Home | History | Annotate | Download | only in libaudio
      1 /*
      2 **
      3 ** Copyright 2012, The Android Open Source Project
      4 **
      5 ** Licensed under the Apache License, Version 2.0 (the "License");
      6 ** you may not use this file except in compliance with the License.
      7 ** You may obtain a copy of the License at
      8 **
      9 **     http://www.apache.org/licenses/LICENSE-2.0
     10 **
     11 ** Unless required by applicable law or agreed to in writing, software
     12 ** distributed under the License is distributed on an "AS IS" BASIS,
     13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14 ** See the License for the specific language governing permissions and
     15 ** limitations under the License.
     16 */
     17 
     18 #define LOG_TAG "AudioHAL:AudioStreamOut"
     19 
     20 #include <utils/Log.h>
     21 
     22 #include "AudioHardwareOutput.h"
     23 #include "AudioStreamOut.h"
     24 
     25 // Set to 1 to print timestamp data in CSV format.
     26 #ifndef HAL_PRINT_TIMESTAMP_CSV
     27 #define HAL_PRINT_TIMESTAMP_CSV 0
     28 #endif
     29 
     30 //#define VERY_VERBOSE_LOGGING
     31 #ifdef VERY_VERBOSE_LOGGING
     32 #define ALOGVV ALOGV
     33 #else
     34 #define ALOGVV(a...) do { } while(0)
     35 #endif
     36 
     37 namespace android {
     38 
     39 AudioStreamOut::AudioStreamOut(AudioHardwareOutput& owner, bool mcOut)
     40     : mFramesPresented(0)
     41     , mFramesRendered(0)
     42     , mFramesWrittenRemainder(0)
     43     , mOwnerHAL(owner)
     44     , mFramesWritten(0)
     45     , mTgtDevices(0)
     46     , mAudioFlingerTgtDevices(0)
     47     , mIsMCOutput(mcOut)
     48     , mIsEncoded(false)
     49     , mInStandby(false)
     50     , mSPDIFEncoder(this)
     51 {
     52     assert(mLocalClock.initCheck());
     53 
     54     mPhysOutputs.setCapacity(3);
     55 
     56     // Set some reasonable defaults for these.  All of this should be eventually
     57     // be overwritten by a specific audio flinger configuration, but it does not
     58     // hurt to have something here by default.
     59     mInputSampleRate = 48000;
     60     mInputChanMask = AUDIO_CHANNEL_OUT_STEREO;
     61     mInputFormat = AUDIO_FORMAT_PCM_16_BIT;
     62     mInputNominalChunksInFlight = 4;
     63     updateInputNums();
     64 
     65     mThrottleValid = false;
     66 
     67     memset(&mUSecToLocalTime, 0, sizeof(mUSecToLocalTime));
     68     mUSecToLocalTime.a_to_b_numer = mLocalClock.getLocalFreq();
     69     mUSecToLocalTime.a_to_b_denom = 1000000;
     70     LinearTransform::reduce(&mUSecToLocalTime.a_to_b_numer,
     71                             &mUSecToLocalTime.a_to_b_denom);
     72 }
     73 
     74 AudioStreamOut::~AudioStreamOut()
     75 {
     76     releaseAllOutputs();
     77 }
     78 
     79 status_t AudioStreamOut::set(
     80         audio_format_t *pFormat,
     81         uint32_t *pChannels,
     82         uint32_t *pRate)
     83 {
     84     Mutex::Autolock _l(mLock);
     85     audio_format_t lFormat   = pFormat ? *pFormat : AUDIO_FORMAT_DEFAULT;
     86     uint32_t       lChannels = pChannels ? *pChannels : 0;
     87     uint32_t       lRate     = pRate ? *pRate : 0;
     88 
     89     // fix up defaults
     90     if (lFormat == AUDIO_FORMAT_DEFAULT) lFormat = format();
     91     if (lChannels == 0)                  lChannels = chanMask();
     92     if (lRate == 0)                      lRate = sampleRate();
     93 
     94     if (pFormat)   *pFormat   = lFormat;
     95     if (pChannels) *pChannels = lChannels;
     96     if (pRate)     *pRate     = lRate;
     97 
     98     mIsEncoded = !audio_is_linear_pcm(lFormat);
     99 
    100     if (!mIsMCOutput && !mIsEncoded) {
    101         // If this is the primary stream out, then demand our defaults.
