1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/ExecutionEngine/ExecutionEngine.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ExecutionEngine/GenericValue.h" 19 #include "llvm/ExecutionEngine/JITMemoryManager.h" 20 #include "llvm/ExecutionEngine/ObjectCache.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/IR/ValueHandle.h" 27 #include "llvm/Object/ObjectFile.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/DynamicLibrary.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/Host.h" 32 #include "llvm/Support/MutexGuard.h" 33 #include "llvm/Support/TargetRegistry.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include <cmath> 37 #include <cstring> 38 using namespace llvm; 39 40 #define DEBUG_TYPE "jit" 41 42 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 43 STATISTIC(NumGlobals , "Number of global vars initialized"); 44 45 // Pin the vtable to this file. 46 void ObjectCache::anchor() {} 47 void ObjectBuffer::anchor() {} 48 void ObjectBufferStream::anchor() {} 49 50 ExecutionEngine *(*ExecutionEngine::JITCtor)( 51 Module *M, 52 std::string *ErrorStr, 53 JITMemoryManager *JMM, 54 bool GVsWithCode, 55 TargetMachine *TM) = nullptr; 56 ExecutionEngine *(*ExecutionEngine::MCJITCtor)( 57 Module *M, 58 std::string *ErrorStr, 59 RTDyldMemoryManager *MCJMM, 60 bool GVsWithCode, 61 TargetMachine *TM) = nullptr; 62 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M, 63 std::string *ErrorStr) =nullptr; 64 65 ExecutionEngine::ExecutionEngine(Module *M) 66 : EEState(*this), 67 LazyFunctionCreator(nullptr) { 68 CompilingLazily = false; 69 GVCompilationDisabled = false; 70 SymbolSearchingDisabled = false; 71 72 // IR module verification is enabled by default in debug builds, and disabled 73 // by default in release builds. 74 #ifndef NDEBUG 75 VerifyModules = true; 76 #else 77 VerifyModules = false; 78 #endif 79 80 Modules.push_back(M); 81 assert(M && "Module is null?"); 82 } 83 84 ExecutionEngine::~ExecutionEngine() { 85 clearAllGlobalMappings(); 86 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 87 delete Modules[i]; 88 } 89 90 namespace { 91 /// \brief Helper class which uses a value handler to automatically deletes the 92 /// memory block when the GlobalVariable is destroyed. 93 class GVMemoryBlock : public CallbackVH { 94 GVMemoryBlock(const GlobalVariable *GV) 95 : CallbackVH(const_cast<GlobalVariable*>(GV)) {} 96 97 public: 98 /// \brief Returns the address the GlobalVariable should be written into. The 99 /// GVMemoryBlock object prefixes that. 100 static char *Create(const GlobalVariable *GV, const DataLayout& TD) { 101 Type *ElTy = GV->getType()->getElementType(); 102 size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy); 103 void *RawMemory = ::operator new( 104 DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock), 105 TD.getPreferredAlignment(GV)) 106 + GVSize); 107 new(RawMemory) GVMemoryBlock(GV); 108 return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock); 109 } 110 111 void deleted() override { 112 // We allocated with operator new and with some extra memory hanging off the 113 // end, so don't just delete this. I'm not sure if this is actually 114 // required. 115 this->~GVMemoryBlock(); 116 ::operator delete(this); 117 } 118 }; 119 } // anonymous namespace 120 121 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) { 122 return GVMemoryBlock::Create(GV, *getDataLayout()); 123 } 124 125 void ExecutionEngine::addObjectFile(std::unique_ptr<object::ObjectFile> O) { 126 llvm_unreachable("ExecutionEngine subclass doesn't implement addObjectFile."); 127 } 128 129 bool ExecutionEngine::removeModule(Module *M) { 130 for(SmallVectorImpl<Module *>::iterator I = Modules.begin(), 131 E = Modules.end(); I != E; ++I) { 132 Module *Found = *I; 133 if (Found == M) { 134 Modules.erase(I); 135 clearGlobalMappingsFromModule(M); 136 return true; 137 } 138 } 139 return false; 140 } 141 142 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 143 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 144 if (Function *F = Modules[i]->getFunction(FnName)) 145 return F; 146 } 147 return nullptr; 148 } 149 150 151 void *ExecutionEngineState::RemoveMapping(const GlobalValue *ToUnmap) { 152 GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap); 153 void *OldVal; 154 155 // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the 156 // GlobalAddressMap. 157 if (I == GlobalAddressMap.end()) 158 OldVal = nullptr; 159 else { 160 OldVal = I->second; 161 GlobalAddressMap.erase(I); 162 } 163 164 GlobalAddressReverseMap.erase(OldVal); 165 return OldVal; 166 } 167 168 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 169 MutexGuard locked(lock); 170 171 DEBUG(dbgs() << "JIT: Map \'" << GV->getName() 172 << "\' to [" << Addr << "]\n";); 173 void *&CurVal = EEState.getGlobalAddressMap()[GV]; 174 assert((!CurVal || !Addr) && "GlobalMapping already established!"); 175 CurVal = Addr; 176 177 // If we are using the reverse mapping, add it too. 178 if (!EEState.getGlobalAddressReverseMap().empty()) { 179 AssertingVH<const GlobalValue> &V = 180 EEState.getGlobalAddressReverseMap()[Addr]; 181 assert((!V || !GV) && "GlobalMapping already established!"); 182 V = GV; 183 } 184 } 185 186 void ExecutionEngine::clearAllGlobalMappings() { 187 MutexGuard locked(lock); 188 189 EEState.getGlobalAddressMap().clear(); 190 EEState.getGlobalAddressReverseMap().clear(); 191 } 192 193 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) { 194 MutexGuard locked(lock); 195 196 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI) 197 EEState.RemoveMapping(FI); 198 for (Module::global_iterator GI = M->global_begin(), GE = M->global_end(); 199 GI != GE; ++GI) 200 EEState.RemoveMapping(GI); 201 } 202 203 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 204 MutexGuard locked(lock); 205 206 ExecutionEngineState::GlobalAddressMapTy &Map = 207 EEState.getGlobalAddressMap(); 208 209 // Deleting from the mapping? 