Home | History | Annotate | Download | only in translator
      1 //
      2 // Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
      3 // Use of this source code is governed by a BSD-style license that can be
      4 // found in the LICENSE file.
      5 //
      6 
      7 //
      8 // Build the intermediate representation.
      9 //
     10 
     11 #include <float.h>
     12 #include <limits.h>
     13 #include <algorithm>
     14 
     15 #include "compiler/translator/HashNames.h"
     16 #include "compiler/translator/localintermediate.h"
     17 #include "compiler/translator/QualifierAlive.h"
     18 #include "compiler/translator/RemoveTree.h"
     19 #include "compiler/translator/SymbolTable.h"
     20 
     21 bool CompareStructure(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray);
     22 
     23 static TPrecision GetHigherPrecision(TPrecision left, TPrecision right)
     24 {
     25     return left > right ? left : right;
     26 }
     27 
     28 const char* getOperatorString(TOperator op)
     29 {
     30     switch (op) {
     31       case EOpInitialize: return "=";
     32       case EOpAssign: return "=";
     33       case EOpAddAssign: return "+=";
     34       case EOpSubAssign: return "-=";
     35       case EOpDivAssign: return "/=";
     36 
     37       // Fall-through.
     38       case EOpMulAssign:
     39       case EOpVectorTimesMatrixAssign:
     40       case EOpVectorTimesScalarAssign:
     41       case EOpMatrixTimesScalarAssign:
     42       case EOpMatrixTimesMatrixAssign: return "*=";
     43 
     44       // Fall-through.
     45       case EOpIndexDirect:
     46       case EOpIndexIndirect: return "[]";
     47 
     48       case EOpIndexDirectStruct:
     49       case EOpIndexDirectInterfaceBlock: return ".";
     50       case EOpVectorSwizzle: return ".";
     51       case EOpAdd: return "+";
     52       case EOpSub: return "-";
     53       case EOpMul: return "*";
     54       case EOpDiv: return "/";
     55       case EOpMod: UNIMPLEMENTED(); break;
     56       case EOpEqual: return "==";
     57       case EOpNotEqual: return "!=";
     58       case EOpLessThan: return "<";
     59       case EOpGreaterThan: return ">";
     60       case EOpLessThanEqual: return "<=";
     61       case EOpGreaterThanEqual: return ">=";
     62 
     63       // Fall-through.
     64       case EOpVectorTimesScalar:
     65       case EOpVectorTimesMatrix:
     66       case EOpMatrixTimesVector:
     67       case EOpMatrixTimesScalar:
     68       case EOpMatrixTimesMatrix: return "*";
     69 
     70       case EOpLogicalOr: return "||";
     71       case EOpLogicalXor: return "^^";
     72       case EOpLogicalAnd: return "&&";
     73       case EOpNegative: return "-";
     74       case EOpVectorLogicalNot: return "not";
     75       case EOpLogicalNot: return "!";
     76       case EOpPostIncrement: return "++";
     77       case EOpPostDecrement: return "--";
     78       case EOpPreIncrement: return "++";
     79       case EOpPreDecrement: return "--";
     80 
     81       // Fall-through.
     82       case EOpConvIntToBool:
     83       case EOpConvUIntToBool:
     84       case EOpConvFloatToBool: return "bool";
     85 
     86       // Fall-through.
     87       case EOpConvBoolToFloat:
     88       case EOpConvUIntToFloat:
     89       case EOpConvIntToFloat: return "float";
     90 
     91       // Fall-through.
     92       case EOpConvFloatToInt:
     93       case EOpConvUIntToInt:
     94       case EOpConvBoolToInt: return "int";
     95 
     96       // Fall-through.
     97       case EOpConvIntToUInt:
     98       case EOpConvFloatToUInt:
     99       case EOpConvBoolToUInt: return "uint";
    100 
    101       case EOpRadians: return "radians";
    102       case EOpDegrees: return "degrees";
    103       case EOpSin: return "sin";
    104       case EOpCos: return "cos";
    105       case EOpTan: return "tan";
    106       case EOpAsin: return "asin";
    107       case EOpAcos: return "acos";
    108       case EOpAtan: return "atan";
    109       case EOpExp: return "exp";
    110       case EOpLog: return "log";
    111       case EOpExp2: return "exp2";
    112       case EOpLog2: return "log2";
    113       case EOpSqrt: return "sqrt";
    114       case EOpInverseSqrt: return "inversesqrt";
    115       case EOpAbs: return "abs";
    116       case EOpSign: return "sign";
    117       case EOpFloor: return "floor";
    118       case EOpCeil: return "ceil";
    119       case EOpFract: return "fract";
    120       case EOpLength: return "length";
    121       case EOpNormalize: return "normalize";
    122       case EOpDFdx: return "dFdx";
    123       case EOpDFdy: return "dFdy";
    124       case EOpFwidth: return "fwidth";
    125       case EOpAny: return "any";
    126       case EOpAll: return "all";
    127 
    128       default: break;
    129     }
    130     return "";
    131 }
    132 
    133 ////////////////////////////////////////////////////////////////////////////
    134 //
    135 // First set of functions are to help build the intermediate representation.
    136 // These functions are not member functions of the nodes.
    137 // They are called from parser productions.
    138 //
    139 /////////////////////////////////////////////////////////////////////////////
    140 
    141 //
    142 // Add a terminal node for an identifier in an expression.