    102         if ((lFormat   != format()) ||
    103             (lChannels != chanMask()) ||
    104             (lRate     != sampleRate()))
    105             return BAD_VALUE;
    106     } else {
    107         // Else check to see if our HDMI sink supports this format before proceeding.
    108         if (!mOwnerHAL.getHDMIAudioCaps().supportsFormat(lFormat,
    109                                                      lRate,
    110                                                      audio_channel_count_from_out_mask(lChannels)))
    111             return BAD_VALUE;
    112     }
    113 
    114     mInputFormat = lFormat;
    115     mInputChanMask = lChannels;
    116     mInputSampleRate = lRate;
    117     ALOGI("AudioStreamOut::set: lRate = %u, mIsEncoded = %d\n", lRate, mIsEncoded);
    118     updateInputNums();
    119 
    120     return NO_ERROR;
    121 }
    122 
    123 void AudioStreamOut::setTgtDevices(uint32_t tgtDevices)
    124 {
    125     Mutex::Autolock _l(mRoutingLock);
    126     if (mTgtDevices != tgtDevices) {
    127         mTgtDevices = tgtDevices;
    128     }
    129 }
    130 
    131 status_t AudioStreamOut::standby()
    132 {
    133     mFramesRendered = 0;
    134     releaseAllOutputs();
    135     mOwnerHAL.standbyStatusUpdate(true, mIsMCOutput);
    136     mInStandby = true;
    137 
    138     return NO_ERROR;
    139 }
    140 
    141 void AudioStreamOut::releaseAllOutputs() {
    142     Mutex::Autolock _l(mRoutingLock);
    143 
    144     ALOGI("releaseAllOutputs: releasing %d mPhysOutputs", mPhysOutputs.size());
    145     AudioOutputList::iterator I;
    146     for (I = mPhysOutputs.begin(); I != mPhysOutputs.end(); ++I)
    147         mOwnerHAL.releaseOutput(*this, *I);
    148 
    149     mPhysOutputs.clear();
    150 }
    151 
    152 void AudioStreamOut::updateInputNums()
    153 {
    154     assert(mLocalClock.initCheck());
    155 
    156     // mInputBufSize determines how many audio frames AudioFlinger is going to
    157     // mix at a time.  We also use the mInputBufSize to determine the ALSA
    158     // period_size, the number of of samples which need to play out (at most)
    159     // before low level ALSA driver code is required to wake up upper levels of
    160     // SW to fill a new buffer.  As it turns out, ALSA is going to apply some
    161     // rules and modify the period_size which we pass to it.  One of the things
    162     // ALSA seems to do is attempt to round the period_size up to a value which
    163     // will make the period an integral number of 0.5 mSec.  This round-up
    164     // behavior can cause the low levels of ALSA to consume more data per period
    165     // than the AudioFlinger mixer has been told to produce.  If there are only
    166     // two buffers in flight at any given point in time, this can lead to a
    167     // situation where the pipeline ends up slipping an extra buffer and
    168     // underflowing.  There are two approaches to mitigate this, both of which
    169     // are implemented in this HAL...
    170     //
    171     // 1) Try as hard as possible to make certain that the buffer size we choose
    172     //    results in a period_size which is not going to get rounded up by ALSA.
    173     //    This means that we want a buffer size which at the chosen sample rate
    174     //    and frame size will be an integral multiple of 1/2 mSec.
    175     // 2) Increate the number of chunks we keep in flight.  If the system slips
    176     //    a single period, its only really a problem if there is no data left in
    177     //    the pipeline waiting to be played out.  The mixer should going to mix
    178     //    as fast as possible until the buffer has been topped off.  By
    179     //    decreasing the buffer size and increasing the number of buffers in
    180     //    flight, we increase the number of interrups and mix events per second,
    181     //    but buy ourselves some insurance against the negative side effects of
    182     //    slipping one buffer in the schedule.  We end up using 4 buffers at
    183     //    10mSec, making the total audio latency somewhere between 40 and 50
    184     //    mSec, depending on when a sample begins playback relative to
    185     //    AudioFlinger's mixing schedule.
