Home | History | Annotate | Download | only in crypto
      1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "net/quic/crypto/strike_register.h"
      6 
      7 #include "base/logging.h"
      8 
      9 using std::pair;
     10 using std::set;
     11 using std::vector;
     12 
     13 namespace net {
     14 
     15 // static
     16 const uint32 StrikeRegister::kExternalNodeSize = 24;
     17 // static
     18 const uint32 StrikeRegister::kNil = (1 << 31) | 1;
     19 // static
     20 const uint32 StrikeRegister::kExternalFlag = 1 << 23;
     21 
     22 // InternalNode represents a non-leaf node in the critbit tree. See the comment
     23 // in the .h file for details.
     24 class StrikeRegister::InternalNode {
     25  public:
     26   void SetChild(unsigned direction, uint32 child) {
     27     data_[direction] = (data_[direction] & 0xff) | (child << 8);
     28   }
     29 
     30   void SetCritByte(uint8 critbyte) {
     31     data_[0] &= 0xffffff00;
     32     data_[0] |= critbyte;
     33   }
     34 
     35   void SetOtherBits(uint8 otherbits) {
     36     data_[1] &= 0xffffff00;
     37     data_[1] |= otherbits;
     38   }
     39 
     40   void SetNextPtr(uint32 next) { data_[0] = next; }
     41 
     42   uint32 next() const { return data_[0]; }
     43 
     44   uint32 child(unsigned n) const { return data_[n] >> 8; }
     45 
     46   uint8 critbyte() const { return data_[0]; }
     47 
     48   uint8 otherbits() const { return data_[1]; }
     49 
     50   // These bytes are organised thus:
     51   //   <24 bits> left child
     52   //   <8 bits> crit-byte
     53   //   <24 bits> right child
     54   //   <8 bits> other-bits
     55   uint32 data_[2];
     56 };
     57 
     58 // kCreationTimeFromInternalEpoch contains the number of seconds between the
     59 // start of the internal epoch and the creation time. This allows us
     60 // to consider times that are before the creation time.
     61 static const uint32 kCreationTimeFromInternalEpoch = 63115200.0;  // 2 years.
     62 
     63 void StrikeRegister::ValidateStrikeRegisterConfig(unsigned max_entries) {
     64   // We only have 23 bits of index available.
     65   CHECK_LT(max_entries, 1u << 23);
     66   CHECK_GT(max_entries, 1u);           // There must be at least two entries.
     67   CHECK_EQ(sizeof(InternalNode), 8u);  // in case of compiler changes.
     68 }
     69 
     70 StrikeRegister::StrikeRegister(unsigned max_entries,
     71                                uint32 current_time,
     72                                uint32 window_secs,
     73                                const uint8 orbit[8],
     74                                StartupType startup)
     75     : max_entries_(max_entries),
     76       window_secs_(window_secs),
     77       internal_epoch_(current_time > kCreationTimeFromInternalEpoch
     78                           ? current_time - kCreationTimeFromInternalEpoch
     79                           : 0),
     80       // The horizon is initially set |window_secs| into the future because, if
     81       // we just crashed, then we may have accepted nonces in the span
     82       // [current_time...current_time+window_secs) and so we conservatively
     83       // reject the whole timespan unless |startup| tells us otherwise.
     84       horizon_(ExternalTimeToInternal(current_time) + window_secs),
     85       horizon_valid_(startup == DENY_REQUESTS_AT_STARTUP) {
     86   memcpy(orbit_, orbit, sizeof(orbit_));
     87 
     88   ValidateStrikeRegisterConfig(max_entries);
     89   internal_nodes_ = new InternalNode[max_entries];
     90   external_nodes_.reset(new uint8[kExternalNodeSize * max_entries]);
     91 
     92   Reset();
     93 }
     94 
     95 StrikeRegister::~StrikeRegister() { delete[] internal_nodes_; }
     96 
     97 void StrikeRegister::Reset() {
     98   // Thread a free list through all of the internal nodes.