    143 //
    144 // Returns the added node.
    145 //
    146 TIntermSymbol* TIntermediate::addSymbol(int id, const TString& name, const TType& type, const TSourceLoc& line)
    147 {
    148     TIntermSymbol* node = new TIntermSymbol(id, name, type);
    149     node->setLine(line);
    150 
    151     return node;
    152 }
    153 
    154 //
    155 // Connect two nodes with a new parent that does a binary operation on the nodes.
    156 //
    157 // Returns the added node.
    158 //
    159 TIntermTyped* TIntermediate::addBinaryMath(TOperator op, TIntermTyped* left, TIntermTyped* right, const TSourceLoc& line)
    160 {
    161     switch (op) {
    162         case EOpEqual:
    163         case EOpNotEqual:
    164             if (left->isArray())
    165                 return 0;
    166             break;
    167         case EOpLessThan:
    168         case EOpGreaterThan:
    169         case EOpLessThanEqual:
    170         case EOpGreaterThanEqual:
    171             if (left->isMatrix() || left->isArray() || left->isVector() || left->getBasicType() == EbtStruct) {
    172                 return 0;
    173             }
    174             break;
    175         case EOpLogicalOr:
    176         case EOpLogicalXor:
    177         case EOpLogicalAnd:
    178             if (left->getBasicType() != EbtBool || left->isMatrix() || left->isArray() || left->isVector()) {
    179                 return 0;
    180             }
    181             break;
    182         case EOpAdd:
    183         case EOpSub:
    184         case EOpDiv:
    185         case EOpMul:
    186             if (left->getBasicType() == EbtStruct || left->getBasicType() == EbtBool)
    187                 return 0;
    188         default: break;
    189     }
    190 
    191     //
    192     // First try converting the children to compatible types.
    193     //
    194     if (left->getType().getStruct() && right->getType().getStruct()) {
    195         if (left->getType() != right->getType())
    196             return 0;
    197     } else {
    198         TIntermTyped* child = addConversion(op, left->getType(), right);
    199         if (child)
    200             right = child;
    201         else {
    202             child = addConversion(op, right->getType(), left);
    203             if (child)
    204                 left = child;
    205             else
    206                 return 0;
    207         }
    208     }
    209 
    210     //
    211     // Need a new node holding things together then.  Make
    212     // one and promote it to the right type.
    213     //
    214     TIntermBinary* node = new TIntermBinary(op);
    215     node->setLine(line);
    216 
    217     node->setLeft(left);
    218     node->setRight(right);
    219     if (!node->promote(infoSink))
    220         return 0;
    221 
    222     //
    223     // See if we can fold constants.
    224     //
    225     TIntermConstantUnion *leftTempConstant = left->getAsConstantUnion();
    226     TIntermConstantUnion *rightTempConstant = right->getAsConstantUnion();
    227     if (leftTempConstant && rightTempConstant) {
    228         TIntermTyped *typedReturnNode = leftTempConstant->fold(node->getOp(), rightTempConstant, infoSink);
    229 
    230         if (typedReturnNode)
    231             return typedReturnNode;
    232     }
    233 
    234     return node;
    235 }
    236 
    237 //
    238 // Connect two nodes through an assignment.
    239 //
    240 // Returns the added node.
    241 //
    242 TIntermTyped* TIntermediate::addAssign(TOperator op, TIntermTyped* left, TIntermTyped* right, const TSourceLoc& line)
    243 {
    244     //
    245     // Like adding binary math, except the conversion can only go
    246     // from right to left.
    247     //
    248     TIntermBinary* node = new TIntermBinary(op);
    249     node->setLine(line);
    250 
    251     TIntermTyped* child = addConversion(op, left->getType(), right);
    252     if (child == 0)
    253         return 0;
    254 
    255     node->setLeft(left);
    256     node->setRight(child);
    257     if (! node->promote(infoSink))
    258         return 0;
    259 
    260     return node;
    261 }
    262 
    263 //
    264 // Connect two nodes through an index operator, where the left node is the base
    265 // of an array or struct, and the right node is a direct or indirect offset.
    266 //
    267 // Returns the added node.
    268 // The caller should set the type of the returned node.
    269 //
    270 TIntermTyped* TIntermediate::addIndex(TOperator op, TIntermTyped* base, TIntermTyped* index, const TSourceLoc& line)
    271 {
    272     TIntermBinary* node = new TIntermBinary(op);
    273     node->setLine(line);
    274     node->setLeft(base);
    275     node->setRight(index);
    276 
    277     // caller should set the type
    278 
    279     return node;
    280 }
    281 
    282 //
    283 // Add one node as the parent of another that it operates on.
    284 //
    285 // Returns the added node.
    286 //
    287 TIntermTyped* TIntermediate::addUnaryMath(TOperator op, TIntermNode* childNode, const TSourceLoc& line)
    288 {
    289     TIntermUnary* node;
    290     TIntermTyped* child = childNode->getAsTyped();
    291 
    292     if (child == 0) {
    293         infoSink.info.message(EPrefixInternalError, line, "Bad type in AddUnaryMath");
    294         return 0;
    295     }
    296 
    297     switch (op) {
    298         case EOpLogicalNot:
    299             if (child->getType().getBasicType() != EbtBool || child->getType().isMatrix() || child->getType().isArray() || child->getType().isVector()) {
    300                 return 0;
    301             }
    302             break;
    303 
    304         case EOpPostIncrement:
    305         case EOpPreIncrement:
    306         case EOpPostDecrement:
    307         case EOpPreDecrement:
    308         case EOpNegative:
    309             if (child->getType().getBasicType() == EbtStruct || child->getType().isArray())
    310                 return 0;
    311         default: break;
    312     }
    313 
    314     //
    315     // Do we need to promote the operand?