    186     //
    187     mInputChanCount = audio_channel_count_from_out_mask(mInputChanMask);
    188 
    189     // Picking a chunk duration 10mSec should satisfy #1 for both major families
    190     // of audio sample rates (the 44.1K and 48K families).  In the case of 44.1
    191     // (or higher) we will end up with a multiple of 441 frames of audio per
    192     // chunk, while for 48K, we will have a multiple of 480 frames of audio per
    193     // chunk.  This will not work well for lower sample rates in the 44.1 family
    194     // (22.05K and 11.025K); it is unlikely that we will ever be configured to
    195     // deliver those rates, and if we ever do, we will need to rely on having
    196     // extra chunks in flight to deal with the jitter problem described above.
    197     mInputChunkFrames = outputSampleRate() / 100;
    198 
    199     // FIXME: Currently, audio flinger demands an input buffer size which is a
    200     // multiple of 16 audio frames.  Right now, there is no good way to
    201     // reconcile this with ALSA round-up behavior described above when the
    202     // desired sample rate is a member of the 44.1 family.  For now, we just
    203     // round up to the nearest multiple of 16 frames and roll the dice, but
    204     // someday it would be good to fix one or the other halves of the problem
    205     // (either ALSA or AudioFlinger)
    206     mInputChunkFrames = (mInputChunkFrames + 0xF) & ~0xF;
    207 
    208     ALOGD("AudioStreamOut::updateInputNums: chunk size %u from output rate %u\n",
    209         mInputChunkFrames, outputSampleRate());
    210 
    211     // Buffer size is just the frame size multiplied by the number of
    212     // frames per chunk.
    213     mInputBufSize = mInputChunkFrames * getBytesPerOutputFrame();
    214 
    215     // The nominal latency is just the duration of a chunk * the number of
    216     // chunks we nominally keep in flight at any given point in time.
    217     mInputNominalLatencyUSec = static_cast<uint32_t>(((
    218                     static_cast<uint64_t>(mInputChunkFrames)
    219                     * 1000000 * mInputNominalChunksInFlight)
    220                     / mInputSampleRate));
    221 
    222     memset(&mLocalTimeToFrames, 0, sizeof(mLocalTimeToFrames));
    223     mLocalTimeToFrames.a_to_b_numer = mInputSampleRate;
    224     mLocalTimeToFrames.a_to_b_denom = mLocalClock.getLocalFreq();
    225     LinearTransform::reduce(
    226             &mLocalTimeToFrames.a_to_b_numer,
    227             &mLocalTimeToFrames.a_to_b_denom);
    228 }
    229 
    230 void AudioStreamOut::finishedWriteOp(size_t framesWritten,
    231                                      bool needThrottle)
    232 {
    233     assert(mLocalClock.initCheck());
    234 
    235     int64_t now = mLocalClock.getLocalTime();
    236 
    237     if (!mThrottleValid || !needThrottle) {
    238         mThrottleValid = true;
    239         mWriteStartLT  = now;
    240         mFramesWritten = 0;
    241     }
    242 
    243     size_t framesWrittenAppRate;
    244     uint32_t multiplier = getRateMultiplier();
    245     if (multiplier != 1) {
    246         // Accumulate round-off error from previous call.
    247         framesWritten += mFramesWrittenRemainder;
    248         // Scale from device sample rate to application rate.
    249         framesWrittenAppRate = framesWritten / multiplier;
    250         ALOGV("finishedWriteOp() framesWrittenAppRate = %d = %d / %d\n",
    251             framesWrittenAppRate, framesWritten, multiplier);
    252         // Save remainder for next time to prevent error accumulation.
    253         mFramesWrittenRemainder = framesWritten - (framesWrittenAppRate * multiplier);
    254     } else {
    255         framesWrittenAppRate = framesWritten;
    256     }
    257 
    258     mFramesWritten += framesWrittenAppRate;
    259     mFramesPresented += framesWrittenAppRate;
    260     mFramesRendered += framesWrittenAppRate;
    261 
    262     if (needThrottle) {
    263         int64_t deltaLT;
    264         mLocalTimeToFrames.doReverseTransform(mFramesWritten, &deltaLT);
    265         deltaLT += mWriteStartLT;
    266         deltaLT -= now;
    267 
    268         int64_t deltaUSec;
    269         mUSecToLocalTime.doReverseTransform(deltaLT, &deltaUSec);
    270 
    271         if (deltaUSec > 0) {
    272             useconds_t sleep_time;
    273 
    274             // We should never be a full second ahead of schedule; sanity check
    275             // our throttle time and cap the max sleep time at 1 second.
