Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // Platform-specific code for Win32.
      6 
      7 // Secure API functions are not available using MinGW with msvcrt.dll
      8 // on Windows XP. Make sure MINGW_HAS_SECURE_API is not defined to
      9 // disable definition of secure API functions in standard headers that
     10 // would conflict with our own implementation.
     11 #ifdef __MINGW32__
     12 #include <_mingw.h>
     13 #ifdef MINGW_HAS_SECURE_API
     14 #undef MINGW_HAS_SECURE_API
     15 #endif  // MINGW_HAS_SECURE_API
     16 #endif  // __MINGW32__
     17 
     18 #include "src/base/win32-headers.h"
     19 
     20 #include "src/v8.h"
     21 
     22 #include "src/isolate-inl.h"
     23 #include "src/platform.h"
     24 
     25 #ifdef _MSC_VER
     26 
     27 // Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
     28 // defined in strings.h.
     29 int strncasecmp(const char* s1, const char* s2, int n) {
     30   return _strnicmp(s1, s2, n);
     31 }
     32 
     33 #endif  // _MSC_VER
     34 
     35 
     36 // Extra functions for MinGW. Most of these are the _s functions which are in
     37 // the Microsoft Visual Studio C++ CRT.
     38 #ifdef __MINGW32__
     39 
     40 
     41 #ifndef __MINGW64_VERSION_MAJOR
     42 
     43 #define _TRUNCATE 0
     44 #define STRUNCATE 80
     45 
     46 inline void MemoryBarrier() {
     47   int barrier = 0;
     48   __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
     49 }
     50 
     51 #endif  // __MINGW64_VERSION_MAJOR
     52 
     53 
     54 int localtime_s(tm* out_tm, const time_t* time) {
     55   tm* posix_local_time_struct = localtime(time);
     56   if (posix_local_time_struct == NULL) return 1;
     57   *out_tm = *posix_local_time_struct;
     58   return 0;
     59 }
     60 
     61 
     62 int fopen_s(FILE** pFile, const char* filename, const char* mode) {
     63   *pFile = fopen(filename, mode);
     64   return *pFile != NULL ? 0 : 1;
     65 }
     66 
     67 int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
     68                  const char* format, va_list argptr) {
     69   ASSERT(count == _TRUNCATE);
     70   return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
     71 }
     72 
     73 
     74 int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
     75   CHECK(source != NULL);
     76   CHECK(dest != NULL);
     77   CHECK_GT(dest_size, 0);
     78 
     79   if (count == _TRUNCATE) {
     80     while (dest_size > 0 && *source != 0) {
     81       *(dest++) = *(source++);
     82       --dest_size;
     83     }
     84     if (dest_size == 0) {
     85       *(dest - 1) = 0;
     86       return STRUNCATE;
     87     }
     88   } else {
     89     while (dest_size > 0 && count > 0 && *source != 0) {
     90       *(dest++) = *(source++);
     91       --dest_size;
     92       --count;
     93     }
     94   }
     95   CHECK_GT(dest_size, 0);
     96   *dest = 0;
     97   return 0;
     98 }
     99 
    100 #endif  // __MINGW32__
    101 
    102 namespace v8 {
    103 namespace internal {
    104 
    105 intptr_t OS::MaxVirtualMemory() {
    106   return 0;
    107 }
    108 
    109 
    110 class TimezoneCache {
    111  public:
    112   TimezoneCache() : initialized_(false) { }
    113 
    114   void Clear() {
    115     initialized_ = false;
    116   }
    117 
    118   // Initialize timezone information. The timezone information is obtained from
    119   // windows. If we cannot get the timezone information we fall back to CET.
    120   void InitializeIfNeeded() {
    121     // Just return if timezone information has already been initialized.
    122     if (initialized_) return;
    123 
    124     // Initialize POSIX time zone data.
    125     _tzset();
    126     // Obtain timezone information from operating system.
    127     memset(&tzinfo_, 0, sizeof(tzinfo_));
    128     if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
    129       // If we cannot get timezone information we fall back to CET.
    130       tzinfo_.Bias = -60;
    131       tzinfo_.StandardDate.wMonth = 10;
    132       tzinfo_.StandardDate.wDay = 5;
    133       tzinfo_.StandardDate.wHour = 3;
    134       tzinfo_.StandardBias = 0;
    135       tzinfo_.DaylightDate.wMonth = 3;
    136       tzinfo_.DaylightDate.wDay = 5;
    137       tzinfo_.DaylightDate.wHour = 2;
    138       tzinfo_.DaylightBias = -60;
    139     }
    140 
    141     // Make standard and DST timezone names.
    142     WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
    143                         std_tz_name_, kTzNameSize, NULL, NULL);
    144     std_tz_name_[kTzNameSize - 1] = '\0';
    145     WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
    146                         dst_tz_name_, kTzNameSize, NULL, NULL);
    147     dst_tz_name_[kTzNameSize - 1] = '\0';
    148 
    149     // If OS returned empty string or resource id (like "@tzres.dll,-211")
    150     // simply guess the name from the UTC bias of the timezone.
    151     // To properly resolve the resource identifier requires a library load,
    152     // which is not possible in a sandbox.
    153     if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
    154       OS::SNPrintF(std_tz_name_, kTzNameSize - 1,
    155                    "%s Standard Time",
    156                    GuessTimezoneNameFromBias(tzinfo_.Bias));
    157     }
    158     if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
    159       OS::SNPrintF(dst_tz_name_, kTzNameSize - 1,
    160                    "%s Daylight Time",
    161                    GuessTimezoneNameFromBias(tzinfo_.Bias));
    162     }
    163     // Timezone information initialized.
    164     initialized_ = true;
    165   }
    166 
    167   // Guess the name of the timezone from the bias.
    168   // The guess is very biased towards the northern hemisphere.