    316     //
    317     // Note: Implicit promotions were removed from the language.
    318     //
    319     TBasicType newType = EbtVoid;
    320     switch (op) {
    321         case EOpConstructInt:   newType = EbtInt;   break;
    322         case EOpConstructUInt:  newType = EbtUInt;  break;
    323         case EOpConstructBool:  newType = EbtBool;  break;
    324         case EOpConstructFloat: newType = EbtFloat; break;
    325         default: break;
    326     }
    327 
    328     if (newType != EbtVoid) {
    329         child = addConversion(op, TType(newType, child->getPrecision(), EvqTemporary,
    330             child->getNominalSize(),
    331             child->getSecondarySize(),
    332             child->isArray()),
    333             child);
    334         if (child == 0)
    335             return 0;
    336     }
    337 
    338     //
    339     // For constructors, we are now done, it's all in the conversion.
    340     //
    341     switch (op) {
    342         case EOpConstructInt:
    343         case EOpConstructUInt:
    344         case EOpConstructBool:
    345         case EOpConstructFloat:
    346             return child;
    347         default: break;
    348     }
    349 
    350     TIntermConstantUnion *childTempConstant = 0;
    351     if (child->getAsConstantUnion())
    352         childTempConstant = child->getAsConstantUnion();
    353 
    354     //
    355     // Make a new node for the operator.
    356     //
    357     node = new TIntermUnary(op);
    358     node->setLine(line);
    359     node->setOperand(child);
    360 
    361     if (! node->promote(infoSink))
    362         return 0;
    363 
    364     if (childTempConstant)  {
    365         TIntermTyped* newChild = childTempConstant->fold(op, 0, infoSink);
    366 
    367         if (newChild)
    368             return newChild;
    369     }
    370 
    371     return node;
    372 }
    373 
    374 //
    375 // This is the safe way to change the operator on an aggregate, as it
    376 // does lots of error checking and fixing.  Especially for establishing
    377 // a function call's operation on it's set of parameters.  Sequences
    378 // of instructions are also aggregates, but they just direnctly set
    379 // their operator to EOpSequence.
    380 //
    381 // Returns an aggregate node, which could be the one passed in if
    382 // it was already an aggregate but no operator was set.
    383 //
    384 TIntermAggregate* TIntermediate::setAggregateOperator(TIntermNode* node, TOperator op, const TSourceLoc& line)
    385 {
    386     TIntermAggregate* aggNode;
    387 
    388     //
    389     // Make sure we have an aggregate.  If not turn it into one.
    390     //
    391     if (node) {
    392         aggNode = node->getAsAggregate();
    393         if (aggNode == 0 || aggNode->getOp() != EOpNull) {
    394             //
    395             // Make an aggregate containing this node.
    396             //
    397             aggNode = new TIntermAggregate();
    398             aggNode->getSequence().push_back(node);
    399         }
    400     } else
    401         aggNode = new TIntermAggregate();
    402 
    403     //
    404     // Set the operator.
    405     //
    406     aggNode->setOp(op);
    407     aggNode->setLine(line);
    408 
    409     return aggNode;
    410 }
    411 
    412 //
    413 // Convert one type to another.
    414 //
    415 // Returns the node representing the conversion, which could be the same
    416 // node passed in if no conversion was needed.
    417 //
    418 // Return 0 if a conversion can't be done.
    419 //
    420 TIntermTyped* TIntermediate::addConversion(TOperator op, const TType& type, TIntermTyped* node)
    421 {
    422     //
    423     // Does the base type allow operation?
    424     //
    425     if (node->getBasicType() == EbtVoid ||
    426         IsSampler(node->getBasicType()))
    427     {
    428         return 0;
    429     }
    430 
    431     //
    432     // Otherwise, if types are identical, no problem
    433     //
    434     if (type == node->getType())
    435         return node;
    436 
    437     //
    438     // If one's a structure, then no conversions.
    439     //
    440     if (type.getStruct() || node->getType().getStruct())
    441         return 0;
    442 
    443     //
    444     // If one's an array, then no conversions.
    445     //
    446     if (type.isArray() || node->getType().isArray())
    447         return 0;
    448 
    449     TBasicType promoteTo;
    450 
    451     switch (op) {
    452         //
    453         // Explicit conversions
    454         //
    455         case EOpConstructBool:
    456             promoteTo = EbtBool;
    457             break;
    458         case EOpConstructFloat:
    459             promoteTo = EbtFloat;
    460             break;
    461         case EOpConstructInt:
    462             promoteTo = EbtInt;
    463             break;
    464         case EOpConstructUInt:
    465             promoteTo = EbtUInt;
    466             break;
    467         default:
    468             //
    469             // implicit conversions were removed from the language.
    470             //
    471             if (type.getBasicType() != node->getType().getBasicType())
    472                 return 0;
    473             //
    474             // Size and structure could still differ, but that's
    475             // handled by operator promotion.