     99   internal_node_free_head_ = 0;
    100   for (unsigned i = 0; i < max_entries_ - 1; i++)
    101     internal_nodes_[i].SetNextPtr(i + 1);
    102   internal_nodes_[max_entries_ - 1].SetNextPtr(kNil);
    103 
    104   // Also thread a free list through the external nodes.
    105   external_node_free_head_ = 0;
    106   for (unsigned i = 0; i < max_entries_ - 1; i++)
    107     external_node_next_ptr(i) = i + 1;
    108   external_node_next_ptr(max_entries_ - 1) = kNil;
    109 
    110   // This is the root of the tree.
    111   internal_node_head_ = kNil;
    112 }
    113 
    114 bool StrikeRegister::Insert(const uint8 nonce[32],
    115                             const uint32 current_time_external) {
    116   const uint32 current_time = ExternalTimeToInternal(current_time_external);
    117 
    118   // Check to see if the orbit is correct.
    119   if (memcmp(nonce + sizeof(current_time), orbit_, sizeof(orbit_))) {
    120     return false;
    121   }
    122   const uint32 nonce_time = ExternalTimeToInternal(TimeFromBytes(nonce));
    123   // We have dropped one or more nonces with a time value of |horizon_|, so
    124   // we have to reject anything with a timestamp less than or equal to that.
    125   if (horizon_valid_ && nonce_time <= horizon_) {
    126     return false;
    127   }
    128 
    129   // Check that the timestamp is in the current window.
    130   if ((current_time > window_secs_ &&
    131        nonce_time < (current_time - window_secs_)) ||
    132       nonce_time > (current_time + window_secs_)) {
    133     return false;
    134   }
    135 
    136   // We strip the orbit out of the nonce.
    137   uint8 value[24];
    138   memcpy(value, &nonce_time, sizeof(nonce_time));
    139   memcpy(value + sizeof(nonce_time),
    140          nonce + sizeof(nonce_time) + sizeof(orbit_),
    141          sizeof(value) - sizeof(nonce_time));
    142 
    143   // Find the best match to |value| in the crit-bit tree. The best match is
    144   // simply the value which /could/ match |value|, if any does, so we still
    145   // need a memcmp to check.
    146   uint32 best_match_index = BestMatch(value);
    147   if (best_match_index == kNil) {
    148     // Empty tree. Just insert the new value at the root.
    149     uint32 index = GetFreeExternalNode();
    150     memcpy(external_node(index), value, sizeof(value));
    151     internal_node_head_ = (index | kExternalFlag) << 8;
    152     return true;
    153   }
    154 
    155   const uint8* best_match = external_node(best_match_index);
    156   if (memcmp(best_match, value, sizeof(value)) == 0) {
    157     // We found the value in the tree.
    158     return false;
    159   }
    160 
    161   // We are going to insert a new entry into the tree, so get the nodes now.
    162   uint32 internal_node_index = GetFreeInternalNode();
    163   uint32 external_node_index = GetFreeExternalNode();
    164 
    165   // If we just evicted the best match, then we have to try and match again.
    166   // We know that we didn't just empty the tree because we require that
    167   // max_entries_ >= 2. Also, we know that it doesn't match because, if it
    168   // did, it would have been returned previously.
    169   if (external_node_index == best_match_index) {
    170     best_match_index = BestMatch(value);
    171     best_match = external_node(best_match_index);
    172   }
    173 
    174   // Now we need to find the first bit where we differ from |best_match|.
    175   unsigned differing_byte;
    176   uint8 new_other_bits;
    177   for (differing_byte = 0; differing_byte < sizeof(value); differing_byte++) {
    178     new_other_bits = value[differing_byte] ^ best_match[differing_byte];
    179     if (new_other_bits) {
    180       break;
    181     }
    182   }
    183 
    184   // Once we have the XOR the of first differing byte in new_other_bits we need
    185   // to find the most significant differing bit. We could do this with a simple
    186   // for loop, testing bits 7..0. Instead we fold the bits so that we end up
    187   // with a byte where all the bits below the most significant one, are set.