    169   const char* GuessTimezoneNameFromBias(int bias) {
    170     static const int kHour = 60;
    171     switch (-bias) {
    172       case -9*kHour: return "Alaska";
    173       case -8*kHour: return "Pacific";
    174       case -7*kHour: return "Mountain";
    175       case -6*kHour: return "Central";
    176       case -5*kHour: return "Eastern";
    177       case -4*kHour: return "Atlantic";
    178       case  0*kHour: return "GMT";
    179       case +1*kHour: return "Central Europe";
    180       case +2*kHour: return "Eastern Europe";
    181       case +3*kHour: return "Russia";
    182       case +5*kHour + 30: return "India";
    183       case +8*kHour: return "China";
    184       case +9*kHour: return "Japan";
    185       case +12*kHour: return "New Zealand";
    186       default: return "Local";
    187     }
    188   }
    189 
    190 
    191  private:
    192   static const int kTzNameSize = 128;
    193   bool initialized_;
    194   char std_tz_name_[kTzNameSize];
    195   char dst_tz_name_[kTzNameSize];
    196   TIME_ZONE_INFORMATION tzinfo_;
    197   friend class Win32Time;
    198 };
    199 
    200 
    201 // ----------------------------------------------------------------------------
    202 // The Time class represents time on win32. A timestamp is represented as
    203 // a 64-bit integer in 100 nanoseconds since January 1, 1601 (UTC). JavaScript
    204 // timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
    205 // January 1, 1970.
    206 
    207 class Win32Time {
    208  public:
    209   // Constructors.
    210   Win32Time();
    211   explicit Win32Time(double jstime);
    212   Win32Time(int year, int mon, int day, int hour, int min, int sec);
    213 
    214   // Convert timestamp to JavaScript representation.
    215   double ToJSTime();
    216 
    217   // Set timestamp to current time.
    218   void SetToCurrentTime();
    219 
    220   // Returns the local timezone offset in milliseconds east of UTC. This is
    221   // the number of milliseconds you must add to UTC to get local time, i.e.
    222   // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
    223   // routine also takes into account whether daylight saving is effect
    224   // at the time.
    225   int64_t LocalOffset(TimezoneCache* cache);
    226 
    227   // Returns the daylight savings time offset for the time in milliseconds.
    228   int64_t DaylightSavingsOffset(TimezoneCache* cache);
    229 
    230   // Returns a string identifying the current timezone for the
    231   // timestamp taking into account daylight saving.
    232   char* LocalTimezone(TimezoneCache* cache);
    233 
    234  private:
    235   // Constants for time conversion.
    236   static const int64_t kTimeEpoc = 116444736000000000LL;
    237   static const int64_t kTimeScaler = 10000;
    238   static const int64_t kMsPerMinute = 60000;
    239 
    240   // Constants for timezone information.
    241   static const bool kShortTzNames = false;
    242 
    243   // Return whether or not daylight savings time is in effect at this time.
    244   bool InDST(TimezoneCache* cache);
    245 
    246   // Accessor for FILETIME representation.
    247   FILETIME& ft() { return time_.ft_; }
    248 
    249   // Accessor for integer representation.
    250   int64_t& t() { return time_.t_; }
    251 
    252   // Although win32 uses 64-bit integers for representing timestamps,
    253   // these are packed into a FILETIME structure. The FILETIME structure
    254   // is just a struct representing a 64-bit integer. The TimeStamp union
    255   // allows access to both a FILETIME and an integer representation of
    256   // the timestamp.
    257   union TimeStamp {
    258     FILETIME ft_;
    259     int64_t t_;
    260   };
    261 
    262   TimeStamp time_;
    263 };
    264 
    265 
    266 // Initialize timestamp to start of epoc.
    267 Win32Time::Win32Time() {
    268   t() = 0;
    269 }
    270 
    271 
    272 // Initialize timestamp from a JavaScript timestamp.
    273 Win32Time::Win32Time(double jstime) {
    274   t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
    275 }
    276 
    277 
    278 // Initialize timestamp from date/time components.
    279 Win32Time::Win32Time(int year, int mon, int day, int hour, int min, int sec) {
    280   SYSTEMTIME st;
    281   st.wYear = year;
    282   st.wMonth = mon;
    283   st.wDay = day;
    284   st.wHour = hour;
    285   st.wMinute = min;
    286   st.wSecond = sec;
    287   st.wMilliseconds = 0;
    288   SystemTimeToFileTime(&st, &ft());
    289 }
    290 
    291 
    292 // Convert timestamp to JavaScript timestamp.
    293 double Win32Time::ToJSTime() {
    294   return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
    295 }
    296 
    297 
    298 // Set timestamp to current time.
    299 void Win32Time::SetToCurrentTime() {
    300   // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
    301   // Because we're fast, we like fast timers which have at least a
    302   // 1ms resolution.
    303   //
    304   // timeGetTime() provides 1ms granularity when combined with
    305   // timeBeginPeriod().  If the host application for v8 wants fast
    306   // timers, it can use timeBeginPeriod to increase the resolution.
    307   //
    308   // Using timeGetTime() has a drawback because it is a 32bit value
    309   // and hence rolls-over every ~49days.
    310   //
    311   // To use the clock, we use GetSystemTimeAsFileTime as our base;
    312   // and then use timeGetTime to extrapolate current time from the
    313   // start time.  To deal with rollovers, we resync the clock
    314   // any time when more than kMaxClockElapsedTime has passed or
    315   // whenever timeGetTime creates a rollover.
    316 
    317   static bool initialized = false;
    318   static TimeStamp init_time;
    319   static DWORD init_ticks;
    320   static const int64_t kHundredNanosecondsPerSecond = 10000000;
    321   static const int64_t kMaxClockElapsedTime =
    322       60*kHundredNanosecondsPerSecond;  // 1 minute
    323 
    324   // If we are uninitialized, we need to resync the clock.
    325   bool needs_resync = !initialized;
    326 
    327   // Get the current time.
    328   TimeStamp time_now;
    329   GetSystemTimeAsFileTime(&time_now.ft_);
    330   DWORD ticks_now = timeGetTime();
    331 
    332   // Check if we need to resync due to clock rollover.
    333   needs_resync |= ticks_now < init_ticks;
    334 
    335   // Check if we need to resync due to elapsed time.
    336   needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
    337 
    338   // Check if we need to resync due to backwards time change.
    339   needs_resync |= time_now.t_ < init_time.t_;
    340 
    341   // Resync the clock if necessary.
    342   if (needs_resync) {
    343     GetSystemTimeAsFileTime(&init_time.ft_);
    344     init_ticks = ticks_now = timeGetTime();
    345     initialized = true;
    346   }
    347 
    348   // Finally, compute the actual time.  Why is this so hard.