    276             if (deltaUSec > 1000000)
    277                 sleep_time = 1000000;
    278             else
    279                 sleep_time = static_cast<useconds_t>(deltaUSec);
    280 
    281             usleep(sleep_time);
    282         }
    283     }
    284 }
    285 
    286 static const String8 keyRouting(AudioParameter::keyRouting);
    287 static const String8 keySupSampleRates("sup_sampling_rates");
    288 static const String8 keySupFormats("sup_formats");
    289 static const String8 keySupChannels("sup_channels");
    290 status_t AudioStreamOut::setParameters(__unused struct audio_stream *stream, const char *kvpairs)
    291 {
    292     AudioParameter param = AudioParameter(String8(kvpairs));
    293     String8 key = String8(AudioParameter::keyRouting);
    294     int tmpInt;
    295 
    296     if (param.getInt(key, tmpInt) == NO_ERROR) {
    297         // The audio HAL handles routing to physical devices entirely
    298         // internally and mostly ignores what audio flinger tells it to do.  JiC
    299         // there is something (now or in the future) in audio flinger which
    300         // cares about the routing value in a call to getParameters, we hang on
    301         // to the last routing value set by audio flinger so we can at least be
    302         // consistent when we lie to the upper levels about doing what they told
    303         // us to do.
    304         mAudioFlingerTgtDevices = static_cast<uint32_t>(tmpInt);
    305     }
    306 
    307     return NO_ERROR;
    308 }
    309 
    310 char* AudioStreamOut::getParameters(const char* k)
    311 {
    312     AudioParameter param = AudioParameter(String8(k));
    313     String8 value;
    314 
    315     if (param.get(keyRouting, value) == NO_ERROR) {
    316         param.addInt(keyRouting, (int)mAudioFlingerTgtDevices);
    317     }
    318 
    319     HDMIAudioCaps& hdmiCaps = mOwnerHAL.getHDMIAudioCaps();
    320 
    321     if (param.get(keySupSampleRates, value) == NO_ERROR) {
    322         if (mIsMCOutput) {
    323             hdmiCaps.getRatesForAF(value);
    324             param.add(keySupSampleRates, value);
    325         } else {
    326             param.add(keySupSampleRates, String8("48000"));
    327         }
    328     }
    329 
    330     if (param.get(keySupFormats, value) == NO_ERROR) {
    331         if (mIsMCOutput) {
    332             hdmiCaps.getFmtsForAF(value);
    333             param.add(keySupFormats, value);
    334         } else {
    335             param.add(keySupFormats, String8("AUDIO_FORMAT_PCM_16_BIT"));
    336         }
    337     }
    338 
    339     if (param.get(keySupChannels, value) == NO_ERROR) {
    340         if (mIsMCOutput) {
    341             hdmiCaps.getChannelMasksForAF(value, false);
    342             param.add(keySupChannels, value);
    343         } else {
    344             param.add(keySupChannels, String8("AUDIO_CHANNEL_OUT_STEREO"));
    345         }
    346     }
    347 
    348     return strdup(param.toString().string());
    349 }
    350 
    351 uint32_t AudioStreamOut::getRateMultiplier() const
    352 {
    353     return (mIsEncoded) ? mSPDIFEncoder.getRateMultiplier() : 1;
    354 }
    355 
    356 uint32_t AudioStreamOut::outputSampleRate() const
    357 {
    358     return mInputSampleRate * getRateMultiplier();
    359 }
    360 
    361 int AudioStreamOut::getBytesPerOutputFrame()
    362 {
    363     return (mIsEncoded) ? mSPDIFEncoder.getBytesPerOutputFrame()
    364         : (mInputChanCount * sizeof(int16_t));
    365 }
    366 
    367 uint32_t AudioStreamOut::latency() const {
    368     uint32_t uSecLatency = mInputNominalLatencyUSec;
    369     uint32_t vcompDelay = mOwnerHAL.getVideoDelayCompUsec();
    370 
    371     if (uSecLatency < vcompDelay)
    372         return 0;
    373 
    374     return ((uSecLatency - vcompDelay) / 1000);
    375 }
    376 
    377 // Used to implement get_presentation_position() for Audio HAL.
    378 // According to the prototype in audio.h, the frame count should not get
    379 // reset on standby().