210 if (!Addr) 211 return EEState.RemoveMapping(GV); 212 213 void *&CurVal = Map[GV]; 214 void *OldVal = CurVal; 215 216 if (CurVal && !EEState.getGlobalAddressReverseMap().empty()) 217 EEState.getGlobalAddressReverseMap().erase(CurVal); 218 CurVal = Addr; 219 220 // If we are using the reverse mapping, add it too. 221 if (!EEState.getGlobalAddressReverseMap().empty()) { 222 AssertingVH<const GlobalValue> &V = 223 EEState.getGlobalAddressReverseMap()[Addr]; 224 assert((!V || !GV) && "GlobalMapping already established!"); 225 V = GV; 226 } 227 return OldVal; 228 } 229 230 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 231 MutexGuard locked(lock); 232 233 ExecutionEngineState::GlobalAddressMapTy::iterator I = 234 EEState.getGlobalAddressMap().find(GV); 235 return I != EEState.getGlobalAddressMap().end() ? I->second : nullptr; 236 } 237 238 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 239 MutexGuard locked(lock); 240 241 // If we haven't computed the reverse mapping yet, do so first. 242 if (EEState.getGlobalAddressReverseMap().empty()) { 243 for (ExecutionEngineState::GlobalAddressMapTy::iterator 244 I = EEState.getGlobalAddressMap().begin(), 245 E = EEState.getGlobalAddressMap().end(); I != E; ++I) 246 EEState.getGlobalAddressReverseMap().insert(std::make_pair( 247 I->second, I->first)); 248 } 249 250 std::map<void *, AssertingVH<const GlobalValue> >::iterator I = 251 EEState.getGlobalAddressReverseMap().find(Addr); 252 return I != EEState.getGlobalAddressReverseMap().end() ? I->second : nullptr; 253 } 254 255 namespace { 256 class ArgvArray { 257 char *Array; 258 std::vector<char*> Values; 259 public: 260 ArgvArray() : Array(nullptr) {} 261 ~ArgvArray() { clear(); } 262 void clear() { 263 delete[] Array; 264 Array = nullptr; 265 for (size_t I = 0, E = Values.size(); I != E; ++I) { 266 delete[] Values[I]; 267 } 268 Values.clear(); 269 } 270 /// Turn a vector of strings into a nice argv style array of pointers to null 271 /// terminated strings. 272 void *reset(LLVMContext &C, ExecutionEngine *EE, 273 const std::vector<std::string> &InputArgv); 274 }; 275 } // anonymous namespace 276 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE, 277 const std::vector<std::string> &InputArgv) { 278 clear(); // Free the old contents. 279 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 280 Array = new char[(InputArgv.size()+1)*PtrSize]; 281 282 DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n"); 283 Type *SBytePtr = Type::getInt8PtrTy(C); 284 285 for (unsigned i = 0; i != InputArgv.size(); ++i) { 286 unsigned Size = InputArgv[i].size()+1; 287 char *Dest = new char[Size]; 288 Values.push_back(Dest); 289 DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n"); 290 291 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 292 Dest[Size-1] = 0; 293 294 // Endian safe: Array[i] = (PointerTy)Dest; 295 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize), 296 SBytePtr); 297 } 298 299 // Null terminate it 300 EE->StoreValueToMemory(PTOGV(nullptr), 301 (GenericValue*)(Array+InputArgv.size()*PtrSize), 302 SBytePtr); 303 return Array; 304 } 305 306 void ExecutionEngine::runStaticConstructorsDestructors(Module *module, 307 bool isDtors) { 308 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 309 GlobalVariable *GV = module->getNamedGlobal(Name); 310 311 // If this global has internal linkage, or if it has a use, then it must be 312 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 313 // this is the case, don't execute any of the global ctors, __main will do 314 // it. 315 if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return; 316 317 // Should be an array of '{ i32, void ()* }' structs. The first value is 318 // the init priority, which we ignore. 319 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 320 if (!InitList) 321 return; 322 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { 323 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); 324 if (!CS) continue; 325 326 Constant *FP = CS->getOperand(1); 327 if (FP->isNullValue()) 328 continue; // Found a sentinal value, ignore. 329 330 // Strip off constant expression casts. 331 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 332 if (CE->isCast()) 333 FP = CE->getOperand(0); 334 335 // Execute the ctor/dtor function! 336 if (Function *F = dyn_cast<Function>(FP)) 337 runFunction(F, std::vector<GenericValue>()); 338 339 // FIXME: It is marginally lame that we just do nothing here if we see an 340 // entry we don't recognize. It might not be unreasonable for the verifier 341 // to not even allow this and just assert here. 342 } 343 } 344 345 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 346 // Execute global ctors/dtors for each module in the program. 347 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 348 runStaticConstructorsDestructors(Modules[i], isDtors); 349 } 350 351 #ifndef NDEBUG 352 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null. 353 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) { 354 unsigned PtrSize = EE->getDataLayout()->getPointerSize(); 355 for (unsigned i = 0; i < PtrSize; ++i) 356 if (*(i + (uint8_t*)Loc)) 357 return false; 358 return true; 359 } 360 #endif 361 362 int ExecutionEngine::runFunctionAsMain(Function *Fn, 363 const std::vector<std::string> &argv, 364 const char * const * envp) { 365 std::vector<GenericValue> GVArgs; 366 GenericValue GVArgc; 367 GVArgc.IntVal = APInt(32, argv.size()); 368 369 // Check main() type 370 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 371 FunctionType *FTy = Fn->getFunctionType(); 372 Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo(); 373 374 // Check the argument types. 