    349   DWORD elapsed = ticks_now - init_ticks;
    350   this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
    351 }
    352 
    353 
    354 // Return the local timezone offset in milliseconds east of UTC. This
    355 // takes into account whether daylight saving is in effect at the time.
    356 // Only times in the 32-bit Unix range may be passed to this function.
    357 // Also, adding the time-zone offset to the input must not overflow.
    358 // The function EquivalentTime() in date.js guarantees this.
    359 int64_t Win32Time::LocalOffset(TimezoneCache* cache) {
    360   cache->InitializeIfNeeded();
    361 
    362   Win32Time rounded_to_second(*this);
    363   rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
    364       1000 * kTimeScaler;
    365   // Convert to local time using POSIX localtime function.
    366   // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
    367   // very slow.  Other browsers use localtime().
    368 
    369   // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
    370   // POSIX seconds past 1/1/1970 0:00:00.
    371   double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
    372   if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
    373     return 0;
    374   }
    375   // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
    376   time_t posix_time = static_cast<time_t>(unchecked_posix_time);
    377 
    378   // Convert to local time, as struct with fields for day, hour, year, etc.
    379   tm posix_local_time_struct;
    380   if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
    381 
    382   if (posix_local_time_struct.tm_isdst > 0) {
    383     return (cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * -kMsPerMinute;
    384   } else if (posix_local_time_struct.tm_isdst == 0) {
    385     return (cache->tzinfo_.Bias + cache->tzinfo_.StandardBias) * -kMsPerMinute;
    386   } else {
    387     return cache->tzinfo_.Bias * -kMsPerMinute;
    388   }
    389 }
    390 
    391 
    392 // Return whether or not daylight savings time is in effect at this time.
    393 bool Win32Time::InDST(TimezoneCache* cache) {
    394   cache->InitializeIfNeeded();
    395 
    396   // Determine if DST is in effect at the specified time.
    397   bool in_dst = false;
    398   if (cache->tzinfo_.StandardDate.wMonth != 0 ||
    399       cache->tzinfo_.DaylightDate.wMonth != 0) {
    400     // Get the local timezone offset for the timestamp in milliseconds.
    401     int64_t offset = LocalOffset(cache);
    402 
    403     // Compute the offset for DST. The bias parameters in the timezone info
    404     // are specified in minutes. These must be converted to milliseconds.
    405     int64_t dstofs =
    406         -(cache->tzinfo_.Bias + cache->tzinfo_.DaylightBias) * kMsPerMinute;
    407 
    408     // If the local time offset equals the timezone bias plus the daylight
    409     // bias then DST is in effect.
    410     in_dst = offset == dstofs;
    411   }
    412 
    413   return in_dst;
    414 }
    415 
    416 
    417 // Return the daylight savings time offset for this time.
    418 int64_t Win32Time::DaylightSavingsOffset(TimezoneCache* cache) {
    419   return InDST(cache) ? 60 * kMsPerMinute : 0;
    420 }
    421 
    422 
    423 // Returns a string identifying the current timezone for the
    424 // timestamp taking into account daylight saving.
    425 char* Win32Time::LocalTimezone(TimezoneCache* cache) {
    426   // Return the standard or DST time zone name based on whether daylight
    427   // saving is in effect at the given time.
    428   return InDST(cache) ? cache->dst_tz_name_ : cache->std_tz_name_;
    429 }
    430 
    431 
    432 // Returns the accumulated user time for thread.
    433 int OS::GetUserTime(uint32_t* secs,  uint32_t* usecs) {
    434   FILETIME dummy;
    435   uint64_t usertime;
    436 
    437   // Get the amount of time that the thread has executed in user mode.
    438   if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
    439                       reinterpret_cast<FILETIME*>(&usertime))) return -1;
    440 
    441   // Adjust the resolution to micro-seconds.
    442   usertime /= 10;
    443 
    444   // Convert to seconds and microseconds
    445   *secs = static_cast<uint32_t>(usertime / 1000000);
    446   *usecs = static_cast<uint32_t>(usertime % 1000000);
    447   return 0;
    448 }
    449 
    450 
    451 // Returns current time as the number of milliseconds since
    452 // 00:00:00 UTC, January 1, 1970.
    453 double OS::TimeCurrentMillis() {
    454   return Time::Now().ToJsTime();
    455 }
    456 
    457 
    458 TimezoneCache* OS::CreateTimezoneCache() {
    459   return new TimezoneCache();
    460 }
    461 
    462 
    463 void OS::DisposeTimezoneCache(TimezoneCache* cache) {
    464   delete cache;
    465 }
    466 
    467 
    468 void OS::ClearTimezoneCache(TimezoneCache* cache) {
    469   cache->Clear();
    470 }
    471 
    472 
    473 // Returns a string identifying the current timezone taking into
    474 // account daylight saving.
    475 const char* OS::LocalTimezone(double time, TimezoneCache* cache) {
    476   return Win32Time(time).LocalTimezone(cache);
    477 }
    478 
    479 
    480 // Returns the local time offset in milliseconds east of UTC without
    481 // taking daylight savings time into account.
    482 double OS::LocalTimeOffset(TimezoneCache* cache) {
    483   // Use current time, rounded to the millisecond.
    484   Win32Time t(TimeCurrentMillis());
    485   // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
    486   return static_cast<double>(t.LocalOffset(cache) -
    487                              t.DaylightSavingsOffset(cache));
    488 }
    489 
    490 
    491 // Returns the daylight savings offset in milliseconds for the given
    492 // time.
    493 double OS::DaylightSavingsOffset(double time, TimezoneCache* cache) {
    494   int64_t offset = Win32Time(time).DaylightSavingsOffset(cache);
    495   return static_cast<double>(offset);
    496 }
    497 
    498 
    499 int OS::GetLastError() {
    500   return ::GetLastError();
    501 }
    502 
    503 
    504 int OS::GetCurrentProcessId() {
    505   return static_cast<int>(::GetCurrentProcessId());
    506 }
    507 
    508 
    509 // ----------------------------------------------------------------------------
    510 // Win32 console output.
    511 //
    512 // If a Win32 application is linked as a console application it has a normal
    513 // standard output and standard error. In this case normal printf works fine
    514 // for output. However, if the application is linked as a GUI application,
    515 // the process doesn't have a console, and therefore (debugging) output is lost.