    380 status_t AudioStreamOut::getPresentationPosition(uint64_t *frames,
    381         struct timespec *timestamp)
    382 {
    383     Mutex::Autolock _l(mRoutingLock);
    384     status_t result = -ENODEV;
    385     // The presentation timestamp should be the same for all devices.
    386     // Also Molly only has one output device at the moment.
    387     // So just use the first one in the list.
    388     if (!mPhysOutputs.isEmpty()) {
    389         const unsigned int kInsaneAvail = 10 * 48000;
    390         unsigned int avail = 0;
    391         sp<AudioOutput> audioOutput = mPhysOutputs.itemAt(0);
    392         if (audioOutput->getHardwareTimestamp(&avail, timestamp) == 0) {
    393             if (avail < kInsaneAvail) {
    394                 // FIXME av sync fudge factor
    395                 // Use a fudge factor to account for hidden buffering in the
    396                 // HDMI output path. This is a hack until we can determine the
    397                 // actual buffer sizes.
    398                 // Increasing kFudgeMSec will move the audio earlier in
    399                 // relation to the video.
    400                 const int kFudgeMSec = 50;
    401                 int fudgeFrames = kFudgeMSec * sampleRate() / 1000;
    402 
    403                 // Scale the frames in the driver because it might be running at
    404                 // a higher rate for EAC3.
    405                 int64_t framesInDriverBuffer =
    406                     (int64_t)audioOutput->getKernelBufferSize() - (int64_t)avail;
    407                 framesInDriverBuffer = framesInDriverBuffer / getRateMultiplier();
    408 
    409                 int64_t pendingFrames = framesInDriverBuffer + fudgeFrames;
    410                 int64_t signedFrames = mFramesPresented - pendingFrames;
    411                 if (pendingFrames < 0) {
    412                     ALOGE("getPresentationPosition: negative pendingFrames = %lld",
    413                         pendingFrames);
    414                 } else if (signedFrames < 0) {
    415                     ALOGI("getPresentationPosition: playing silent preroll"
    416                         ", mFramesPresented = %llu, pendingFrames = %lld",
    417                         mFramesPresented, pendingFrames);
    418                 } else {
    419 #if HAL_PRINT_TIMESTAMP_CSV
    420                     // Print comma separated values for spreadsheet analysis.
    421                     uint64_t nanos = (((uint64_t)timestamp->tv_sec) * 1000000000L)
    422                             + timestamp->tv_nsec;
    423                     ALOGI("getPresentationPosition, %lld, %4u, %lld, %llu",
    424                             mFramesPresented, avail, signedFrames, nanos);
    425 #endif
    426                     *frames = (uint64_t) signedFrames;
    427                     result = NO_ERROR;
    428                 }
    429             } else {
    430                 ALOGE("getPresentationPosition: avail too large = %u", avail);
    431             }
    432         } else {
    433             ALOGE("getPresentationPosition: getHardwareTimestamp returned non-zero");
    434         }
    435     } else {
    436         ALOGVV("getPresentationPosition: no physical outputs! This HAL is inactive!");
    437     }
    438     return result;
    439 }
    440 
    441 status_t AudioStreamOut::getRenderPosition(__unused uint32_t *dspFrames)
    442 {
    443     if (dspFrames == NULL) {
    444         return -EINVAL;
    445     }
    446     if (mPhysOutputs.isEmpty()) {
    447         *dspFrames = 0;
    448         return -ENODEV;
    449     }
    450     *dspFrames = (uint32_t) mFramesRendered;
    451     return NO_ERROR;
    452 }
    453 
    454 void AudioStreamOut::updateTargetOutputs()
    455 {
    456     Mutex::Autolock _l(mRoutingLock);
    457 
    458     AudioOutputList::iterator I;
    459     uint32_t cur_outputs = 0;
    460 
    461     for (I = mPhysOutputs.begin(); I != mPhysOutputs.end(); ++I)
    462         cur_outputs |= (*I)->devMask();
    463 
    464     if (cur_outputs == mTgtDevices)
    465         return;
    466 
    467     uint32_t outputsToObtain  = mTgtDevices & ~cur_outputs;
    468     uint32_t outputsToRelease = cur_outputs & ~mTgtDevices;
    469 
    470     // Start by releasing any outputs we should no longer have back to the HAL.
