1 // Copyright 2011 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "src/v8.h" 6 7 #if V8_TARGET_ARCH_X64 8 9 #include "src/x64/lithium-gap-resolver-x64.h" 10 #include "src/x64/lithium-codegen-x64.h" 11 12 namespace v8 { 13 namespace internal { 14 15 LGapResolver::LGapResolver(LCodeGen* owner) 16 : cgen_(owner), moves_(32, owner->zone()) {} 17 18 19 void LGapResolver::Resolve(LParallelMove* parallel_move) { 20 ASSERT(moves_.is_empty()); 21 // Build up a worklist of moves. 22 BuildInitialMoveList(parallel_move); 23 24 for (int i = 0; i < moves_.length(); ++i) { 25 LMoveOperands move = moves_[i]; 26 // Skip constants to perform them last. They don't block other moves 27 // and skipping such moves with register destinations keeps those 28 // registers free for the whole algorithm. 29 if (!move.IsEliminated() && !move.source()->IsConstantOperand()) { 30 PerformMove(i); 31 } 32 } 33 34 // Perform the moves with constant sources. 35 for (int i = 0; i < moves_.length(); ++i) { 36 if (!moves_[i].IsEliminated()) { 37 ASSERT(moves_[i].source()->IsConstantOperand()); 38 EmitMove(i); 39 } 40 } 41 42 moves_.Rewind(0); 43 } 44 45 46 void LGapResolver::BuildInitialMoveList(LParallelMove* parallel_move) { 47 // Perform a linear sweep of the moves to add them to the initial list of 48 // moves to perform, ignoring any move that is redundant (the source is 49 // the same as the destination, the destination is ignored and 50 // unallocated, or the move was already eliminated). 51 const ZoneList<LMoveOperands>* moves = parallel_move->move_operands(); 52 for (int i = 0; i < moves->length(); ++i) { 53 LMoveOperands move = moves->at(i); 54 if (!move.IsRedundant()) moves_.Add(move, cgen_->zone()); 55 } 56 Verify(); 57 } 58 59 60 void LGapResolver::PerformMove(int index) { 61 // Each call to this function performs a move and deletes it from the move 62 // graph. We first recursively perform any move blocking this one. We 63 // mark a move as "pending" on entry to PerformMove in order to detect 64 // cycles in the move graph. We use operand swaps to resolve cycles, 65 // which means that a call to PerformMove could change any source operand 66 // in the move graph. 67 68 ASSERT(!moves_[index].IsPending()); 69 ASSERT(!moves_[index].IsRedundant()); 70 71 // Clear this move's destination to indicate a pending move. The actual 72 // destination is saved in a stack-allocated local. Recursion may allow 73 // multiple moves to be pending. 74 ASSERT(moves_[index].source() != NULL); // Or else it will look eliminated. 75 LOperand* destination = moves_[index].destination(); 76 moves_[index].set_destination(NULL); 77 78 // Perform a depth-first traversal of the move graph to resolve 79 // dependencies. Any unperformed, unpending move with a source the same 80 // as this one's destination blocks this one so recursively perform all 81 // such moves. 82 for (int i = 0; i < moves_.length(); ++i) { 83 LMoveOperands other_move = moves_[i]; 84 if (other_move.Blocks(destination) && !other_move.IsPending()) { 85 // Though PerformMove can change any source operand in the move graph, 86 // this call cannot create a blocking move via a swap (this loop does 87 // not miss any). Assume there is a non-blocking move with source A 88 // and this move is blocked on source B and there is a swap of A and 89 // B. Then A and B must be involved in the same cycle (or they would 90 // not be swapped). Since this move's destination is B and there is 91 // only a single incoming edge to an operand, this move must also be 92 // involved in the same cycle. In that case, the blocking move will 93 // be created but will be "pending" when we return from PerformMove. 94 PerformMove(i); 95 } 96 } 97 98 // We are about to resolve this move and don't need it marked as 99 // pending, so restore its destination. 