    516 // This is the case if we are embedded in a windows program (like a browser).
    517 // In order to be able to get debug output in this case the the debugging
    518 // facility using OutputDebugString. This output goes to the active debugger
    519 // for the process (if any). Else the output can be monitored using DBMON.EXE.
    520 
    521 enum OutputMode {
    522   UNKNOWN,  // Output method has not yet been determined.
    523   CONSOLE,  // Output is written to stdout.
    524   ODS       // Output is written to debug facility.
    525 };
    526 
    527 static OutputMode output_mode = UNKNOWN;  // Current output mode.
    528 
    529 
    530 // Determine if the process has a console for output.
    531 static bool HasConsole() {
    532   // Only check the first time. Eventual race conditions are not a problem,
    533   // because all threads will eventually determine the same mode.
    534   if (output_mode == UNKNOWN) {
    535     // We cannot just check that the standard output is attached to a console
    536     // because this would fail if output is redirected to a file. Therefore we
    537     // say that a process does not have an output console if either the
    538     // standard output handle is invalid or its file type is unknown.
    539     if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
    540         GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
    541       output_mode = CONSOLE;
    542     else
    543       output_mode = ODS;
    544   }
    545   return output_mode == CONSOLE;
    546 }
    547 
    548 
    549 static void VPrintHelper(FILE* stream, const char* format, va_list args) {
    550   if ((stream == stdout || stream == stderr) && !HasConsole()) {
    551     // It is important to use safe print here in order to avoid
    552     // overflowing the buffer. We might truncate the output, but this
    553     // does not crash.
    554     char buffer[4096];
    555     OS::VSNPrintF(buffer, sizeof(buffer), format, args);
    556     OutputDebugStringA(buffer);
    557   } else {
    558     vfprintf(stream, format, args);
    559   }
    560 }
    561 
    562 
    563 FILE* OS::FOpen(const char* path, const char* mode) {
    564   FILE* result;
    565   if (fopen_s(&result, path, mode) == 0) {
    566     return result;
    567   } else {
    568     return NULL;
    569   }
    570 }
    571 
    572 
    573 bool OS::Remove(const char* path) {
    574   return (DeleteFileA(path) != 0);
    575 }
    576 
    577 
    578 FILE* OS::OpenTemporaryFile() {
    579   // tmpfile_s tries to use the root dir, don't use it.
    580   char tempPathBuffer[MAX_PATH];
    581   DWORD path_result = 0;
    582   path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
    583   if (path_result > MAX_PATH || path_result == 0) return NULL;
    584   UINT name_result = 0;
    585   char tempNameBuffer[MAX_PATH];
    586   name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
    587   if (name_result == 0) return NULL;
    588   FILE* result = FOpen(tempNameBuffer, "w+");  // Same mode as tmpfile uses.
    589   if (result != NULL) {
    590     Remove(tempNameBuffer);  // Delete on close.
    591   }
    592   return result;
    593 }
    594 
    595 
    596 // Open log file in binary mode to avoid /n -> /r/n conversion.
    597 const char* const OS::LogFileOpenMode = "wb";
    598 
    599 
    600 // Print (debug) message to console.
    601 void OS::Print(const char* format, ...) {
    602   va_list args;
    603   va_start(args, format);
    604   VPrint(format, args);
    605   va_end(args);
    606 }
    607 
    608 
    609 void OS::VPrint(const char* format, va_list args) {
    610   VPrintHelper(stdout, format, args);
    611 }
    612 
    613 
    614 void OS::FPrint(FILE* out, const char* format, ...) {
    615   va_list args;
    616   va_start(args, format);
    617   VFPrint(out, format, args);
    618   va_end(args);
    619 }
    620 
    621 
    622 void OS::VFPrint(FILE* out, const char* format, va_list args) {
    623   VPrintHelper(out, format, args);
    624 }
    625 
    626 
    627 // Print error message to console.
    628 void OS::PrintError(const char* format, ...) {
    629   va_list args;
    630   va_start(args, format);
    631   VPrintError(format, args);
    632   va_end(args);
    633 }
    634 
    635 
    636 void OS::VPrintError(const char* format, va_list args) {
    637   VPrintHelper(stderr, format, args);
    638 }
    639 
    640 
    641 int OS::SNPrintF(char* str, int length, const char* format, ...) {
    642   va_list args;
    643   va_start(args, format);
    644   int result = VSNPrintF(str, length, format, args);
    645   va_end(args);
    646   return result;
    647 }
    648 
    649 
    650 int OS::VSNPrintF(char* str, int length, const char* format, va_list args) {
    651   int n = _vsnprintf_s(str, length, _TRUNCATE, format, args);
    652   // Make sure to zero-terminate the string if the output was
    653   // truncated or if there was an error.
    654   if (n < 0 || n >= length) {
    655     if (length > 0)
    656       str[length - 1] = '\0';
    657     return -1;
    658   } else {
    659     return n;
    660   }
    661 }
    662 
    663 
    664 char* OS::StrChr(char* str, int c) {
    665   return const_cast<char*>(strchr(str, c));
    666 }
    667 
    668 
    669 void OS::StrNCpy(char* dest, int length, const char* src, size_t n) {
    670   // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
    671   size_t buffer_size = static_cast<size_t>(length);
    672   if (n + 1 > buffer_size)  // count for trailing '\0'
    673     n = _TRUNCATE;
    674   int result = strncpy_s(dest, length, src, n);
    675   USE(result);
    676   ASSERT(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
    677 }
    678 
    679 
    680 #undef _TRUNCATE
    681 #undef STRUNCATE
    682 
    683 
    684 // Get the system's page size used by VirtualAlloc() or the next power
    685 // of two. The reason for always returning a power of two is that the
    686 // rounding up in OS::Allocate expects that.
    687 static size_t GetPageSize() {
    688   static size_t page_size = 0;
    689   if (page_size == 0) {
    690     SYSTEM_INFO info;
    691     GetSystemInfo(&info);
    692     page_size = RoundUpToPowerOf2(info.dwPageSize);
    693   }
    694   return page_size;
    695 }
    696 
    697 
    698 // The allocation alignment is the guaranteed alignment for
    699 // VirtualAlloc'ed blocks of memory.