    471     if (outputsToRelease) {
    472 
    473         I = mPhysOutputs.begin();
    474         while (I != mPhysOutputs.end()) {
    475             if (!(outputsToRelease & (*I)->devMask())) {
    476                 ++I;
    477                 continue;
    478             }
    479 
    480             outputsToRelease &= ~((*I)->devMask());
    481             mOwnerHAL.releaseOutput(*this, *I);
    482             I = mPhysOutputs.erase(I);
    483         }
    484     }
    485 
    486     if (outputsToRelease) {
    487         ALOGW("Bookkeeping error!  Still have outputs to release (%08x), but"
    488               " none of them appear to be in the mPhysOutputs list!",
    489               outputsToRelease);
    490     }
    491 
    492     // Now attempt to obtain any outputs we should be using, but are not
    493     // currently.
    494     if (outputsToObtain) {
    495         uint32_t mask;
    496 
    497         // Buffer configuration may need updating now that we have decoded
    498         // the start of a stream. For example, EAC3, needs 4X sampleRate.
    499         updateInputNums();
    500 
    501         for (mask = 0x1; outputsToObtain; mask <<= 1) {
    502             if (!(mask & outputsToObtain))
    503                 continue;
    504 
    505             sp<AudioOutput> newOutput;
    506             status_t res;
    507 
    508             res = mOwnerHAL.obtainOutput(*this, mask, &newOutput);
    509             outputsToObtain &= ~mask;
    510 
    511             if (OK != res) {
    512                 // If we get an error back from obtain output, it means that
    513                 // something went really wrong at a lower level (probably failed
    514                 // to open the driver).  We should not try to obtain this output
    515                 // again, at least until the next routing change.
    516                 ALOGW("Failed to obtain output %08x for %s audio stream out."
    517                       " (res %d)", mask, getName(), res);
    518                 mTgtDevices &= ~mask;
    519                 continue;
    520             }
    521 
    522             if (newOutput != NULL) {
    523                 // If we actually got an output, go ahead and add it to our list
    524                 // of physical outputs.  The rest of the system will handle
    525                 // starting it up.  If we didn't get an output, but also go no
    526                 // error code, it just means that the output is currently busy
    527                 // and should become available soon.
    528                 ALOGI("updateTargetOutputs: adding output back to mPhysOutputs");
    529                 mPhysOutputs.push_back(newOutput);
    530             }
    531         }
    532     }
    533 }
    534 
    535 void AudioStreamOut::adjustOutputs(int64_t maxTime)
    536 {
    537     AudioOutputList::iterator I;
    538 
    539     // Check to see if any outputs are active and see what their buffer levels
    540     // are.
    541     for (I = mPhysOutputs.begin(); I != mPhysOutputs.end(); ++I) {
    542         if ((*I)->getState() == AudioOutput::DMA_START) {
    543             int64_t lastWriteTS = (*I)->getLastNextWriteTS();
    544             int64_t padAmt;
    545 
    546             mLocalTimeToFrames.a_zero = lastWriteTS;
    547             mLocalTimeToFrames.b_zero = 0;
    548             if (mLocalTimeToFrames.doForwardTransform(maxTime,
    549                                                       &padAmt)) {
    550                 (*I)->adjustDelay(((int32_t)padAmt));
    551             }
    552         }
    553     }
    554 }
    555 
    556 ssize_t AudioStreamOut::write(const void* buffer, size_t bytes)
    557 {
    558     uint8_t *data = (uint8_t *)buffer;
    559     ALOGVV("AudioStreamOut::write(%u)   0x%02X, 0x%02X, 0x%02X, 0x%02X,"
    560           " 0x%02X, 0x%02X, 0x%02X, 0x%02X,"
    561           " 0x%02X, 0x%02X, 0x%02X, 0x%02X,"
    562           " 0x%02X, 0x%02X, 0x%02X, 0x%02X ====",
    563         bytes, data[0], data[1], data[2], data[3],
    564         data[4], data[5], data[6], data[7],
    565         data[8], data[9], data[10], data[11],
    566         data[12], data[13], data[14], data[15]
    567         );
    568     if (mIsEncoded) {
    569         return mSPDIFEncoder.write(buffer, bytes);
    570     } else {
    571         return writeInternal(buffer, bytes);
    572     }
    573 }
    574 
    575 ssize_t AudioStreamOut::writeInternal(const void* buffer, size_t bytes)
    576 {
    577     uint8_t *data = (uint8_t *)buffer;
    578     ALOGVV("AudioStreamOut::write_l(%u) 0x%02X, 0x%02X, 0x%02X, 0x%02X,"
    579           " 0x%02X, 0x%02X, 0x%02X, 0x%02X,"
    580           " 0x%02X, 0x%02X, 0x%02X, 0x%02X,"
    581           " 0x%02X, 0x%02X, 0x%02X, 0x%02X",
    582         bytes, data[0], data[1], data[2], data[3],
    583         data[4], data[5], data[6], data[7],
    584         data[8], data[9], data[10], data[11],
    585         data[12], data[13], data[14], data[15]
    586         );
    587 
    588     // Note: no lock is obtained here.  Calls to write and getNextWriteTimestamp
    589     // happen only on the AudioFlinger mixer thread which owns this particular
    590     // output stream, so there is no need to worry that there will be two
    591     // threads in this instance method concurrently.