375 if (NumArgs > 3) 376 report_fatal_error("Invalid number of arguments of main() supplied"); 377 if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty) 378 report_fatal_error("Invalid type for third argument of main() supplied"); 379 if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty) 380 report_fatal_error("Invalid type for second argument of main() supplied"); 381 if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32)) 382 report_fatal_error("Invalid type for first argument of main() supplied"); 383 if (!FTy->getReturnType()->isIntegerTy() && 384 !FTy->getReturnType()->isVoidTy()) 385 report_fatal_error("Invalid return type of main() supplied"); 386 387 ArgvArray CArgv; 388 ArgvArray CEnv; 389 if (NumArgs) { 390 GVArgs.push_back(GVArgc); // Arg #0 = argc. 391 if (NumArgs > 1) { 392 // Arg #1 = argv. 393 GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv))); 394 assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) && 395 "argv[0] was null after CreateArgv"); 396 if (NumArgs > 2) { 397 std::vector<std::string> EnvVars; 398 for (unsigned i = 0; envp[i]; ++i) 399 EnvVars.push_back(envp[i]); 400 // Arg #2 = envp. 401 GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars))); 402 } 403 } 404 } 405 406 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 407 } 408 409 ExecutionEngine *ExecutionEngine::create(Module *M, 410 bool ForceInterpreter, 411 std::string *ErrorStr, 412 CodeGenOpt::Level OptLevel, 413 bool GVsWithCode) { 414 415 EngineBuilder EB = 416 EngineBuilder(M) 417 .setEngineKind(ForceInterpreter ? EngineKind::Interpreter 418 : EngineKind::Either) 419 .setErrorStr(ErrorStr) 420 .setOptLevel(OptLevel) 421 .setAllocateGVsWithCode(GVsWithCode); 422 423 return EB.create(); 424 } 425 426 /// createJIT - This is the factory method for creating a JIT for the current 427 /// machine, it does not fall back to the interpreter. This takes ownership 428 /// of the module. 429 ExecutionEngine *ExecutionEngine::createJIT(Module *M, 430 std::string *ErrorStr, 431 JITMemoryManager *JMM, 432 CodeGenOpt::Level OL, 433 bool GVsWithCode, 434 Reloc::Model RM, 435 CodeModel::Model CMM) { 436 if (!ExecutionEngine::JITCtor) { 437 if (ErrorStr) 438 *ErrorStr = "JIT has not been linked in."; 439 return nullptr; 440 } 441 442 // Use the defaults for extra parameters. Users can use EngineBuilder to 443 // set them. 444 EngineBuilder EB(M); 445 EB.setEngineKind(EngineKind::JIT); 446 EB.setErrorStr(ErrorStr); 447 EB.setRelocationModel(RM); 448 EB.setCodeModel(CMM); 449 EB.setAllocateGVsWithCode(GVsWithCode); 450 EB.setOptLevel(OL); 451 EB.setJITMemoryManager(JMM); 452 453 // TODO: permit custom TargetOptions here 454 TargetMachine *TM = EB.selectTarget(); 455 if (!TM || (ErrorStr && ErrorStr->length() > 0)) return nullptr; 456 457 return ExecutionEngine::JITCtor(M, ErrorStr, JMM, GVsWithCode, TM); 458 } 459 460 void EngineBuilder::InitEngine() { 461 WhichEngine = EngineKind::Either; 462 ErrorStr = nullptr; 463 OptLevel = CodeGenOpt::Default; 464 MCJMM = nullptr; 465 JMM = nullptr; 466 Options = TargetOptions(); 467 AllocateGVsWithCode = false; 468 RelocModel = Reloc::Default; 469 CMModel = CodeModel::JITDefault; 470 UseMCJIT = false; 471 472 // IR module verification is enabled by default in debug builds, and disabled 473 // by default in release builds. 474 #ifndef NDEBUG 475 VerifyModules = true; 476 #else 477 VerifyModules = false; 478 #endif 479 } 480 481 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) { 482 std::unique_ptr<TargetMachine> TheTM(TM); // Take ownership. 483 484 // Make sure we can resolve symbols in the program as well. The zero arg 485 // to the function tells DynamicLibrary to load the program, not a library. 486 if (sys::DynamicLibrary::LoadLibraryPermanently(nullptr, ErrorStr)) 487 return nullptr; 488 489 assert(!(JMM && MCJMM)); 490 491 // If the user specified a memory manager but didn't specify which engine to 492 // create, we assume they only want the JIT, and we fail if they only want 493 // the interpreter. 494 if (JMM || MCJMM) { 495 if (WhichEngine & EngineKind::JIT) 496 WhichEngine = EngineKind::JIT; 497 else { 498 if (ErrorStr) 499 *ErrorStr = "Cannot create an interpreter with a memory manager."; 500 return nullptr; 501 } 502 } 503 504 if (MCJMM && ! UseMCJIT) { 505 if (ErrorStr) 506 *ErrorStr = 507 "Cannot create a legacy JIT with a runtime dyld memory " 508 "manager."; 509 return nullptr; 510 } 511 512 // Unless the interpreter was explicitly selected or the JIT is not linked, 513 // try making a JIT. 514 if ((WhichEngine & EngineKind::JIT) && TheTM) { 515 Triple TT(M->getTargetTriple()); 516 if (!TM->getTarget().hasJIT()) { 517 errs() << "WARNING: This target JIT is not designed for the host" 518 << " you are running. If bad things happen, please choose" 519 << " a different -march switch.\n"; 520 } 521 522 ExecutionEngine *EE = nullptr; 523 if (UseMCJIT && ExecutionEngine::MCJITCtor) 524 EE = ExecutionEngine::MCJITCtor(M, ErrorStr, MCJMM ? MCJMM : JMM, 525 AllocateGVsWithCode, TheTM.release()); 526 else if (ExecutionEngine::JITCtor) 527 EE = ExecutionEngine::JITCtor(M, ErrorStr, JMM, 528 AllocateGVsWithCode, TheTM.release()); 529 530 if (EE) { 531 EE->setVerifyModules(VerifyModules); 532 return EE; 533 } 534 } 535 536 // If we can't make a JIT and we didn't request one specifically, try making 537 // an interpreter instead. 