    476             //
    477             return node;
    478     }
    479 
    480     if (node->getAsConstantUnion()) {
    481 
    482         return (promoteConstantUnion(promoteTo, node->getAsConstantUnion()));
    483     } else {
    484 
    485         //
    486         // Add a new newNode for the conversion.
    487         //
    488         TIntermUnary* newNode = 0;
    489 
    490         TOperator newOp = EOpNull;
    491         switch (promoteTo) {
    492             case EbtFloat:
    493                 switch (node->getBasicType()) {
    494                     case EbtInt:    newOp = EOpConvIntToFloat;  break;
    495                     case EbtUInt:   newOp = EOpConvFloatToUInt; break;
    496                     case EbtBool:   newOp = EOpConvBoolToFloat; break;
    497                     default:
    498                         infoSink.info.message(EPrefixInternalError, node->getLine(), "Bad promotion node");
    499                         return 0;
    500                 }
    501                 break;
    502             case EbtBool:
    503                 switch (node->getBasicType()) {
    504                     case EbtInt:    newOp = EOpConvIntToBool;   break;
    505                     case EbtUInt:   newOp = EOpConvBoolToUInt;  break;
    506                     case EbtFloat:  newOp = EOpConvFloatToBool; break;
    507                     default:
    508                         infoSink.info.message(EPrefixInternalError, node->getLine(), "Bad promotion node");
    509                         return 0;
    510                 }
    511                 break;
    512             case EbtInt:
    513                 switch (node->getBasicType()) {
    514                     case EbtUInt:   newOp = EOpConvUIntToInt;  break;
    515                     case EbtBool:   newOp = EOpConvBoolToInt;  break;
    516                     case EbtFloat:  newOp = EOpConvFloatToInt; break;
    517                     default:
    518                         infoSink.info.message(EPrefixInternalError, node->getLine(), "Bad promotion node");
    519                         return 0;
    520                 }
    521                 break;
    522             case EbtUInt:
    523                 switch (node->getBasicType()) {
    524                     case EbtInt:    newOp = EOpConvIntToUInt;   break;
    525                     case EbtBool:   newOp = EOpConvBoolToUInt;  break;
    526                     case EbtFloat:  newOp = EOpConvFloatToUInt; break;
    527                     default:
    528                         infoSink.info.message(EPrefixInternalError, node->getLine(), "Bad promotion node");
    529                         return 0;
    530                 }
    531                 break;
    532             default:
    533                 infoSink.info.message(EPrefixInternalError, node->getLine(), "Bad promotion type");
    534                 return 0;
    535         }
    536 
    537         TType type(promoteTo, node->getPrecision(), EvqTemporary, node->getNominalSize(), node->getSecondarySize(), node->isArray());
    538         newNode = new TIntermUnary(newOp, type);
    539         newNode->setLine(node->getLine());
    540         newNode->setOperand(node);
    541 
    542         return newNode;
    543     }
    544 }
    545 
    546 //
    547 // Safe way to combine two nodes into an aggregate.  Works with null pointers,
    548 // a node that's not a aggregate yet, etc.
    549 //
    550 // Returns the resulting aggregate, unless 0 was passed in for
    551 // both existing nodes.
    552 //
    553 TIntermAggregate* TIntermediate::growAggregate(TIntermNode* left, TIntermNode* right, const TSourceLoc& line)
    554 {
    555     if (left == 0 && right == 0)
    556         return 0;
    557 
    558     TIntermAggregate* aggNode = 0;
    559     if (left)
    560         aggNode = left->getAsAggregate();
    561     if (!aggNode || aggNode->getOp() != EOpNull) {
    562         aggNode = new TIntermAggregate;
    563         if (left)
    564             aggNode->getSequence().push_back(left);
    565     }
    566 
    567     if (right)
    568         aggNode->getSequence().push_back(right);
    569 
    570     aggNode->setLine(line);
    571 
    572     return aggNode;
    573 }
    574 
    575 //
    576 // Turn an existing node into an aggregate.
    577 //
    578 // Returns an aggregate, unless 0 was passed in for the existing node.
    579 //
    580 TIntermAggregate* TIntermediate::makeAggregate(TIntermNode* node, const TSourceLoc& line)
    581 {
    582     if (node == 0)
    583         return 0;
    584 
    585     TIntermAggregate* aggNode = new TIntermAggregate;
    586     aggNode->getSequence().push_back(node);
    587 
    588     aggNode->setLine(line);
    589 
    590     return aggNode;
    591 }
    592 
    593 //
    594 // For "if" test nodes.  There are three children; a condition,
    595 // a true path, and a false path.  The two paths are in the
    596 // nodePair.
    597 //
    598 // Returns the selection node created.
    599 //
    600 TIntermNode* TIntermediate::addSelection(TIntermTyped* cond, TIntermNodePair nodePair, const TSourceLoc& line)
    601 {
    602     //
    603     // For compile time constant selections, prune the code and
    604     // test now.