    700 size_t OS::AllocateAlignment() {
    701   static size_t allocate_alignment = 0;
    702   if (allocate_alignment == 0) {
    703     SYSTEM_INFO info;
    704     GetSystemInfo(&info);
    705     allocate_alignment = info.dwAllocationGranularity;
    706   }
    707   return allocate_alignment;
    708 }
    709 
    710 
    711 void* OS::GetRandomMmapAddr() {
    712   Isolate* isolate = Isolate::UncheckedCurrent();
    713   // Note that the current isolate isn't set up in a call path via
    714   // CpuFeatures::Probe. We don't care about randomization in this case because
    715   // the code page is immediately freed.
    716   if (isolate != NULL) {
    717     // The address range used to randomize RWX allocations in OS::Allocate
    718     // Try not to map pages into the default range that windows loads DLLs
    719     // Use a multiple of 64k to prevent committing unused memory.
    720     // Note: This does not guarantee RWX regions will be within the
    721     // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
    722 #ifdef V8_HOST_ARCH_64_BIT
    723     static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
    724     static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
    725 #else
    726     static const intptr_t kAllocationRandomAddressMin = 0x04000000;
    727     static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
    728 #endif
    729     uintptr_t address =
    730         (isolate->random_number_generator()->NextInt() << kPageSizeBits) |
    731         kAllocationRandomAddressMin;
    732     address &= kAllocationRandomAddressMax;
    733     return reinterpret_cast<void *>(address);
    734   }
    735   return NULL;
    736 }
    737 
    738 
    739 static void* RandomizedVirtualAlloc(size_t size, int action, int protection) {
    740   LPVOID base = NULL;
    741 
    742   if (protection == PAGE_EXECUTE_READWRITE || protection == PAGE_NOACCESS) {
    743     // For exectutable pages try and randomize the allocation address
    744     for (size_t attempts = 0; base == NULL && attempts < 3; ++attempts) {
    745       base = VirtualAlloc(OS::GetRandomMmapAddr(), size, action, protection);
    746     }
    747   }
    748 
    749   // After three attempts give up and let the OS find an address to use.
    750   if (base == NULL) base = VirtualAlloc(NULL, size, action, protection);
    751 
    752   return base;
    753 }
    754 
    755 
    756 void* OS::Allocate(const size_t requested,
    757                    size_t* allocated,
    758                    bool is_executable) {
    759   // VirtualAlloc rounds allocated size to page size automatically.
    760   size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
    761 
    762   // Windows XP SP2 allows Data Excution Prevention (DEP).
    763   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
    764 
    765   LPVOID mbase = RandomizedVirtualAlloc(msize,
    766                                         MEM_COMMIT | MEM_RESERVE,
    767                                         prot);
    768 
    769   if (mbase == NULL) return NULL;
    770 
    771   ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
    772 
    773   *allocated = msize;
    774   return mbase;
    775 }
    776 
    777 
    778 void OS::Free(void* address, const size_t size) {
    779   // TODO(1240712): VirtualFree has a return value which is ignored here.
    780   VirtualFree(address, 0, MEM_RELEASE);
    781   USE(size);
    782 }
    783 
    784 
    785 intptr_t OS::CommitPageSize() {
    786   return 4096;
    787 }
    788 
    789 
    790 void OS::ProtectCode(void* address, const size_t size) {
    791   DWORD old_protect;
    792   VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
    793 }
    794 
    795 
    796 void OS::Guard(void* address, const size_t size) {
    797   DWORD oldprotect;
    798   VirtualProtect(address, size, PAGE_NOACCESS, &oldprotect);
    799 }
    800 
    801 
    802 void OS::Sleep(int milliseconds) {
    803   ::Sleep(milliseconds);
    804 }
    805 
    806 
    807 void OS::Abort() {
    808   if (FLAG_hard_abort) {
    809     V8_IMMEDIATE_CRASH();
    810   }
    811   // Make the MSVCRT do a silent abort.
    812   raise(SIGABRT);
    813 }
    814 
    815 
    816 void OS::DebugBreak() {
    817 #ifdef _MSC_VER
    818   // To avoid Visual Studio runtime support the following code can be used
    819   // instead
    820   // __asm { int 3 }
    821   __debugbreak();
    822 #else
    823   ::DebugBreak();
    824 #endif
    825 }
    826 
    827 
    828 class Win32MemoryMappedFile : public OS::MemoryMappedFile {
    829  public:
    830   Win32MemoryMappedFile(HANDLE file,
    831                         HANDLE file_mapping,
    832                         void* memory,
    833                         int size)
    834       : file_(file),
    835         file_mapping_(file_mapping),
    836         memory_(memory),
    837         size_(size) { }
    838   virtual ~Win32MemoryMappedFile();
    839   virtual void* memory() { return memory_; }
    840   virtual int size() { return size_; }
    841  private:
    842   HANDLE file_;
    843   HANDLE file_mapping_;
    844   void* memory_;
    845   int size_;
    846 };
    847 
    848 
    849 OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
    850   // Open a physical file
    851   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
    852       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
    853   if (file == INVALID_HANDLE_VALUE) return NULL;
    854 
    855   int size = static_cast<int>(GetFileSize(file, NULL));
    856 
    857   // Create a file mapping for the physical file
    858   HANDLE file_mapping = CreateFileMapping(file, NULL,
    859       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
    860   if (file_mapping == NULL) return NULL;
    861 
    862   // Map a view of the file into memory
    863   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
    864   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
    865 }
    866 
    867 
    868 OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
    869     void* initial) {
    870   // Open a physical file
    871   HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
    872       FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
    873   if (file == NULL) return NULL;
    874   // Create a file mapping for the physical file
    875   HANDLE file_mapping = CreateFileMapping(file, NULL,
    876       PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
    877   if (file_mapping == NULL) return NULL;
    878   // Map a view of the file into memory
    879   void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
    880   if (memory) MemMove(memory, initial, size);
    881   return new Win32MemoryMappedFile(file, file_mapping, memory, size);
    882 }
    883 
    884 
    885 Win32MemoryMappedFile::~Win32MemoryMappedFile() {
    886   if (memory_ != NULL)
    887     UnmapViewOfFile(memory_);
    888   CloseHandle(file_mapping_);
    889   CloseHandle(file_);
    890 }
    891 
    892 
    893 // The following code loads functions defined in DbhHelp.h and TlHelp32.h
    894 // dynamically. This is to avoid being depending on dbghelp.dll and
    895 // tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
    896 // kernel32.dll at some point so loading functions defines in TlHelp32.h
    897 // dynamically might not be necessary any more - for some versions of Windows?).