538 if (WhichEngine & EngineKind::Interpreter) { 539 if (ExecutionEngine::InterpCtor) 540 return ExecutionEngine::InterpCtor(M, ErrorStr); 541 if (ErrorStr) 542 *ErrorStr = "Interpreter has not been linked in."; 543 return nullptr; 544 } 545 546 if ((WhichEngine & EngineKind::JIT) && !ExecutionEngine::JITCtor && 547 !ExecutionEngine::MCJITCtor) { 548 if (ErrorStr) 549 *ErrorStr = "JIT has not been linked in."; 550 } 551 552 return nullptr; 553 } 554 555 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 556 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 557 return getPointerToFunction(F); 558 559 MutexGuard locked(lock); 560 if (void *P = EEState.getGlobalAddressMap()[GV]) 561 return P; 562 563 // Global variable might have been added since interpreter started. 564 if (GlobalVariable *GVar = 565 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 566 EmitGlobalVariable(GVar); 567 else 568 llvm_unreachable("Global hasn't had an address allocated yet!"); 569 570 return EEState.getGlobalAddressMap()[GV]; 571 } 572 573 /// \brief Converts a Constant* into a GenericValue, including handling of 574 /// ConstantExpr values. 575 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 576 // If its undefined, return the garbage. 577 if (isa<UndefValue>(C)) { 578 GenericValue Result; 579 switch (C->getType()->getTypeID()) { 580 default: 581 break; 582 case Type::IntegerTyID: 583 case Type::X86_FP80TyID: 584 case Type::FP128TyID: 585 case Type::PPC_FP128TyID: 586 // Although the value is undefined, we still have to construct an APInt 587 // with the correct bit width. 588 Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0); 589 break; 590 case Type::StructTyID: { 591 // if the whole struct is 'undef' just reserve memory for the value. 592 if(StructType *STy = dyn_cast<StructType>(C->getType())) { 593 unsigned int elemNum = STy->getNumElements(); 594 Result.AggregateVal.resize(elemNum); 595 for (unsigned int i = 0; i < elemNum; ++i) { 596 Type *ElemTy = STy->getElementType(i); 597 if (ElemTy->isIntegerTy()) 598 Result.AggregateVal[i].IntVal = 599 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 600 else if (ElemTy->isAggregateType()) { 601 const Constant *ElemUndef = UndefValue::get(ElemTy); 602 Result.AggregateVal[i] = getConstantValue(ElemUndef); 603 } 604 } 605 } 606 } 607 break; 608 case Type::VectorTyID: 609 // if the whole vector is 'undef' just reserve memory for the value. 610 const VectorType* VTy = dyn_cast<VectorType>(C->getType()); 611 const Type *ElemTy = VTy->getElementType(); 612 unsigned int elemNum = VTy->getNumElements(); 613 Result.AggregateVal.resize(elemNum); 614 if (ElemTy->isIntegerTy()) 615 for (unsigned int i = 0; i < elemNum; ++i) 616 Result.AggregateVal[i].IntVal = 617 APInt(ElemTy->getPrimitiveSizeInBits(), 0); 618 break; 619 } 620 return Result; 621 } 622 623 // Otherwise, if the value is a ConstantExpr... 624 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 625 Constant *Op0 = CE->getOperand(0); 626 switch (CE->getOpcode()) { 627 case Instruction::GetElementPtr: { 628 // Compute the index 629 GenericValue Result = getConstantValue(Op0); 630 APInt Offset(DL->getPointerSizeInBits(), 0); 631 cast<GEPOperator>(CE)->accumulateConstantOffset(*DL, Offset); 632 633 char* tmp = (char*) Result.PointerVal; 634 Result = PTOGV(tmp + Offset.getSExtValue()); 635 return Result; 636 } 637 case Instruction::Trunc: { 638 GenericValue GV = getConstantValue(Op0); 639 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 640 GV.IntVal = GV.IntVal.trunc(BitWidth); 641 return GV; 642 } 643 case Instruction::ZExt: { 644 GenericValue GV = getConstantValue(Op0); 645 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 646 GV.IntVal = GV.IntVal.zext(BitWidth); 647 return GV; 648 } 649 case Instruction::SExt: { 650 GenericValue GV = getConstantValue(Op0); 651 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 652 GV.IntVal = GV.IntVal.sext(BitWidth); 653 return GV; 654 } 655 case Instruction::FPTrunc: { 656 // FIXME long double 657 GenericValue GV = getConstantValue(Op0); 658 GV.FloatVal = float(GV.DoubleVal); 659 return GV; 660 } 661 case Instruction::FPExt:{ 662 // FIXME long double 663 GenericValue GV = getConstantValue(Op0); 664 GV.DoubleVal = double(GV.FloatVal); 665 return GV; 666 } 667 case Instruction::UIToFP: { 668 GenericValue GV = getConstantValue(Op0); 669 if (CE->getType()->isFloatTy()) 670 GV.FloatVal = float(GV.IntVal.roundToDouble()); 671 else if (CE->getType()->isDoubleTy()) 672 GV.DoubleVal = GV.IntVal.roundToDouble(); 673 else if (CE->getType()->isX86_FP80Ty()) { 674 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 675 (void)apf.convertFromAPInt(GV.IntVal, 676 false, 677 APFloat::rmNearestTiesToEven); 678 GV.IntVal = apf.bitcastToAPInt(); 679 } 680 return GV; 681 } 682 case Instruction::SIToFP: { 683 GenericValue GV = getConstantValue(Op0); 684 if (CE->getType()->isFloatTy()) 685 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 686 else if (CE->getType()->isDoubleTy()) 687 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 688 else if (CE->getType()->isX86_FP80Ty()) { 689 APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended); 690 (void)apf.convertFromAPInt(GV.IntVal, 691 true, 692 APFloat::rmNearestTiesToEven); 693 GV.IntVal = apf.bitcastToAPInt(); 694 } 695 return GV; 696 } 697 case Instruction::FPToUI: // double->APInt conversion handles sign 698 case Instruction::FPToSI: { 699 GenericValue GV = getConstantValue(Op0); 700 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 701 if (Op0->getType()->isFloatTy()) 702 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 703 else if (Op0->getType()->isDoubleTy()) 704 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 705 else if (Op0->getType()->isX86_FP80Ty()) { 706 APFloat apf = APFloat(APFloat::x87DoubleExtended, GV.IntVal); 707 uint64_t v; 708 bool ignored; 709 (void)apf.convertToInteger(&v, BitWidth, 710 CE->getOpcode()==Instruction::FPToSI, 711 APFloat::rmTowardZero, &ignored); 712 GV.IntVal = v; // endian? 