    605     //
    606 
    607     if (cond->getAsTyped() && cond->getAsTyped()->getAsConstantUnion()) {
    608         if (cond->getAsConstantUnion()->getBConst(0) == true)
    609             return nodePair.node1 ? setAggregateOperator(nodePair.node1, EOpSequence, nodePair.node1->getLine()) : NULL;
    610         else
    611             return nodePair.node2 ? setAggregateOperator(nodePair.node2, EOpSequence, nodePair.node2->getLine()) : NULL;
    612     }
    613 
    614     TIntermSelection* node = new TIntermSelection(cond, nodePair.node1, nodePair.node2);
    615     node->setLine(line);
    616 
    617     return node;
    618 }
    619 
    620 
    621 TIntermTyped* TIntermediate::addComma(TIntermTyped* left, TIntermTyped* right, const TSourceLoc& line)
    622 {
    623     if (left->getType().getQualifier() == EvqConst && right->getType().getQualifier() == EvqConst) {
    624         return right;
    625     } else {
    626         TIntermTyped *commaAggregate = growAggregate(left, right, line);
    627         commaAggregate->getAsAggregate()->setOp(EOpComma);
    628         commaAggregate->setType(right->getType());
    629         commaAggregate->getTypePointer()->setQualifier(EvqTemporary);
    630         return commaAggregate;
    631     }
    632 }
    633 
    634 //
    635 // For "?:" test nodes.  There are three children; a condition,
    636 // a true path, and a false path.  The two paths are specified
    637 // as separate parameters.
    638 //
    639 // Returns the selection node created, or 0 if one could not be.
    640 //
    641 TIntermTyped* TIntermediate::addSelection(TIntermTyped* cond, TIntermTyped* trueBlock, TIntermTyped* falseBlock, const TSourceLoc& line)
    642 {
    643     //
    644     // Get compatible types.
    645     //
    646     TIntermTyped* child = addConversion(EOpSequence, trueBlock->getType(), falseBlock);
    647     if (child)
    648         falseBlock = child;
    649     else {
    650         child = addConversion(EOpSequence, falseBlock->getType(), trueBlock);
    651         if (child)
    652             trueBlock = child;
    653         else
    654             return 0;
    655     }
    656 
    657     //
    658     // See if all the operands are constant, then fold it otherwise not.
    659     //
    660 
    661     if (cond->getAsConstantUnion() && trueBlock->getAsConstantUnion() && falseBlock->getAsConstantUnion()) {
    662         if (cond->getAsConstantUnion()->getBConst(0))
    663             return trueBlock;
    664         else
    665             return falseBlock;
    666     }
    667 
    668     //
    669     // Make a selection node.
    670     //
    671     TIntermSelection* node = new TIntermSelection(cond, trueBlock, falseBlock, trueBlock->getType());
    672     node->getTypePointer()->setQualifier(EvqTemporary);
    673     node->setLine(line);
    674 
    675     return node;
    676 }
    677 
    678 //
    679 // Constant terminal nodes.  Has a union that contains bool, float or int constants
    680 //
    681 // Returns the constant union node created.
    682 //
    683 
    684 TIntermConstantUnion* TIntermediate::addConstantUnion(ConstantUnion* unionArrayPointer, const TType& t, const TSourceLoc& line)
    685 {
    686     TIntermConstantUnion* node = new TIntermConstantUnion(unionArrayPointer, t);
    687     node->setLine(line);
    688 
    689     return node;
    690 }
    691 
    692 TIntermTyped* TIntermediate::addSwizzle(TVectorFields& fields, const TSourceLoc& line)
    693 {
    694 
    695     TIntermAggregate* node = new TIntermAggregate(EOpSequence);
    696 
    697     node->setLine(line);
    698     TIntermConstantUnion* constIntNode;
    699     TIntermSequence &sequenceVector = node->getSequence();
    700     ConstantUnion* unionArray;
    701 
    702     for (int i = 0; i < fields.num; i++) {
    703         unionArray = new ConstantUnion[1];
    704         unionArray->setIConst(fields.offsets[i]);
    705         constIntNode = addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), line);
    706         sequenceVector.push_back(constIntNode);
    707     }
    708 
    709     return node;
    710 }
    711 
    712 //
    713 // Create loop nodes.
    714 //
    715 TIntermNode* TIntermediate::addLoop(TLoopType type, TIntermNode* init, TIntermTyped* cond, TIntermTyped* expr, TIntermNode* body, const TSourceLoc& line)
    716 {
    717     TIntermNode* node = new TIntermLoop(type, init, cond, expr, body);
    718     node->setLine(line);
    719 
    720     return node;
    721 }
    722 
    723 //
    724 // Add branches.
    725 //
    726 TIntermBranch* TIntermediate::addBranch(TOperator branchOp, const TSourceLoc& line)
    727 {
    728     return addBranch(branchOp, 0, line);
    729 }
    730 
    731 TIntermBranch* TIntermediate::addBranch(TOperator branchOp, TIntermTyped* expression, const TSourceLoc& line)
    732 {
    733     TIntermBranch* node = new TIntermBranch(branchOp, expression);
    734     node->setLine(line);
    735 
    736     return node;
    737 }
    738 
    739 //
    740 // This is to be executed once the final root is put on top by the parsing
    741 // process.
    742 //
    743 bool TIntermediate::postProcess(TIntermNode* root)
    744 {
    745     if (root == 0)
    746         return true;
    747 
    748     //
    749     // First, finish off the top level sequence, if any
    750     //
    751     TIntermAggregate* aggRoot = root->getAsAggregate();
    752     if (aggRoot && aggRoot->getOp() == EOpNull)
    753         aggRoot->setOp(EOpSequence);
    754 
    755     return true;
    756 }
    757 
    758 //
    759 // This deletes the tree.