    898 
    899 // Function pointers to functions dynamically loaded from dbghelp.dll.
    900 #define DBGHELP_FUNCTION_LIST(V)  \
    901   V(SymInitialize)                \
    902   V(SymGetOptions)                \
    903   V(SymSetOptions)                \
    904   V(SymGetSearchPath)             \
    905   V(SymLoadModule64)              \
    906   V(StackWalk64)                  \
    907   V(SymGetSymFromAddr64)          \
    908   V(SymGetLineFromAddr64)         \
    909   V(SymFunctionTableAccess64)     \
    910   V(SymGetModuleBase64)
    911 
    912 // Function pointers to functions dynamically loaded from dbghelp.dll.
    913 #define TLHELP32_FUNCTION_LIST(V)  \
    914   V(CreateToolhelp32Snapshot)      \
    915   V(Module32FirstW)                \
    916   V(Module32NextW)
    917 
    918 // Define the decoration to use for the type and variable name used for
    919 // dynamically loaded DLL function..
    920 #define DLL_FUNC_TYPE(name) _##name##_
    921 #define DLL_FUNC_VAR(name) _##name
    922 
    923 // Define the type for each dynamically loaded DLL function. The function
    924 // definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
    925 // from the Windows include files are redefined here to have the function
    926 // definitions to be as close to the ones in the original .h files as possible.
    927 #ifndef IN
    928 #define IN
    929 #endif
    930 #ifndef VOID
    931 #define VOID void
    932 #endif
    933 
    934 // DbgHelp isn't supported on MinGW yet
    935 #ifndef __MINGW32__
    936 // DbgHelp.h functions.
    937 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
    938                                                        IN PSTR UserSearchPath,
    939                                                        IN BOOL fInvadeProcess);
    940 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
    941 typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
    942 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
    943     IN HANDLE hProcess,
    944     OUT PSTR SearchPath,
    945     IN DWORD SearchPathLength);
    946 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
    947     IN HANDLE hProcess,
    948     IN HANDLE hFile,
    949     IN PSTR ImageName,
    950     IN PSTR ModuleName,
    951     IN DWORD64 BaseOfDll,
    952     IN DWORD SizeOfDll);
    953 typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
    954     DWORD MachineType,
    955     HANDLE hProcess,
    956     HANDLE hThread,
    957     LPSTACKFRAME64 StackFrame,
    958     PVOID ContextRecord,
    959     PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
    960     PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
    961     PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
    962     PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
    963 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
    964     IN HANDLE hProcess,
    965     IN DWORD64 qwAddr,
    966     OUT PDWORD64 pdwDisplacement,
    967     OUT PIMAGEHLP_SYMBOL64 Symbol);
    968 typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
    969     IN HANDLE hProcess,
    970     IN DWORD64 qwAddr,
    971     OUT PDWORD pdwDisplacement,
    972     OUT PIMAGEHLP_LINE64 Line64);
    973 // DbgHelp.h typedefs. Implementation found in dbghelp.dll.
    974 typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
    975     HANDLE hProcess,
    976     DWORD64 AddrBase);  // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
    977 typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
    978     HANDLE hProcess,
    979     DWORD64 AddrBase);  // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
    980 
    981 // TlHelp32.h functions.
    982 typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
    983     DWORD dwFlags,
    984     DWORD th32ProcessID);
    985 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
    986                                                         LPMODULEENTRY32W lpme);
    987 typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
    988                                                        LPMODULEENTRY32W lpme);
    989 
    990 #undef IN
    991 #undef VOID
    992 
    993 // Declare a variable for each dynamically loaded DLL function.
    994 #define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
    995 DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
    996 TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
    997 #undef DEF_DLL_FUNCTION
    998 
    999 // Load the functions. This function has a lot of "ugly" macros in order to
   1000 // keep down code duplication.
   1001 
   1002 static bool LoadDbgHelpAndTlHelp32() {
   1003   static bool dbghelp_loaded = false;
   1004 
   1005   if (dbghelp_loaded) return true;
   1006 
   1007   HMODULE module;
   1008 
   1009   // Load functions from the dbghelp.dll module.
   1010   module = LoadLibrary(TEXT("dbghelp.dll"));
   1011   if (module == NULL) {
   1012     return false;
   1013   }
   1014 
   1015 #define LOAD_DLL_FUNC(name)                                                 \
   1016   DLL_FUNC_VAR(name) =                                                      \
   1017       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
   1018 
   1019 DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
   1020 
   1021 #undef LOAD_DLL_FUNC
   1022 
   1023   // Load functions from the kernel32.dll module (the TlHelp32.h function used
   1024   // to be in tlhelp32.dll but are now moved to kernel32.dll).
   1025   module = LoadLibrary(TEXT("kernel32.dll"));
   1026   if (module == NULL) {
   1027     return false;
   1028   }
   1029 
   1030 #define LOAD_DLL_FUNC(name)                                                 \
   1031   DLL_FUNC_VAR(name) =                                                      \
   1032       reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
   1033 
   1034 TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
   1035 
   1036 #undef LOAD_DLL_FUNC
   1037 
   1038   // Check that all functions where loaded.
   1039   bool result =
   1040 #define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
   1041 
   1042 DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
   1043 TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
   1044 
   1045 #undef DLL_FUNC_LOADED
   1046   true;
   1047 
   1048   dbghelp_loaded = result;
   1049   return result;
   1050   // NOTE: The modules are never unloaded and will stay around until the
   1051   // application is closed.
   1052 }
   1053 
   1054 #undef DBGHELP_FUNCTION_LIST
   1055 #undef TLHELP32_FUNCTION_LIST
   1056 #undef DLL_FUNC_VAR
   1057 #undef DLL_FUNC_TYPE
   1058 
   1059 
   1060 // Load the symbols for generating stack traces.
   1061 static std::vector<OS::SharedLibraryAddress> LoadSymbols(
   1062     HANDLE process_handle) {
   1063   static std::vector<OS::SharedLibraryAddress> result;
   1064 
   1065   static bool symbols_loaded = false;
   1066 
   1067   if (symbols_loaded) return result;
   1068 
   1069   BOOL ok;
   1070 
   1071   // Initialize the symbol engine.