    188   new_other_bits |= new_other_bits >> 1;
    189   new_other_bits |= new_other_bits >> 2;
    190   new_other_bits |= new_other_bits >> 4;
    191   // Now this bit trick results in all the bits set, except the original
    192   // most-significant one.
    193   new_other_bits = (new_other_bits & ~(new_other_bits >> 1)) ^ 255;
    194 
    195   // Consider the effect of ORing against |new_other_bits|. If |value| did not
    196   // have the critical bit set, the result is the same as |new_other_bits|. If
    197   // it did, the result is all ones.
    198 
    199   unsigned newdirection;
    200   if ((new_other_bits | value[differing_byte]) == 0xff) {
    201     newdirection = 1;
    202   } else {
    203     newdirection = 0;
    204   }
    205 
    206   memcpy(external_node(external_node_index), value, sizeof(value));
    207   InternalNode* inode = &internal_nodes_[internal_node_index];
    208 
    209   inode->SetChild(newdirection, external_node_index | kExternalFlag);
    210   inode->SetCritByte(differing_byte);
    211   inode->SetOtherBits(new_other_bits);
    212 
    213   // |where_index| is a pointer to the uint32 which needs to be updated in
    214   // order to insert the new internal node into the tree. The internal nodes
    215   // store the child indexes in the top 24-bits of a 32-bit word and, to keep
    216   // the code simple, we define that |internal_node_head_| is organised the
    217   // same way.
    218   DCHECK_EQ(internal_node_head_ & 0xff, 0u);
    219   uint32* where_index = &internal_node_head_;
    220   while (((*where_index >> 8) & kExternalFlag) == 0) {
    221     InternalNode* node = &internal_nodes_[*where_index >> 8];
    222     if (node->critbyte() > differing_byte) {
    223       break;
    224     }
    225     if (node->critbyte() == differing_byte &&
    226         node->otherbits() > new_other_bits) {
    227       break;
    228     }
    229     if (node->critbyte() == differing_byte &&
    230         node->otherbits() == new_other_bits) {
    231       CHECK(false);
    232     }
    233 
    234     uint8 c = value[node->critbyte()];
    235     const int direction =
    236         (1 + static_cast<unsigned>(node->otherbits() | c)) >> 8;
    237     where_index = &node->data_[direction];
    238   }
    239 
    240   inode->SetChild(newdirection ^ 1, *where_index >> 8);
    241   *where_index = (*where_index & 0xff) | (internal_node_index << 8);
    242 
    243   return true;
    244 }
    245 
    246 const uint8* StrikeRegister::orbit() const {
    247   return orbit_;
    248 }
    249 
    250 void StrikeRegister::Validate() {
    251   set<uint32> free_internal_nodes;
    252   for (uint32 i = internal_node_free_head_; i != kNil;
    253        i = internal_nodes_[i].next()) {
    254     CHECK_LT(i, max_entries_);
    255     CHECK_EQ(free_internal_nodes.count(i), 0u);
    256     free_internal_nodes.insert(i);
    257   }
    258 
    259   set<uint32> free_external_nodes;
    260   for (uint32 i = external_node_free_head_; i != kNil;
    261        i = external_node_next_ptr(i)) {
    262     CHECK_LT(i, max_entries_);
    263     CHECK_EQ(free_external_nodes.count(i), 0u);
    264     free_external_nodes.insert(i);
    265   }
    266 
    267   set<uint32> used_external_nodes;
    268   set<uint32> used_internal_nodes;
    269 
    270   if (internal_node_head_ != kNil &&
    271       ((internal_node_head_ >> 8) & kExternalFlag) == 0) {
    272     vector<pair<unsigned, bool> > bits;
    273     ValidateTree(internal_node_head_ >> 8, -1, bits, free_internal_nodes,
    274                  free_external_nodes, &used_internal_nodes,