    760 //
    761 void TIntermediate::remove(TIntermNode* root)
    762 {
    763     if (root)
    764         RemoveAllTreeNodes(root);
    765 }
    766 
    767 ////////////////////////////////////////////////////////////////
    768 //
    769 // Member functions of the nodes used for building the tree.
    770 //
    771 ////////////////////////////////////////////////////////////////
    772 
    773 #define REPLACE_IF_IS(node, type, original, replacement) \
    774     if (node == original) { \
    775         node = static_cast<type *>(replacement); \
    776         return true; \
    777     }
    778 
    779 bool TIntermLoop::replaceChildNode(
    780     TIntermNode *original, TIntermNode *replacement)
    781 {
    782     REPLACE_IF_IS(init, TIntermNode, original, replacement);
    783     REPLACE_IF_IS(cond, TIntermTyped, original, replacement);
    784     REPLACE_IF_IS(expr, TIntermTyped, original, replacement);
    785     REPLACE_IF_IS(body, TIntermNode, original, replacement);
    786     return false;
    787 }
    788 
    789 void TIntermLoop::enqueueChildren(std::queue<TIntermNode*> *nodeQueue) const
    790 {
    791     if (init)
    792     {
    793         nodeQueue->push(init);
    794     }
    795     if (cond)
    796     {
    797         nodeQueue->push(cond);
    798     }
    799     if (expr)
    800     {
    801         nodeQueue->push(expr);
    802     }
    803     if (body)
    804     {
    805         nodeQueue->push(body);
    806     }
    807 }
    808 
    809 bool TIntermBranch::replaceChildNode(
    810     TIntermNode *original, TIntermNode *replacement)
    811 {
    812     REPLACE_IF_IS(expression, TIntermTyped, original, replacement);
    813     return false;
    814 }
    815 
    816 void TIntermBranch::enqueueChildren(std::queue<TIntermNode*> *nodeQueue) const
    817 {
    818     if (expression)
    819     {
    820         nodeQueue->push(expression);
    821     }
    822 }
    823 
    824 bool TIntermBinary::replaceChildNode(
    825     TIntermNode *original, TIntermNode *replacement)
    826 {
    827     REPLACE_IF_IS(left, TIntermTyped, original, replacement);
    828     REPLACE_IF_IS(right, TIntermTyped, original, replacement);
    829     return false;
    830 }
    831 
    832 void TIntermBinary::enqueueChildren(std::queue<TIntermNode*> *nodeQueue) const
    833 {
    834     if (left)
    835     {
    836         nodeQueue->push(left);
    837     }
    838     if (right)
    839     {
    840         nodeQueue->push(right);
    841     }
    842 }
    843 
    844 bool TIntermUnary::replaceChildNode(
    845     TIntermNode *original, TIntermNode *replacement)
    846 {
    847     REPLACE_IF_IS(operand, TIntermTyped, original, replacement);
    848     return false;
    849 }
    850 
    851 void TIntermUnary::enqueueChildren(std::queue<TIntermNode*> *nodeQueue) const
    852 {
    853     if (operand)
    854     {
    855         nodeQueue->push(operand);
    856     }
    857 }
    858 
    859 bool TIntermAggregate::replaceChildNode(
    860     TIntermNode *original, TIntermNode *replacement)
    861 {
    862     for (size_t ii = 0; ii < sequence.size(); ++ii)
    863     {
    864         REPLACE_IF_IS(sequence[ii], TIntermNode, original, replacement);
    865     }
    866     return false;
    867 }
    868 
    869 void TIntermAggregate::enqueueChildren(std::queue<TIntermNode*> *nodeQueue) const
    870 {
    871     for (size_t childIndex = 0; childIndex < sequence.size(); childIndex++)
    872     {
    873         nodeQueue->push(sequence[childIndex]);
    874     }
    875 }
    876 
    877 bool TIntermSelection::replaceChildNode(
    878     TIntermNode *original, TIntermNode *replacement)
    879 {
    880     REPLACE_IF_IS(condition, TIntermTyped, original, replacement);
    881     REPLACE_IF_IS(trueBlock, TIntermNode, original, replacement);
    882     REPLACE_IF_IS(falseBlock, TIntermNode, original, replacement);
    883     return false;
    884 }
    885 
    886 void TIntermSelection::enqueueChildren(std::queue<TIntermNode*> *nodeQueue) const
    887 {
    888     if (condition)
    889     {
    890         nodeQueue->push(condition);
    891     }
    892     if (trueBlock)
    893     {
    894         nodeQueue->push(trueBlock);
    895     }
    896     if (falseBlock)
    897     {
    898         nodeQueue->push(falseBlock);
    899     }
    900 }
    901 
    902 //
    903 // Say whether or not an operation node changes the value of a variable.