713 } 714 return GV; 715 } 716 case Instruction::PtrToInt: { 717 GenericValue GV = getConstantValue(Op0); 718 uint32_t PtrWidth = DL->getTypeSizeInBits(Op0->getType()); 719 assert(PtrWidth <= 64 && "Bad pointer width"); 720 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 721 uint32_t IntWidth = DL->getTypeSizeInBits(CE->getType()); 722 GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth); 723 return GV; 724 } 725 case Instruction::IntToPtr: { 726 GenericValue GV = getConstantValue(Op0); 727 uint32_t PtrWidth = DL->getTypeSizeInBits(CE->getType()); 728 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 729 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 730 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 731 return GV; 732 } 733 case Instruction::BitCast: { 734 GenericValue GV = getConstantValue(Op0); 735 Type* DestTy = CE->getType(); 736 switch (Op0->getType()->getTypeID()) { 737 default: llvm_unreachable("Invalid bitcast operand"); 738 case Type::IntegerTyID: 739 assert(DestTy->isFloatingPointTy() && "invalid bitcast"); 740 if (DestTy->isFloatTy()) 741 GV.FloatVal = GV.IntVal.bitsToFloat(); 742 else if (DestTy->isDoubleTy()) 743 GV.DoubleVal = GV.IntVal.bitsToDouble(); 744 break; 745 case Type::FloatTyID: 746 assert(DestTy->isIntegerTy(32) && "Invalid bitcast"); 747 GV.IntVal = APInt::floatToBits(GV.FloatVal); 748 break; 749 case Type::DoubleTyID: 750 assert(DestTy->isIntegerTy(64) && "Invalid bitcast"); 751 GV.IntVal = APInt::doubleToBits(GV.DoubleVal); 752 break; 753 case Type::PointerTyID: 754 assert(DestTy->isPointerTy() && "Invalid bitcast"); 755 break; // getConstantValue(Op0) above already converted it 756 } 757 return GV; 758 } 759 case Instruction::Add: 760 case Instruction::FAdd: 761 case Instruction::Sub: 762 case Instruction::FSub: 763 case Instruction::Mul: 764 case Instruction::FMul: 765 case Instruction::UDiv: 766 case Instruction::SDiv: 767 case Instruction::URem: 768 case Instruction::SRem: 769 case Instruction::And: 770 case Instruction::Or: 771 case Instruction::Xor: { 772 GenericValue LHS = getConstantValue(Op0); 773 GenericValue RHS = getConstantValue(CE->getOperand(1)); 774 GenericValue GV; 775 switch (CE->getOperand(0)->getType()->getTypeID()) { 776 default: llvm_unreachable("Bad add type!"); 777 case Type::IntegerTyID: 778 switch (CE->getOpcode()) { 779 default: llvm_unreachable("Invalid integer opcode"); 780 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 781 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 782 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 783 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 784 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 785 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 786 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 787 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 788 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 789 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 790 } 791 break; 792 case Type::FloatTyID: 793 switch (CE->getOpcode()) { 794 default: llvm_unreachable("Invalid float opcode"); 795 case Instruction::FAdd: 796 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 797 case Instruction::FSub: 798 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 799 case Instruction::FMul: 800 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 801 case Instruction::FDiv: 802 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 803 case Instruction::FRem: 804 GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break; 805 } 806 break; 807 case Type::DoubleTyID: 808 switch (CE->getOpcode()) { 809 default: llvm_unreachable("Invalid double opcode"); 810 case Instruction::FAdd: 811 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 812 case Instruction::FSub: 813 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 814 case Instruction::FMul: 815 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 816 case Instruction::FDiv: 817 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 818 case Instruction::FRem: 819 GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 820 } 821 break; 822 case Type::X86_FP80TyID: 823 case Type::PPC_FP128TyID: 824 case Type::FP128TyID: { 825 const fltSemantics &Sem = CE->getOperand(0)->getType()->getFltSemantics(); 826 APFloat apfLHS = APFloat(Sem, LHS.IntVal); 827 switch (CE->getOpcode()) { 828 default: llvm_unreachable("Invalid long double opcode"); 829 case Instruction::FAdd: 830 apfLHS.add(APFloat(Sem, RHS.IntVal), APFloat::rmNearestTiesToEven); 831 GV.IntVal = apfLHS.bitcastToAPInt(); 832 break; 833 case Instruction::FSub: 834 apfLHS.subtract(APFloat(Sem, RHS.IntVal), 835 APFloat::rmNearestTiesToEven); 836 GV.IntVal = apfLHS.bitcastToAPInt(); 837 break; 838 case Instruction::FMul: 839 apfLHS.multiply(APFloat(Sem, RHS.IntVal), 840 APFloat::rmNearestTiesToEven); 841 GV.IntVal = apfLHS.bitcastToAPInt(); 842 break; 843 case Instruction::FDiv: 844 apfLHS.divide(APFloat(Sem, RHS.IntVal), 845 APFloat::rmNearestTiesToEven); 846 GV.IntVal = apfLHS.bitcastToAPInt(); 847 break; 848 case Instruction::FRem: 849 apfLHS.mod(APFloat(Sem, RHS.IntVal), 850 APFloat::rmNearestTiesToEven); 851 GV.IntVal = apfLHS.bitcastToAPInt(); 852 break; 853 } 854 } 855 break; 856 } 857 return GV; 858 } 859 default: 860 break; 861 } 862 863 SmallString<256> Msg; 864 raw_svector_ostream OS(Msg); 865 OS << "ConstantExpr not handled: " << *CE; 866 report_fatal_error(OS.str()); 867 } 868 869 // Otherwise, we have a simple constant. 