    275                  &used_external_nodes);
    276   }
    277 }
    278 
    279 // static
    280 uint32 StrikeRegister::TimeFromBytes(const uint8 d[4]) {
    281   return static_cast<uint32>(d[0]) << 24 |
    282          static_cast<uint32>(d[1]) << 16 |
    283          static_cast<uint32>(d[2]) << 8 |
    284          static_cast<uint32>(d[3]);
    285 }
    286 
    287 uint32 StrikeRegister::ExternalTimeToInternal(uint32 external_time) {
    288   return external_time - internal_epoch_;
    289 }
    290 
    291 uint32 StrikeRegister::BestMatch(const uint8 v[24]) const {
    292   if (internal_node_head_ == kNil) {
    293     return kNil;
    294   }
    295 
    296   uint32 next = internal_node_head_ >> 8;
    297   while ((next & kExternalFlag) == 0) {
    298     InternalNode* node = &internal_nodes_[next];
    299     uint8 b = v[node->critbyte()];
    300     unsigned direction =
    301         (1 + static_cast<unsigned>(node->otherbits() | b)) >> 8;
    302     next = node->child(direction);
    303   }
    304 
    305   return next & ~kExternalFlag;
    306 }
    307 
    308 uint32& StrikeRegister::external_node_next_ptr(unsigned i) {
    309   return *reinterpret_cast<uint32*>(&external_nodes_[i * kExternalNodeSize]);
    310 }
    311 
    312 uint8* StrikeRegister::external_node(unsigned i) {
    313   return &external_nodes_[i * kExternalNodeSize];
    314 }
    315 
    316 uint32 StrikeRegister::GetFreeExternalNode() {
    317   uint32 index = external_node_free_head_;
    318   if (index == kNil) {
    319     DropNode();
    320     return GetFreeExternalNode();
    321   }
    322 
    323   external_node_free_head_ = external_node_next_ptr(index);
    324   return index;
    325 }
    326 
    327 uint32 StrikeRegister::GetFreeInternalNode() {
    328   uint32 index = internal_node_free_head_;
    329   if (index == kNil) {
    330     DropNode();
    331     return GetFreeInternalNode();
    332   }
    333 
    334   internal_node_free_head_ = internal_nodes_[index].next();
    335   return index;
    336 }
    337 
    338 void StrikeRegister::DropNode() {
    339   // DropNode should never be called on an empty tree.
    340   DCHECK(internal_node_head_ != kNil);
    341 
    342   // An internal node in a crit-bit tree always has exactly two children.
    343   // This means that, if we are removing an external node (which is one of
    344   // those children), then we also need to remove an internal node. In order
    345   // to do that we keep pointers to the parent (wherep) and grandparent
    346   // (whereq) when walking down the tree.
    347 
    348   uint32 p = internal_node_head_ >> 8, *wherep = &internal_node_head_,
    349          *whereq = NULL;
    350   while ((p & kExternalFlag) == 0) {
    351     whereq = wherep;
    352     InternalNode* inode = &internal_nodes_[p];
    353     // We always go left, towards the smallest element, exploiting the fact
    354     // that the timestamp is big-endian and at the start of the value.
    355     wherep = &inode->data_[0];
    356     p = (*wherep) >> 8;
    357   }
    358 
    359   const uint32 ext_index = p & ~kExternalFlag;
    360   const uint8* ext_node = external_node(ext_index);
    361   horizon_ = TimeFromBytes(ext_node);
    362 
    363   if (!whereq) {
    364     // We are removing the last element in a tree.
    365     internal_node_head_ = kNil;
    366     FreeExternalNode(ext_index);
    367     return;
    368   }
    369 
    370   // |wherep| points to the left child pointer in the parent so we can add
    371   // one and dereference to get the right child.