    592     //
    593     // In addition, only calls to write change the contents of the mPhysOutputs
    594     // collection (during the call to updateTargetOutputs).  updateTargetOutputs
    595     // will hold the routing lock during the operation, as should any reader of
    596     // mPhysOutputs, unless the reader is a call to write or
    597     // getNextWriteTimestamp (we know that it is safe for write and gnwt to read
    598     // the collection because the only collection mutator is the same thread
    599     // which calls write and gnwt).
    600 
    601     // If the stream is in standby, then the first write should bring it out
    602     // of standby
    603     if (mInStandby) {
    604         mOwnerHAL.standbyStatusUpdate(false, mIsMCOutput);
    605         mInStandby = false;
    606     }
    607 
    608     updateTargetOutputs();
    609 
    610     // If any of our outputs is in the PRIMED state when ::write is called, it
    611     // means one of two things.  First, it could be that the DMA output really
    612     // has not started yet.  This is odd, but certainly not impossible.  The
    613     // other possibility is that AudioFlinger is in its silence-pushing mode and
    614     // is not calling getNextWriteTimestamp.  After an output is primed, its in
    615     // GNWTS where the amt of padding to compensate for different DMA start
    616     // times is taken into account.  Go ahead and force a call to GNWTS, just to
    617     // be certain that we have checked recently and are not stuck in silence
    618     // fill mode.  Failure to do this will cause the AudioOutput state machine
    619     // to eventually give up on DMA starting and reset the output over and over
    620     // again (spamming the log and producing general confusion).
    621     //
    622     // While we are in the process of checking our various output states, check
    623     // to see if any outputs have made it to the ACTIVE state.  Pass this
    624     // information along to the call to processOneChunk.  If any of our outputs
    625     // are waiting to be primed while other outputs have made it to steady
    626     // state, we need to change our priming behavior slightly.  Instead of
    627     // filling an output's buffer completely, we want to fill it to slightly
    628     // less than full and let the adjustDelay mechanism take care of the rest.
    629     //
    630     // Failure to do this during steady state operation will almost certainly
    631     // lead to the new output being over-filled relative to the other outputs
    632     // causing it to be slightly out of sync.
    633     AudioOutputList::iterator I;
    634     bool checkDMAStart = false;
    635     bool hasActiveOutputs = false;
    636     for (I = mPhysOutputs.begin(); I != mPhysOutputs.end(); ++I) {
    637         if (AudioOutput::PRIMED == (*I)->getState())
    638             checkDMAStart = true;
    639 
    640         if ((*I)->getState() == AudioOutput::ACTIVE)
    641             hasActiveOutputs = true;
    642     }
    643 
    644     if (checkDMAStart) {
    645         int64_t junk;
    646         getNextWriteTimestamp_internal(&junk);
    647     }
    648 
    649     // We always call processOneChunk on the outputs, as it is the
    650     // tick for their state machines.
    651     for (I = mPhysOutputs.begin(); I != mPhysOutputs.end(); ++I) {
    652         (*I)->processOneChunk((uint8_t *)buffer, bytes, hasActiveOutputs);
    653     }
    654 
    655     // If we don't actually have any physical outputs to write to, just sleep
    656     // for the proper amt of time in order to simulate the throttle that writing
    657     // to the hardware would impose.