870 GenericValue Result; 871 switch (C->getType()->getTypeID()) { 872 case Type::FloatTyID: 873 Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat(); 874 break; 875 case Type::DoubleTyID: 876 Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble(); 877 break; 878 case Type::X86_FP80TyID: 879 case Type::FP128TyID: 880 case Type::PPC_FP128TyID: 881 Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt(); 882 break; 883 case Type::IntegerTyID: 884 Result.IntVal = cast<ConstantInt>(C)->getValue(); 885 break; 886 case Type::PointerTyID: 887 if (isa<ConstantPointerNull>(C)) 888 Result.PointerVal = nullptr; 889 else if (const Function *F = dyn_cast<Function>(C)) 890 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 891 else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) 892 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 893 else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 894 Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>( 895 BA->getBasicBlock()))); 896 else 897 llvm_unreachable("Unknown constant pointer type!"); 898 break; 899 case Type::VectorTyID: { 900 unsigned elemNum; 901 Type* ElemTy; 902 const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(C); 903 const ConstantVector *CV = dyn_cast<ConstantVector>(C); 904 const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(C); 905 906 if (CDV) { 907 elemNum = CDV->getNumElements(); 908 ElemTy = CDV->getElementType(); 909 } else if (CV || CAZ) { 910 VectorType* VTy = dyn_cast<VectorType>(C->getType()); 911 elemNum = VTy->getNumElements(); 912 ElemTy = VTy->getElementType(); 913 } else { 914 llvm_unreachable("Unknown constant vector type!"); 915 } 916 917 Result.AggregateVal.resize(elemNum); 918 // Check if vector holds floats. 919 if(ElemTy->isFloatTy()) { 920 if (CAZ) { 921 GenericValue floatZero; 922 floatZero.FloatVal = 0.f; 923 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 924 floatZero); 925 break; 926 } 927 if(CV) { 928 for (unsigned i = 0; i < elemNum; ++i) 929 if (!isa<UndefValue>(CV->getOperand(i))) 930 Result.AggregateVal[i].FloatVal = cast<ConstantFP>( 931 CV->getOperand(i))->getValueAPF().convertToFloat(); 932 break; 933 } 934 if(CDV) 935 for (unsigned i = 0; i < elemNum; ++i) 936 Result.AggregateVal[i].FloatVal = CDV->getElementAsFloat(i); 937 938 break; 939 } 940 // Check if vector holds doubles. 941 if (ElemTy->isDoubleTy()) { 942 if (CAZ) { 943 GenericValue doubleZero; 944 doubleZero.DoubleVal = 0.0; 945 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 946 doubleZero); 947 break; 948 } 949 if(CV) { 950 for (unsigned i = 0; i < elemNum; ++i) 951 if (!isa<UndefValue>(CV->getOperand(i))) 952 Result.AggregateVal[i].DoubleVal = cast<ConstantFP>( 953 CV->getOperand(i))->getValueAPF().convertToDouble(); 954 break; 955 } 956 if(CDV) 957 for (unsigned i = 0; i < elemNum; ++i) 958 Result.AggregateVal[i].DoubleVal = CDV->getElementAsDouble(i); 959 960 break; 961 } 962 // Check if vector holds integers. 963 if (ElemTy->isIntegerTy()) { 964 if (CAZ) { 965 GenericValue intZero; 966 intZero.IntVal = APInt(ElemTy->getScalarSizeInBits(), 0ull); 967 std::fill(Result.AggregateVal.begin(), Result.AggregateVal.end(), 968 intZero); 969 break; 970 } 971 if(CV) { 972 for (unsigned i = 0; i < elemNum; ++i) 973 if (!isa<UndefValue>(CV->getOperand(i))) 974 Result.AggregateVal[i].IntVal = cast<ConstantInt>( 975 CV->getOperand(i))->getValue(); 976 else { 977 Result.AggregateVal[i].IntVal = 978 APInt(CV->getOperand(i)->getType()->getPrimitiveSizeInBits(), 0); 979 } 980 break; 981 } 982 if(CDV) 983 for (unsigned i = 0; i < elemNum; ++i) 984 Result.AggregateVal[i].IntVal = APInt( 985 CDV->getElementType()->getPrimitiveSizeInBits(), 986 CDV->getElementAsInteger(i)); 987 988 break; 989 } 990 llvm_unreachable("Unknown constant pointer type!"); 991 } 992 break; 993 994 default: 995 SmallString<256> Msg; 996 raw_svector_ostream OS(Msg); 997 OS << "ERROR: Constant unimplemented for type: " << *C->getType(); 998 report_fatal_error(OS.str()); 999 } 1000 1001 return Result; 1002 } 1003 1004 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 1005 /// with the integer held in IntVal. 1006 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, 1007 unsigned StoreBytes) { 1008 assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!"); 1009 const uint8_t *Src = (const uint8_t *)IntVal.getRawData(); 1010 1011 if (sys::IsLittleEndianHost) { 1012 // Little-endian host - the source is ordered from LSB to MSB. Order the 1013 // destination from LSB to MSB: Do a straight copy. 1014 memcpy(Dst, Src, StoreBytes); 1015 } else { 1016 // Big-endian host - the source is an array of 64 bit words ordered from 1017 // LSW to MSW. Each word is ordered from MSB to LSB. Order the destination 1018 // from MSB to LSB: Reverse the word order, but not the bytes in a word. 1019 while (StoreBytes > sizeof(uint64_t)) { 1020 StoreBytes -= sizeof(uint64_t); 1021 // May not be aligned so use memcpy. 1022 memcpy(Dst + StoreBytes, Src, sizeof(uint64_t)); 1023 Src += sizeof(uint64_t); 1024 } 1025 1026 memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes); 1027 } 1028 } 1029 1030 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, 1031 GenericValue *Ptr, Type *Ty) { 1032 const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty); 1033 1034 switch (Ty->getTypeID()) { 1035 default: 1036 dbgs() << "Cannot store value of type " << *Ty << "!\n"; 1037 break; 1038 case Type::IntegerTyID: 1039 StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes); 1040 break; 1041 case Type::FloatTyID: 1042 *((float*)Ptr) = Val.FloatVal; 1043 break; 1044 case Type::DoubleTyID: 1045 *((double*)Ptr) = Val.DoubleVal; 1046 break; 1047 case Type::X86_FP80TyID: 1048 memcpy(Ptr, Val.IntVal.getRawData(), 10); 1049 break; 1050 case Type::PointerTyID: 1051 // Ensure 64 bit target pointers are fully initialized on 32 bit hosts. 