    904 //
    905 bool TIntermOperator::isAssignment() const
    906 {
    907     switch (op) {
    908         case EOpPostIncrement:
    909         case EOpPostDecrement:
    910         case EOpPreIncrement:
    911         case EOpPreDecrement:
    912         case EOpAssign:
    913         case EOpAddAssign:
    914         case EOpSubAssign:
    915         case EOpMulAssign:
    916         case EOpVectorTimesMatrixAssign:
    917         case EOpVectorTimesScalarAssign:
    918         case EOpMatrixTimesScalarAssign:
    919         case EOpMatrixTimesMatrixAssign:
    920         case EOpDivAssign:
    921             return true;
    922         default:
    923             return false;
    924     }
    925 }
    926 
    927 //
    928 // returns true if the operator is for one of the constructors
    929 //
    930 bool TIntermOperator::isConstructor() const
    931 {
    932     switch (op) {
    933         case EOpConstructVec2:
    934         case EOpConstructVec3:
    935         case EOpConstructVec4:
    936         case EOpConstructMat2:
    937         case EOpConstructMat3:
    938         case EOpConstructMat4:
    939         case EOpConstructFloat:
    940         case EOpConstructIVec2:
    941         case EOpConstructIVec3:
    942         case EOpConstructIVec4:
    943         case EOpConstructInt:
    944         case EOpConstructUVec2:
    945         case EOpConstructUVec3:
    946         case EOpConstructUVec4:
    947         case EOpConstructUInt:
    948         case EOpConstructBVec2:
    949         case EOpConstructBVec3:
    950         case EOpConstructBVec4:
    951         case EOpConstructBool:
    952         case EOpConstructStruct:
    953             return true;
    954         default:
    955             return false;
    956     }
    957 }
    958 
    959 //
    960 // Make sure the type of a unary operator is appropriate for its
    961 // combination of operation and operand type.
    962 //
    963 // Returns false in nothing makes sense.
    964 //
    965 bool TIntermUnary::promote(TInfoSink&)
    966 {
    967     switch (op) {
    968         case EOpLogicalNot:
    969             if (operand->getBasicType() != EbtBool)
    970                 return false;
    971             break;
    972         case EOpNegative:
    973         case EOpPostIncrement:
    974         case EOpPostDecrement:
    975         case EOpPreIncrement:
    976         case EOpPreDecrement:
    977             if (operand->getBasicType() == EbtBool)
    978                 return false;
    979             break;
    980 
    981             // operators for built-ins are already type checked against their prototype
    982         case EOpAny:
    983         case EOpAll:
    984         case EOpVectorLogicalNot:
    985             return true;
    986 
    987         default:
    988             if (operand->getBasicType() != EbtFloat)
    989                 return false;
    990     }
    991 
    992     setType(operand->getType());
    993     type.setQualifier(EvqTemporary);
    994 
    995     return true;
    996 }
    997 
    998 bool validateMultiplication(TOperator op, const TType &left, const TType &right)
    999 {
   1000     switch (op)
   1001     {
   1002       case EOpMul:
   1003       case EOpMulAssign:
   1004         return left.getNominalSize() == right.getNominalSize() && left.getSecondarySize() == right.getSecondarySize();
   1005       case EOpVectorTimesScalar:
   1006       case EOpVectorTimesScalarAssign:
   1007         return true;
   1008       case EOpVectorTimesMatrix:
   1009         return left.getNominalSize() == right.getRows();
   1010       case EOpVectorTimesMatrixAssign:
   1011         return left.getNominalSize() == right.getRows() && left.getNominalSize() == right.getCols();
   1012       case EOpMatrixTimesVector:
   1013         return left.getCols() == right.getNominalSize();
   1014       case EOpMatrixTimesScalar:
   1015       case EOpMatrixTimesScalarAssign:
   1016         return true;
   1017       case EOpMatrixTimesMatrix:
   1018         return left.getCols() == right.getRows();
   1019       case EOpMatrixTimesMatrixAssign:
   1020         return left.getCols() == right.getCols() && left.getRows() == right.getRows();
   1021 
   1022       default:
   1023         UNREACHABLE();
   1024         return false;
   1025     }
   1026 }
   1027 
   1028 //
   1029 // Establishes the type of the resultant operation, as well as
   1030 // makes the operator the correct one for the operands.
   1031 //
   1032 // Returns false if operator can't work on operands.
   1033 //
   1034 bool TIntermBinary::promote(TInfoSink& infoSink)
   1035 {
   1036     // This function only handles scalars, vectors, and matrices.
   1037     if (left->isArray() || right->isArray())
   1038     {
   1039         infoSink.info.message(EPrefixInternalError, getLine(), "Invalid operation for arrays");
   1040         return false;
   1041     }
   1042 
   1043     // GLSL ES 2.0 does not support implicit type casting.
   1044     // So the basic type should always match.
   1045     if (left->getBasicType() != right->getBasicType())
   1046         return false;
   1047 
   1048     //
   1049     // Base assumption:  just make the type the same as the left
   1050     // operand.  Then only deviations from this need be coded.
   1051     //
   1052     setType(left->getType());
   1053 
   1054     // The result gets promoted to the highest precision.
   1055     TPrecision higherPrecision = GetHigherPrecision(left->getPrecision(), right->getPrecision());
   1056     getTypePointer()->setPrecision(higherPrecision);
   1057 
   1058     // Binary operations results in temporary variables unless both
   1059     // operands are const.
   1060     if (left->getQualifier() != EvqConst || right->getQualifier() != EvqConst)
   1061     {
   1062         getTypePointer()->setQualifier(EvqTemporary);
   1063     }
   1064 
   1065     const int nominalSize = std::max(left->getNominalSize(), right->getNominalSize());
   1066 
   1067     //
   1068     // All scalars or structs. Code after this test assumes this case is removed!