100 moves_[index].set_destination(destination); 101 102 // This move's source may have changed due to swaps to resolve cycles and 103 // so it may now be the last move in the cycle. If so remove it. 104 if (moves_[index].source()->Equals(destination)) { 105 moves_[index].Eliminate(); 106 return; 107 } 108 109 // The move may be blocked on a (at most one) pending move, in which case 110 // we have a cycle. Search for such a blocking move and perform a swap to 111 // resolve it. 112 for (int i = 0; i < moves_.length(); ++i) { 113 LMoveOperands other_move = moves_[i]; 114 if (other_move.Blocks(destination)) { 115 ASSERT(other_move.IsPending()); 116 EmitSwap(index); 117 return; 118 } 119 } 120 121 // This move is not blocked. 122 EmitMove(index); 123 } 124 125 126 void LGapResolver::Verify() { 127 #ifdef ENABLE_SLOW_ASSERTS 128 // No operand should be the destination for more than one move. 129 for (int i = 0; i < moves_.length(); ++i) { 130 LOperand* destination = moves_[i].destination(); 131 for (int j = i + 1; j < moves_.length(); ++j) { 132 SLOW_ASSERT(!destination->Equals(moves_[j].destination())); 133 } 134 } 135 #endif 136 } 137 138 139 #define __ ACCESS_MASM(cgen_->masm()) 140 141 142 void LGapResolver::EmitMove(int index) { 143 LOperand* source = moves_[index].source(); 144 LOperand* destination = moves_[index].destination(); 145 146 // Dispatch on the source and destination operand kinds. Not all 147 // combinations are possible. 148 if (source->IsRegister()) { 149 Register src = cgen_->ToRegister(source); 150 if (destination->IsRegister()) { 151 Register dst = cgen_->ToRegister(destination); 152 __ movp(dst, src); 153 } else { 154 ASSERT(destination->IsStackSlot()); 155 Operand dst = cgen_->ToOperand(destination); 156 __ movp(dst, src); 157 } 158 159 } else if (source->IsStackSlot()) { 160 Operand src = cgen_->ToOperand(source); 161 if (destination->IsRegister()) { 162 Register dst = cgen_->ToRegister(destination); 163 __ movp(dst, src); 164 } else { 165 ASSERT(destination->IsStackSlot()); 166 Operand dst = cgen_->ToOperand(destination); 167 __ movp(kScratchRegister, src); 168 __ movp(dst, kScratchRegister); 169 } 170 171 } else if (source->IsConstantOperand()) { 172 LConstantOperand* constant_source = LConstantOperand::cast(source); 173 if (destination->IsRegister()) { 174 Register dst = cgen_->ToRegister(destination); 175 if (cgen_->IsSmiConstant(constant_source)) { 176 __ Move(dst, cgen_->ToSmi(constant_source)); 177 } else if (cgen_->IsInteger32Constant(constant_source)) { 178 int32_t constant = cgen_->ToInteger32(constant_source); 179 // Do sign extension only for constant used as de-hoisted array key. 180 // Others only need zero extension, which saves 2 bytes. 181 if (cgen_->IsDehoistedKeyConstant(constant_source)) { 182 __ Set(dst, constant); 183 } else { 184 __ Set(dst, static_cast<uint32_t>(constant)); 185 } 186 } else { 187 __ Move(dst, cgen_->ToHandle(constant_source)); 188 } 189 } else if (destination->IsDoubleRegister()) { 190 double v = cgen_->ToDouble(constant_source); 191 uint64_t int_val = BitCast<uint64_t, double>(v); 192 XMMRegister dst = cgen_->ToDoubleRegister(destination); 193 if (int_val == 0) { 194 __ xorps(dst, dst); 195 } else { 196 __ Set(kScratchRegister, int_val); 197 __ movq(dst, kScratchRegister); 198 } 199 } else { 200 ASSERT(destination->IsStackSlot()); 201 Operand dst = cgen_->ToOperand(destination); 202 if (cgen_->IsSmiConstant(constant_source)) { 203 __ Move(dst, cgen_->ToSmi(constant_source)); 204 } else if (cgen_->IsInteger32Constant(constant_source)) { 205 // Do sign extension to 64 bits when stored into stack slot. 206 __ movp(dst, Immediate(cgen_->ToInteger32(constant_source))); 207 } else { 208 __ Move(kScratchRegister, cgen_->ToHandle(constant_source)); 209 __ movp(dst, kScratchRegister); 210 } 211 } 212 213 } else if (source->IsDoubleRegister()) { 214 XMMRegister