1052 if (StoreBytes != sizeof(PointerTy)) 1053 memset(&(Ptr->PointerVal), 0, StoreBytes); 1054 1055 *((PointerTy*)Ptr) = Val.PointerVal; 1056 break; 1057 case Type::VectorTyID: 1058 for (unsigned i = 0; i < Val.AggregateVal.size(); ++i) { 1059 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) 1060 *(((double*)Ptr)+i) = Val.AggregateVal[i].DoubleVal; 1061 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) 1062 *(((float*)Ptr)+i) = Val.AggregateVal[i].FloatVal; 1063 if (cast<VectorType>(Ty)->getElementType()->isIntegerTy()) { 1064 unsigned numOfBytes =(Val.AggregateVal[i].IntVal.getBitWidth()+7)/8; 1065 StoreIntToMemory(Val.AggregateVal[i].IntVal, 1066 (uint8_t*)Ptr + numOfBytes*i, numOfBytes); 1067 } 1068 } 1069 break; 1070 } 1071 1072 if (sys::IsLittleEndianHost != getDataLayout()->isLittleEndian()) 1073 // Host and target are different endian - reverse the stored bytes. 1074 std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr); 1075 } 1076 1077 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 1078 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 1079 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) { 1080 assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!"); 1081 uint8_t *Dst = reinterpret_cast<uint8_t *>( 1082 const_cast<uint64_t *>(IntVal.getRawData())); 1083 1084 if (sys::IsLittleEndianHost) 1085 // Little-endian host - the destination must be ordered from LSB to MSB. 1086 // The source is ordered from LSB to MSB: Do a straight copy. 1087 memcpy(Dst, Src, LoadBytes); 1088 else { 1089 // Big-endian - the destination is an array of 64 bit words ordered from 1090 // LSW to MSW. Each word must be ordered from MSB to LSB. The source is 1091 // ordered from MSB to LSB: Reverse the word order, but not the bytes in 1092 // a word. 1093 while (LoadBytes > sizeof(uint64_t)) { 1094 LoadBytes -= sizeof(uint64_t); 1095 // May not be aligned so use memcpy. 1096 memcpy(Dst, Src + LoadBytes, sizeof(uint64_t)); 1097 Dst += sizeof(uint64_t); 1098 } 1099 1100 memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes); 1101 } 1102 } 1103 1104 /// FIXME: document 1105 /// 1106 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 1107 GenericValue *Ptr, 1108 Type *Ty) { 1109 const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty); 1110 1111 switch (Ty->getTypeID()) { 1112 case Type::IntegerTyID: 1113 // An APInt with all words initially zero. 1114 Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0); 1115 LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes); 1116 break; 1117 case Type::FloatTyID: 1118 Result.FloatVal = *((float*)Ptr); 1119 break; 1120 case Type::DoubleTyID: 1121 Result.DoubleVal = *((double*)Ptr); 1122 break; 1123 case Type::PointerTyID: 1124 Result.PointerVal = *((PointerTy*)Ptr); 1125 break; 1126 case Type::X86_FP80TyID: { 1127 // This is endian dependent, but it will only work on x86 anyway. 1128 // FIXME: Will not trap if loading a signaling NaN. 1129 uint64_t y[2]; 1130 memcpy(y, Ptr, 10); 1131 Result.IntVal = APInt(80, y); 1132 break; 1133 } 1134 case Type::VectorTyID: { 1135 const VectorType *VT = cast<VectorType>(Ty); 1136 const Type *ElemT = VT->getElementType(); 1137 const unsigned numElems = VT->getNumElements(); 1138 if (ElemT->isFloatTy()) { 1139 Result.AggregateVal.resize(numElems); 1140 for (unsigned i = 0; i < numElems; ++i) 1141 Result.AggregateVal[i].FloatVal = *((float*)Ptr+i); 1142 } 1143 if (ElemT->isDoubleTy()) { 1144 Result.AggregateVal.resize(numElems); 1145 for (unsigned i = 0; i < numElems; ++i) 1146 Result.AggregateVal[i].DoubleVal = *((double*)Ptr+i); 1147 } 1148 if (ElemT->isIntegerTy()) { 1149 GenericValue intZero; 1150 const unsigned elemBitWidth = cast<IntegerType>(ElemT)->getBitWidth(); 1151 intZero.IntVal = APInt(elemBitWidth, 0); 1152 Result.AggregateVal.resize(numElems, intZero); 1153 for (unsigned i = 0; i < numElems; ++i) 1154 LoadIntFromMemory(Result.AggregateVal[i].IntVal, 1155 (uint8_t*)Ptr+((elemBitWidth+7)/8)*i, (elemBitWidth+7)/8); 1156 } 1157 break; 1158 } 1159 default: 1160 SmallString<256> Msg; 1161 raw_svector_ostream OS(Msg); 1162 OS << "Cannot load value of type " << *Ty << "!"; 1163 report_fatal_error(OS.str()); 1164 } 1165 } 1166 1167 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 1168 DEBUG(dbgs() << "JIT: Initializing " << Addr << " "); 1169 DEBUG(Init->dump()); 1170 if (isa<UndefValue>(Init)) 1171 return; 1172 1173 if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 1174 unsigned ElementSize = 1175 getDataLayout()->getTypeAllocSize(CP->getType()->getElementType()); 1176 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 1177 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 1178 return; 1179 } 1180 1181 if (isa<ConstantAggregateZero>(Init)) { 1182 memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType())); 1183 return; 1184 } 1185 1186 if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) { 1187 unsigned ElementSize = 1188 getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType()); 1189 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 1190 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 1191 return; 1192 } 1193 1194 if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) { 1195 const StructLayout *SL = 1196 getDataLayout()->getStructLayout(cast<StructType>(CPS->getType())); 1197 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 1198 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 1199 return; 1200 } 1201 1202 if (const ConstantDataSequential *CDS = 1203 dyn_cast<ConstantDataSequential>(Init)) { 1204 // CDS is already laid out in host memory order. 