysis.
    463   if (Aliases(AM, BM))
    464     return AliasAnalysis::alias(LocA, LocB);
    465 
    466   // Otherwise return a definitive result.
    467   return NoAlias;
    468 }
    469 
    470 bool TypeBasedAliasAnalysis::pointsToConstantMemory(const Location &Loc,
    471                                                     bool OrLocal) {
    472   if (!EnableTBAA)
    473     return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    474 
    475   const MDNode *M = Loc.TBAATag;
    476   if (!M) return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    477 
    478   // If this is an "immutable" type, we can assume the pointer is pointing
    479   // to constant memory.
    480   if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
    481       (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
    482     return true;
    483 
    484   return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    485 }
    486 
    487 AliasAnalysis::ModRefBehavior
    488 TypeBasedAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
    489   if (!EnableTBAA)
    490     return AliasAnalysis::getModRefBehavior(CS);
    491 
    492   ModRefBehavior Min = UnknownModRefBehavior;
    493 
    494   // If this is an "immutable" type, we can assume the call doesn't write
    495   // to memory.
    496   if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    497     if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
    498         (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
    499       Min = OnlyReadsMemory;
    500 
    501   return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
    502 }
    503 
    504 AliasAnalysis::ModRefBehavior
    505 TypeBasedAliasAnalysis::getModRefBehavior(const Function *F) {
    506   // Functions don't have metadata. Just chain to the next implementation.
    507   return AliasAnalysis::getModRefBehavior(F);
    508 }
    509 
    510 AliasAnalysis::ModRefResult
    511 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
    512                                       const Location &Loc) {
    513   if (!EnableTBAA)
    514     return AliasAnalysis::getModRefInfo(CS, Loc);
    515 
    516   if (const MDNode *L = Loc.TBAATag)
    517     if (const MDNode *M =
    518           CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    519       if (!Aliases(L, M))
    520         return NoModRef;
    521 
    522   return AliasAnalysis::getModRefInfo(CS, Loc);
    523 }
    524 
    525 AliasAnalysis::ModRefResult
    526 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
    527                                       ImmutableCallSite CS2) {
    528   if (!EnableTBAA)
    529     return AliasAnalysis::getModRefInfo(CS1, CS2);
    530 
    531   if (const MDNode *M1 =
    532         CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    533     if (const MDNode *M2 =
    534           CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    535       if (!Aliases(M1, M2))
    536         return NoModRef;
    537 
    538   return AliasAnalysis::getModRefInfo(CS1, CS2);
    539 }
    540 
    541 bool MDNode::isTBAAVtableAccess() const {
    542   if (!isStructPathTBAA(this)) {
    543     if (getNumOperands() < 1) return false;
    544     if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
    545       if (Tag1->getString() == "vtable pointer") return true;
    546     }
    547     return false;
    548   }
    549 
    550   // For struct-path aware TBAA, we use the access type of the tag.
    551   if (getNumOperands() < 2) return false;
    552   MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
    553   if (!Tag) return false;
    554   if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
    555     if (Tag1->getString() == "vtable pointer") return true;
    556   }
    557   return false;
    558 }
    559 
    560 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
    561   if (!A || !B)
    562     return nullptr;
    563 
    564   if (A == B)
    565     return A;
    566 
    567   // For struct-path aware TBAA, we use the access type of the tag.
    568   bool StructPath = isStructPathTBAA(A) && isStructPathTBAA(B);
    569   if (StructPath) {
    570     A = cast_or_null<MDNode>(A->getOperand(1));
    571     if (!A) return nullptr;
    572     B = cast_or_null<MDNode>(B->getOperand(1));
    573     if (!B) return nullptr;
    574   }
    575 
    576   SmallVector<MDNode *, 4> PathA;
    577   MDNode *T = A;
    578   while (T) {
    579     PathA.push_back(T);
    580     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
    581                                  : nullptr;
    582   }
    583 
    584   SmallVector<MDNode *, 4> PathB;
    585   T = B;
    586   while (T) {
    587     PathB.push_back(T);
    588     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
    589                                  : nullptr;
    590   }
    591 
    592   int IA = PathA.size() - 1;
    593   int IB = PathB.size() - 1;
    594 
    595   MDNode *Ret = nullptr;
    596   while (IA >= 0 && IB >=0) {
    597     if (PathA[IA] == PathB[IB])
    598       Ret = PathA[IA];
    599     else
    600       break;
    601     --IA;
    602     --IB;
    603   }
    604   if (!StructPath)
    605     return Ret;
    606 
    607   if (!Ret)
    608     return nullptr;
    609   // We need to convert from a type node to a tag node.
    610   Type *Int64 = IntegerType::get(A->getContext(), 64);
    611   Value *Ops[3] = { Ret, Ret, ConstantInt::get(Int64, 0) };
    612   return MDNode::get(A->getContext(), Ops);
    613 }
    614