   1072   ok = _SymInitialize(process_handle,  // hProcess
   1073                       NULL,            // UserSearchPath
   1074                       false);          // fInvadeProcess
   1075   if (!ok) return result;
   1076 
   1077   DWORD options = _SymGetOptions();
   1078   options |= SYMOPT_LOAD_LINES;
   1079   options |= SYMOPT_FAIL_CRITICAL_ERRORS;
   1080   options = _SymSetOptions(options);
   1081 
   1082   char buf[OS::kStackWalkMaxNameLen] = {0};
   1083   ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
   1084   if (!ok) {
   1085     int err = GetLastError();
   1086     PrintF("%d\n", err);
   1087     return result;
   1088   }
   1089 
   1090   HANDLE snapshot = _CreateToolhelp32Snapshot(
   1091       TH32CS_SNAPMODULE,       // dwFlags
   1092       GetCurrentProcessId());  // th32ProcessId
   1093   if (snapshot == INVALID_HANDLE_VALUE) return result;
   1094   MODULEENTRY32W module_entry;
   1095   module_entry.dwSize = sizeof(module_entry);  // Set the size of the structure.
   1096   BOOL cont = _Module32FirstW(snapshot, &module_entry);
   1097   while (cont) {
   1098     DWORD64 base;
   1099     // NOTE the SymLoadModule64 function has the peculiarity of accepting a
   1100     // both unicode and ASCII strings even though the parameter is PSTR.
   1101     base = _SymLoadModule64(
   1102         process_handle,                                       // hProcess
   1103         0,                                                    // hFile
   1104         reinterpret_cast<PSTR>(module_entry.szExePath),       // ImageName
   1105         reinterpret_cast<PSTR>(module_entry.szModule),        // ModuleName
   1106         reinterpret_cast<DWORD64>(module_entry.modBaseAddr),  // BaseOfDll
   1107         module_entry.modBaseSize);                            // SizeOfDll
   1108     if (base == 0) {
   1109       int err = GetLastError();
   1110       if (err != ERROR_MOD_NOT_FOUND &&
   1111           err != ERROR_INVALID_HANDLE) {
   1112         result.clear();
   1113         return result;
   1114       }
   1115     }
   1116     int lib_name_length = WideCharToMultiByte(
   1117         CP_UTF8, 0, module_entry.szExePath, -1, NULL, 0, NULL, NULL);
   1118     std::string lib_name(lib_name_length, 0);
   1119     WideCharToMultiByte(CP_UTF8, 0, module_entry.szExePath, -1, &lib_name[0],
   1120                         lib_name_length, NULL, NULL);
   1121     result.push_back(OS::SharedLibraryAddress(
   1122         lib_name, reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
   1123         reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
   1124                                        module_entry.modBaseSize)));
   1125     cont = _Module32NextW(snapshot, &module_entry);
   1126   }
   1127   CloseHandle(snapshot);
   1128 
   1129   symbols_loaded = true;
   1130   return result;
   1131 }
   1132 
   1133 
   1134 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
   1135   // SharedLibraryEvents are logged when loading symbol information.
   1136   // Only the shared libraries loaded at the time of the call to
   1137   // GetSharedLibraryAddresses are logged.  DLLs loaded after
   1138   // initialization are not accounted for.
   1139   if (!LoadDbgHelpAndTlHelp32()) return std::vector<OS::SharedLibraryAddress>();
   1140   HANDLE process_handle = GetCurrentProcess();
   1141   return LoadSymbols(process_handle);
   1142 }
   1143 
   1144 
   1145 void OS::SignalCodeMovingGC() {
   1146 }
   1147 
   1148 
   1149 uint64_t OS::TotalPhysicalMemory() {
   1150   MEMORYSTATUSEX memory_info;
   1151   memory_info.dwLength = sizeof(memory_info);
   1152   if (!GlobalMemoryStatusEx(&memory_info)) {
   1153     UNREACHABLE();
   1154     return 0;
   1155   }
   1156 
   1157   return static_cast<uint64_t>(memory_info.ullTotalPhys);
   1158 }
   1159 
   1160 
   1161 #else  // __MINGW32__
   1162 std::vector<OS::SharedLibraryAddress> OS::GetSharedLibraryAddresses() {
   1163   return std::vector<OS::SharedLibraryAddress>();
   1164 }
   1165 
   1166 
   1167 void OS::SignalCodeMovingGC() { }
   1168 #endif  // __MINGW32__
   1169 
   1170 
   1171 int OS::NumberOfProcessorsOnline() {
   1172   SYSTEM_INFO info;
   1173   GetSystemInfo(&info);
   1174   return info.dwNumberOfProcessors;
   1175 }
   1176 
   1177 
   1178 double OS::nan_value() {
   1179 #ifdef _MSC_VER
   1180   // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
   1181   // in mask set, so value equals mask.
   1182   static const __int64 nanval = kQuietNaNMask;
   1183   return *reinterpret_cast<const double*>(&nanval);
   1184 #else  // _MSC_VER
   1185   return NAN;
   1186 #endif  // _MSC_VER
   1187 }
   1188 
   1189 
   1190 int OS::ActivationFrameAlignment() {
   1191 #ifdef _WIN64
   1192   return 16;  // Windows 64-bit ABI requires the stack to be 16-byte aligned.
   1193 #elif defined(__MINGW32__)
   1194   // With gcc 4.4 the tree vectorization optimizer can generate code
   1195   // that requires 16 byte alignment such as movdqa on x86.
   1196   return 16;
   1197 #else
   1198   return 8;  // Floating-point math runs faster with 8-byte alignment.
   1199 #endif
   1200 }
   1201 
   1202 
   1203 VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
   1204 
   1205 
   1206 VirtualMemory::VirtualMemory(size_t size)
   1207     : address_(ReserveRegion(size)), size_(size) { }
   1208 
   1209 
   1210 VirtualMemory::VirtualMemory(size_t size, size_t alignment)
   1211     : address_(NULL), size_(0) {
   1212   ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
   1213   size_t request_size = RoundUp(size + alignment,
   1214                                 static_cast<intptr_t>(OS::AllocateAlignment()));
   1215   void* address = ReserveRegion(request_size);
   1216   if (address == NULL) return;
   1217   Address base = RoundUp(static_cast<Address>(address), alignment);
   1218   // Try reducing the size by freeing and then reallocating a specific area.