1205 StringRef Data = CDS->getRawDataValues(); 1206 memcpy(Addr, Data.data(), Data.size()); 1207 return; 1208 } 1209 1210 if (Init->getType()->isFirstClassType()) { 1211 GenericValue Val = getConstantValue(Init); 1212 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 1213 return; 1214 } 1215 1216 DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n"); 1217 llvm_unreachable("Unknown constant type to initialize memory with!"); 1218 } 1219 1220 /// EmitGlobals - Emit all of the global variables to memory, storing their 1221 /// addresses into GlobalAddress. This must make sure to copy the contents of 1222 /// their initializers into the memory. 1223 void ExecutionEngine::emitGlobals() { 1224 // Loop over all of the global variables in the program, allocating the memory 1225 // to hold them. If there is more than one module, do a prepass over globals 1226 // to figure out how the different modules should link together. 1227 std::map<std::pair<std::string, Type*>, 1228 const GlobalValue*> LinkedGlobalsMap; 1229 1230 if (Modules.size() != 1) { 1231 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1232 Module &M = *Modules[m]; 1233 for (const auto &GV : M.globals()) { 1234 if (GV.hasLocalLinkage() || GV.isDeclaration() || 1235 GV.hasAppendingLinkage() || !GV.hasName()) 1236 continue;// Ignore external globals and globals with internal linkage. 1237 1238 const GlobalValue *&GVEntry = 1239 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]; 1240 1241 // If this is the first time we've seen this global, it is the canonical 1242 // version. 1243 if (!GVEntry) { 1244 GVEntry = &GV; 1245 continue; 1246 } 1247 1248 // If the existing global is strong, never replace it. 1249 if (GVEntry->hasExternalLinkage()) 1250 continue; 1251 1252 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 1253 // symbol. FIXME is this right for common? 1254 if (GV.hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 1255 GVEntry = &GV; 1256 } 1257 } 1258 } 1259 1260 std::vector<const GlobalValue*> NonCanonicalGlobals; 1261 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 1262 Module &M = *Modules[m]; 1263 for (const auto &GV : M.globals()) { 1264 // In the multi-module case, see what this global maps to. 1265 if (!LinkedGlobalsMap.empty()) { 1266 if (const GlobalValue *GVEntry = 1267 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) { 1268 // If something else is the canonical global, ignore this one. 1269 if (GVEntry != &GV) { 1270 NonCanonicalGlobals.push_back(&GV); 1271 continue; 1272 } 1273 } 1274 } 1275 1276 if (!GV.isDeclaration()) { 1277 addGlobalMapping(&GV, getMemoryForGV(&GV)); 1278 } else { 1279 // External variable reference. Try to use the dynamic loader to 1280 // get a pointer to it. 1281 if (void *SymAddr = 1282 sys::DynamicLibrary::SearchForAddressOfSymbol(GV.getName())) 1283 addGlobalMapping(&GV, SymAddr); 1284 else { 1285 report_fatal_error("Could not resolve external global address: " 1286 +GV.getName()); 1287 } 1288 } 1289 } 1290 1291 // If there are multiple modules, map the non-canonical globals to their 1292 // canonical location. 1293 if (!NonCanonicalGlobals.empty()) { 1294 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 1295 const GlobalValue *GV = NonCanonicalGlobals[i]; 1296 const GlobalValue *CGV = 1297 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 1298 void *Ptr = getPointerToGlobalIfAvailable(CGV); 1299 assert(Ptr && "Canonical global wasn't codegen'd!"); 1300 addGlobalMapping(GV, Ptr); 1301 } 1302 } 1303 1304 // Now that all of the globals are set up in memory, loop through them all 1305 // and initialize their contents. 1306 for (const auto &GV : M.globals()) { 1307 if (!GV.isDeclaration()) { 1308 if (!LinkedGlobalsMap.empty()) { 1309 if (const GlobalValue *GVEntry = 1310 LinkedGlobalsMap[std::make_pair(GV.getName(), GV.getType())]) 1311 if (GVEntry != &GV) // Not the canonical variable. 1312 continue; 1313 } 1314 EmitGlobalVariable(&GV); 1315 } 1316 } 1317 } 1318 } 1319 1320 // EmitGlobalVariable - This method emits the specified global variable to the 1321 // address specified in GlobalAddresses, or allocates new memory if it's not 1322 // already in the map. 1323 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 1324 void *GA = getPointerToGlobalIfAvailable(GV); 1325 1326 if (!GA) { 1327 // If it's not already specified, allocate memory for the global. 1328 GA = getMemoryForGV(GV); 1329 1330 // If we failed to allocate memory for this global, return. 1331 if (!GA) return; 1332 1333 addGlobalMapping(GV, GA); 1334 } 1335 1336 // Don't initialize if it's thread local, let the client do it. 1337 if (!GV->isThreadLocal()) 1338 InitializeMemory(GV->getInitializer(), GA); 1339 1340 Type *ElTy = GV->getType()->getElementType(); 1341 size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy); 1342 NumInitBytes += (unsigned)GVSize; 1343 ++NumGlobals; 1344 } 1345 1346 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE) 1347 : EE(EE), GlobalAddressMap(this) { 1348 } 1349 1350 sys::Mutex * 1351 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) { 1352 return &EES->EE.lock; 1353 } 1354 1355 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES, 1356 const GlobalValue *Old) { 1357 void *OldVal = EES->GlobalAddressMap.lookup(Old); 1358 EES->GlobalAddressReverseMap.erase(OldVal); 1359 } 1360 1361 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *, 1362 const GlobalValue *, 1363 const GlobalValue *) { 1364 llvm_unreachable("The ExecutionEngine doesn't know how to handle a" 1365 " RAUW on a value it has a global mapping for."); 1366 } 1367