    372   const uint32 other_child = wherep[1];
    373   FreeInternalNode((*whereq) >> 8);
    374   *whereq = (*whereq & 0xff) | (other_child & 0xffffff00);
    375   FreeExternalNode(ext_index);
    376 }
    377 
    378 void StrikeRegister::FreeExternalNode(uint32 index) {
    379   external_node_next_ptr(index) = external_node_free_head_;
    380   external_node_free_head_ = index;
    381 }
    382 
    383 void StrikeRegister::FreeInternalNode(uint32 index) {
    384   internal_nodes_[index].SetNextPtr(internal_node_free_head_);
    385   internal_node_free_head_ = index;
    386 }
    387 
    388 void StrikeRegister::ValidateTree(
    389     uint32 internal_node,
    390     int last_bit,
    391     const vector<pair<unsigned, bool> >& bits,
    392     const set<uint32>& free_internal_nodes,
    393     const set<uint32>& free_external_nodes,
    394     set<uint32>* used_internal_nodes,
    395     set<uint32>* used_external_nodes) {
    396   CHECK_LT(internal_node, max_entries_);
    397   const InternalNode* i = &internal_nodes_[internal_node];
    398   unsigned bit = 0;
    399   switch (i->otherbits()) {
    400     case 0xff & ~(1 << 7):
    401       bit = 0;
    402       break;
    403     case 0xff & ~(1 << 6):
    404       bit = 1;
    405       break;
    406     case 0xff & ~(1 << 5):
    407       bit = 2;
    408       break;
    409     case 0xff & ~(1 << 4):
    410       bit = 3;
    411       break;
    412     case 0xff & ~(1 << 3):
    413       bit = 4;
    414       break;
    415     case 0xff & ~(1 << 2):
    416       bit = 5;
    417       break;
    418     case 0xff & ~(1 << 1):
    419       bit = 6;
    420       break;
    421     case 0xff & ~1:
    422       bit = 7;
    423       break;
    424     default:
    425       CHECK(false);
    426   }
    427 
    428   bit += 8 * i->critbyte();
    429   if (last_bit > -1) {
    430     CHECK_GT(bit, static_cast<unsigned>(last_bit));
    431   }
    432 
    433   CHECK_EQ(free_internal_nodes.count(internal_node), 0u);
    434 
    435   for (unsigned child = 0; child < 2; child++) {
    436     if (i->child(child) & kExternalFlag) {
    437       uint32 ext = i->child(child) & ~kExternalFlag;
    438       CHECK_EQ(free_external_nodes.count(ext), 0u);
    439       CHECK_EQ(used_external_nodes->count(ext), 0u);
    440       used_external_nodes->insert(ext);
    441       const uint8* bytes = external_node(ext);
    442       for (vector<pair<unsigned, bool> >::const_iterator i = bits.begin();
    443            i != bits.end(); i++) {
    444         unsigned byte = i->first / 8;
    445         DCHECK_LE(byte, 0xffu);
    446         unsigned bit = i->first % 8;
    447         static const uint8 kMasks[8] =
    448             {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
    449         CHECK_EQ((bytes[byte] & kMasks[bit]) != 0, i->second);
    450       }
    451     } else {
    452       uint32 inter = i->child(child);
    453       vector<pair<unsigned, bool> > new_bits(bits);
    454       new_bits.push_back(pair<unsigned, bool>(bit, child != 0));
    455       CHECK_EQ(free_internal_nodes.count(inter), 0u);
    456       CHECK_EQ(used_internal_nodes->count(inter), 0u);
    457       used_internal_nodes->insert(inter);
    458       ValidateTree(inter, bit, bits, free_internal_nodes, free_external_nodes,
    459                    used_internal_nodes, used_external_nodes);
    460     }
    461   }
    462 }
    463 
    464 }  // namespace net
    465