   1219   bool result = ReleaseRegion(address, request_size);
   1220   USE(result);
   1221   ASSERT(result);
   1222   address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
   1223   if (address != NULL) {
   1224     request_size = size;
   1225     ASSERT(base == static_cast<Address>(address));
   1226   } else {
   1227     // Resizing failed, just go with a bigger area.
   1228     address = ReserveRegion(request_size);
   1229     if (address == NULL) return;
   1230   }
   1231   address_ = address;
   1232   size_ = request_size;
   1233 }
   1234 
   1235 
   1236 VirtualMemory::~VirtualMemory() {
   1237   if (IsReserved()) {
   1238     bool result = ReleaseRegion(address(), size());
   1239     ASSERT(result);
   1240     USE(result);
   1241   }
   1242 }
   1243 
   1244 
   1245 bool VirtualMemory::IsReserved() {
   1246   return address_ != NULL;
   1247 }
   1248 
   1249 
   1250 void VirtualMemory::Reset() {
   1251   address_ = NULL;
   1252   size_ = 0;
   1253 }
   1254 
   1255 
   1256 bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
   1257   return CommitRegion(address, size, is_executable);
   1258 }
   1259 
   1260 
   1261 bool VirtualMemory::Uncommit(void* address, size_t size) {
   1262   ASSERT(IsReserved());
   1263   return UncommitRegion(address, size);
   1264 }
   1265 
   1266 
   1267 bool VirtualMemory::Guard(void* address) {
   1268   if (NULL == VirtualAlloc(address,
   1269                            OS::CommitPageSize(),
   1270                            MEM_COMMIT,
   1271                            PAGE_NOACCESS)) {
   1272     return false;
   1273   }
   1274   return true;
   1275 }
   1276 
   1277 
   1278 void* VirtualMemory::ReserveRegion(size_t size) {
   1279   return RandomizedVirtualAlloc(size, MEM_RESERVE, PAGE_NOACCESS);
   1280 }
   1281 
   1282 
   1283 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
   1284   int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
   1285   if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
   1286     return false;
   1287   }
   1288   return true;
   1289 }
   1290 
   1291 
   1292 bool VirtualMemory::UncommitRegion(void* base, size_t size) {
   1293   return VirtualFree(base, size, MEM_DECOMMIT) != 0;
   1294 }
   1295 
   1296 
   1297 bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
   1298   return VirtualFree(base, 0, MEM_RELEASE) != 0;
   1299 }
   1300 
   1301 
   1302 bool VirtualMemory::HasLazyCommits() {
   1303   // TODO(alph): implement for the platform.
   1304   return false;
   1305 }
   1306 
   1307 
   1308 // ----------------------------------------------------------------------------
   1309 // Win32 thread support.
   1310 
   1311 // Definition of invalid thread handle and id.
   1312 static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
   1313 
   1314 // Entry point for threads. The supplied argument is a pointer to the thread
   1315 // object. The entry function dispatches to the run method in the thread
   1316 // object. It is important that this function has __stdcall calling
   1317 // convention.
   1318 static unsigned int __stdcall ThreadEntry(void* arg) {
   1319   Thread* thread = reinterpret_cast<Thread*>(arg);
   1320   thread->NotifyStartedAndRun();
   1321   return 0;
   1322 }
   1323 
   1324 
   1325 class Thread::PlatformData : public Malloced {
   1326  public:
   1327   explicit PlatformData(HANDLE thread) : thread_(thread) {}
   1328   HANDLE thread_;
   1329   unsigned thread_id_;
   1330 };
   1331 
   1332 
   1333 // Initialize a Win32 thread object. The thread has an invalid thread
   1334 // handle until it is started.
   1335 
   1336 Thread::Thread(const Options& options)
   1337     : stack_size_(options.stack_size()),
   1338       start_semaphore_(NULL) {
   1339   data_ = new PlatformData(kNoThread);
   1340   set_name(options.name());
   1341 }
   1342 
   1343 
   1344 void Thread::set_name(const char* name) {
   1345   OS::StrNCpy(name_, sizeof(name_), name, strlen(name));
   1346   name_[sizeof(name_) - 1] = '\0';
   1347 }
   1348 
   1349 
   1350 // Close our own handle for the thread.
   1351 Thread::~Thread() {
   1352   if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
   1353   delete data_;
   1354 }
   1355 
   1356 
   1357 // Create a new thread. It is important to use _beginthreadex() instead of
   1358 // the Win32 function CreateThread(), because the CreateThread() does not
   1359 // initialize thread specific structures in the C runtime library.
   1360 void Thread::Start() {
   1361   data_->thread_ = reinterpret_cast<HANDLE>(
   1362       _beginthreadex(NULL,
   1363                      static_cast<unsigned>(stack_size_),
   1364                      ThreadEntry,
   1365                      this,
   1366                      0,
   1367                      &data_->thread_id_));
   1368 }
   1369 
   1370 
   1371 // Wait for thread to terminate.
   1372 void Thread::Join() {
   1373   if (data_->thread_id_ != GetCurrentThreadId()) {
   1374     WaitForSingleObject(data_->thread_, INFINITE);
   1375   }
   1376 }
   1377 
   1378 
   1379 Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
   1380   DWORD result = TlsAlloc();
   1381   ASSERT(result != TLS_OUT_OF_INDEXES);
   1382   return static_cast<LocalStorageKey>(result);
   1383 }
   1384 
   1385 
   1386 void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
   1387   BOOL result = TlsFree(static_cast<DWORD>(key));
   1388   USE(result);
   1389   ASSERT(result);
   1390 }
   1391 
   1392 
   1393 void* Thread::GetThreadLocal(LocalStorageKey key) {
   1394   return TlsGetValue(static_cast<DWORD>(key));
   1395 }
   1396 
   1397 
   1398 void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
   1399   BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
   1400   USE(result);
   1401   ASSERT(result);
   1402 }
   1403 
   1404 
   1405 
   1406 void Thread::YieldCPU() {
   1407   Sleep(0);
   1408 }
   1409 
   1410 } }  // namespace v8::internal
   1411