    658     finishedWriteOp(bytes / getBytesPerOutputFrame(), (0 == mPhysOutputs.size()));
    659 
    660     return static_cast<ssize_t>(bytes);
    661 }
    662 
    663 status_t AudioStreamOut::getNextWriteTimestamp(int64_t *timestamp)
    664 {
    665     return getNextWriteTimestamp_internal(timestamp);
    666 }
    667 
    668 status_t AudioStreamOut::getNextWriteTimestamp_internal(
    669         int64_t *timestamp)
    670 {
    671     int64_t max_time = LLONG_MIN;
    672     bool    max_time_valid = false;
    673     bool    need_adjust = false;
    674 
    675     // Across all of our physical outputs, figure out the max time when
    676     // a write operation will hit the speakers.  Assume that if an
    677     // output cannot answer the question, its because it has never
    678     // started or because it has recently underflowed and needs to be
    679     // restarted.  If this is the case, we will need to prime the
    680     // pipeline with a chunk's worth of data before proceeding.
    681     // If any of the outputs indicate a discontinuity (meaning that the
    682     // DMA start time was valid and is now invalid, or was and is valid
    683     // but was different from before; almost certainly caused by a low
    684     // level underfow), then just stop now.  We will need to reset and
    685     // re-prime all of the outputs in order to make certain that the
    686     // lead-times on all of the outputs match.
    687 
    688     AudioOutputList::iterator I;
    689     bool discon = false;
    690 
    691     // Find the largest next write timestamp. The goal is to make EVERY
    692     // output have the same value, but we also need this to pass back
    693     // up the layers.
    694     for (I = mPhysOutputs.begin(); I != mPhysOutputs.end(); ++I) {
    695         int64_t tmp;
    696         if (OK == (*I)->getNextWriteTimestamp(&tmp, &discon)) {
    697             if (!max_time_valid || (max_time < tmp)) {
    698                 max_time = tmp;
    699                 max_time_valid = true;
    700             }
    701         }
    702     }
    703 
    704     // Check the state of each output and determine if we need to align them.
    705     // Make sure to do this after we have called each outputs'
    706     // getNextWriteTimestamp as the transition from PRIMED to DMA_START happens
    707     // there.
    708     for (I = mPhysOutputs.begin(); I != mPhysOutputs.end(); ++I) {
    709         if ((*I)->getState() == AudioOutput::DMA_START) {
    710             need_adjust = true;
    711             break;
    712         }
    713     }
    714 
    715     // At this point, if we still have not found at least one output
    716     // who knows when their data is going to hit the speakers, then we
    717     // just can't answer the getNextWriteTimestamp question and we
    718     // should give up.
    719     if (!max_time_valid) {
    720         return INVALID_OPERATION;
    721     }
    722 
    723     // Stuff silence into the non-aligned outputs so that the effective
    724     // timestamp is the same for all the outputs.
    725     if (need_adjust)
    726         adjustOutputs(max_time);
    727 
    728     // We are done. The time at which the next written audio should
    729     // hit the speakers is just max_time plus the maximum amt of delay
    730     // compensation in the system.
    731     *timestamp = max_time;
    732     return OK;
    733 }
    734 
    735 #define DUMP(a...) \
    736     snprintf(buffer, SIZE, a); \
    737     buffer[SIZE - 1] = 0; \
    738     result.append(buffer);
    739 #define B2STR(b) b ? "true" : "false"
    740 
    741 status_t AudioStreamOut::dump(int fd)
    742 {
    743     const size_t SIZE = 256;
    744     char buffer[SIZE];
    745     String8 result;
    746     DUMP("\n%s AudioStreamOut::dump\n", getName());
    747     DUMP("\tsample rate            : %d\n", sampleRate());
    748     DUMP("\tbuffer size            : %d\n", bufferSize());
    749     DUMP("\tchannel mask           : 0x%04x\n", chanMask());
    750     DUMP("\tformat                 : %d\n", format());
    751     DUMP("\tdevice mask            : 0x%04x\n", mTgtDevices);
    752     DUMP("\tIn standby             : %s\n", mInStandby? "yes" : "no");
    753 
    754     mRoutingLock.lock();
    755     AudioOutputList outSnapshot(mPhysOutputs);
    756     mRoutingLock.unlock();
    757 
    758     AudioOutputList::iterator I;
    759     for (I = outSnapshot.begin(); I != outSnapshot.end(); ++I)
    760         (*I)->dump(result);
    761 
    762     ::write(fd, result.string(), result.size());
    763 
    764     return NO_ERROR;
    765 }
    766 
    767 #undef B2STR
    768 #undef DUMP
    769 
    770 }  // android
    771