src = cgen_->ToDoubleRegister(source); 215 if (destination->IsDoubleRegister()) { 216 __ movaps(cgen_->ToDoubleRegister(destination), src); 217 } else { 218 ASSERT(destination->IsDoubleStackSlot()); 219 __ movsd(cgen_->ToOperand(destination), src); 220 } 221 } else if (source->IsDoubleStackSlot()) { 222 Operand src = cgen_->ToOperand(source); 223 if (destination->IsDoubleRegister()) { 224 __ movsd(cgen_->ToDoubleRegister(destination), src); 225 } else { 226 ASSERT(destination->IsDoubleStackSlot()); 227 __ movsd(xmm0, src); 228 __ movsd(cgen_->ToOperand(destination), xmm0); 229 } 230 } else { 231 UNREACHABLE(); 232 } 233 234 moves_[index].Eliminate(); 235 } 236 237 238 void LGapResolver::EmitSwap(int index) { 239 LOperand* source = moves_[index].source(); 240 LOperand* destination = moves_[index].destination(); 241 242 // Dispatch on the source and destination operand kinds. Not all 243 // combinations are possible. 244 if (source->IsRegister() && destination->IsRegister()) { 245 // Swap two general-purpose registers. 246 Register src = cgen_->ToRegister(source); 247 Register dst = cgen_->ToRegister(destination); 248 __ xchgq(dst, src); 249 250 } else if ((source->IsRegister() && destination->IsStackSlot()) || 251 (source->IsStackSlot() && destination->IsRegister())) { 252 // Swap a general-purpose register and a stack slot. 253 Register reg = 254 cgen_->ToRegister(source->IsRegister() ? source : destination); 255 Operand mem = 256 cgen_->ToOperand(source->IsRegister() ? destination : source); 257 __ movp(kScratchRegister, mem); 258 __ movp(mem, reg); 259 __ movp(reg, kScratchRegister); 260 261 } else if ((source->IsStackSlot() && destination->IsStackSlot()) || 262 (source->IsDoubleStackSlot() && destination->IsDoubleStackSlot())) { 263 // Swap two stack slots or two double stack slots. 264 Operand src = cgen_->ToOperand(source); 265 Operand dst = cgen_->ToOperand(destination); 266 __ movsd(xmm0, src); 267 __ movp(kScratchRegister, dst); 268 __ movsd(dst, xmm0); 269 __ movp(src, kScratchRegister); 270 271 } else if (source->IsDoubleRegister() && destination->IsDoubleRegister()) { 272 // Swap two double registers. 273 XMMRegister source_reg = cgen_->ToDoubleRegister(source); 274 XMMRegister destination_reg = cgen_->ToDoubleRegister(destination); 275 __ movaps(xmm0, source_reg); 276 __ movaps(source_reg, destination_reg); 277 __ movaps(destination_reg, xmm0); 278 279 } else if (source->IsDoubleRegister() || destination->IsDoubleRegister()) { 280 // Swap a double register and a double stack slot. 281 ASSERT((source->IsDoubleRegister() && destination->IsDoubleStackSlot()) || 282 (source->IsDoubleStackSlot() && destination->IsDoubleRegister())); 283 XMMRegister reg = cgen_->ToDoubleRegister(source->IsDoubleRegister() 284 ? source 285 : destination); 286 LOperand* other = source->IsDoubleRegister() ? destination : source; 287 ASSERT(other->IsDoubleStackSlot()); 288 Operand other_operand = cgen_->ToOperand(other); 289 __ movsd(xmm0, other_operand); 290 __ movsd(other_operand, reg); 291 __ movaps(reg, xmm0); 292 293 } else { 294 // No other combinations are possible. 295 UNREACHABLE(); 296 } 297 298 // The swap of source and destination has executed a move from source to 299 // destination. 300 moves_[index].Eliminate(); 301 302 // Any unperformed (including pending) move with a source of either 303 // this move's source or destination needs to have their source 304 // changed to reflect the state of affairs after the swap. 305 for (int i = 0; i < moves_.length(); ++i) { 306 LMoveOperands other_move = moves_[i]; 307 if (other_move.Blocks(source)) { 308 moves_[i].set_source(destination); 309 } else if (other_move.Blocks(destination)) { 310 moves_[i].set_source(source); 311 } 312 } 313 } 314 315 #undef __ 316 317 } } // namespace v8::internal 318 319 #endif // V8_TARGET_ARCH_X64 320