   1069     //
   1070     if (nominalSize == 1)
   1071     {
   1072         switch (op)
   1073         {
   1074             //
   1075             // Promote to conditional
   1076             //
   1077             case EOpEqual:
   1078             case EOpNotEqual:
   1079             case EOpLessThan:
   1080             case EOpGreaterThan:
   1081             case EOpLessThanEqual:
   1082             case EOpGreaterThanEqual:
   1083                 setType(TType(EbtBool, EbpUndefined));
   1084                 break;
   1085 
   1086             //
   1087             // And and Or operate on conditionals
   1088             //
   1089             case EOpLogicalAnd:
   1090             case EOpLogicalOr:
   1091                 // Both operands must be of type bool.
   1092                 if (left->getBasicType() != EbtBool || right->getBasicType() != EbtBool)
   1093                 {
   1094                     return false;
   1095                 }
   1096                 setType(TType(EbtBool, EbpUndefined));
   1097                 break;
   1098 
   1099             default:
   1100                 break;
   1101         }
   1102         return true;
   1103     }
   1104 
   1105     // If we reach here, at least one of the operands is vector or matrix.
   1106     // The other operand could be a scalar, vector, or matrix.
   1107     // Can these two operands be combined?
   1108     //
   1109     TBasicType basicType = left->getBasicType();
   1110     switch (op)
   1111     {
   1112         case EOpMul:
   1113             if (!left->isMatrix() && right->isMatrix())
   1114             {
   1115                 if (left->isVector())
   1116                 {
   1117                     op = EOpVectorTimesMatrix;
   1118                     setType(TType(basicType, higherPrecision, EvqTemporary, right->getCols(), 1));
   1119                 }
   1120                 else
   1121                 {
   1122                     op = EOpMatrixTimesScalar;
   1123                     setType(TType(basicType, higherPrecision, EvqTemporary, right->getCols(), right->getRows()));
   1124                 }
   1125             }
   1126             else if (left->isMatrix() && !right->isMatrix())
   1127             {
   1128                 if (right->isVector())
   1129                 {
   1130                     op = EOpMatrixTimesVector;
   1131                     setType(TType(basicType, higherPrecision, EvqTemporary, left->getRows(), 1));
   1132                 }
   1133                 else
   1134                 {
   1135                     op = EOpMatrixTimesScalar;
   1136                 }
   1137             }
   1138             else if (left->isMatrix() && right->isMatrix())
   1139             {
   1140                 op = EOpMatrixTimesMatrix;
   1141                 setType(TType(basicType, higherPrecision, EvqTemporary, right->getCols(), left->getRows()));
   1142             }
   1143             else if (!left->isMatrix() && !right->isMatrix())
   1144             {
   1145                 if (left->isVector() && right->isVector())
   1146                 {
   1147                     // leave as component product
   1148                 }
   1149                 else if (left->isVector() || right->isVector())
   1150                 {
   1151                     op = EOpVectorTimesScalar;
   1152                     setType(TType(basicType, higherPrecision, EvqTemporary, nominalSize, 1));
   1153                 }
   1154             }
   1155             else
   1156             {
   1157                 infoSink.info.message(EPrefixInternalError, getLine(), "Missing elses");
   1158                 return false;
   1159             }
   1160 
   1161             if (!validateMultiplication(op, left->getType(), right->getType()))
   1162             {
   1163                 return false;
   1164             }
   1165             break;
   1166 
   1167         case EOpMulAssign:
   1168             if (!left->isMatrix() && right->isMatrix())
   1169             {
   1170                 if (left->isVector())
   1171                 {
   1172                     op = EOpVectorTimesMatrixAssign;
   1173                 }
   1174                 else
   1175                 {
   1176                     return false;
   1177                 }
   1178             }
   1179             else if (left->isMatrix() && !right->isMatrix())
   1180             {
   1181                 if (right->isVector())
   1182                 {
   1183                     return false;
   1184                 }
   1185                 else
   1186                 {
   1187                     op = EOpMatrixTimesScalarAssign;
   1188                 }
   1189             }
   1190             else if (left->isMatrix() && right->isMatrix())
   1191             {
   1192                 op = EOpMatrixTimesMatrixAssign;
   1193                 setType(TType(basicType, higherPrecision, EvqTemporary, right->getCols(), left->getRows()));
   1194             }
   1195             else if (!left->isMatrix() && !right->isMatrix())
   1196             {
   1197                 if (left->isVector() && right->isVector())
   1198                 {
   1199                     // leave as component product
   1200                 }
   1201                 else if (left->isVector() || right->isVector())
   1202                 {
   1203                     if (! left->isVector())
   1204                         return false;
   1205                     op = EOpVectorTimesScalarAssign;
   1206                     setType(TType(basicType, higherPrecision, EvqTemporary, left->getNominalSize(), 1));
   1207                 }
   1208             }
   1209             else
   1210             {
   1211                 infoSink.info.message(EPrefixInternalError, getLine(), "Missing elses");
   1212                 return false;
   1213             }
   1214 
   1215             if (!validateMultiplication(op, left->getType(), right->getType()))
   1216             {
   1217                 return false;
   1218             }
   1219             break;
   1220 
   1221         case EOpAssign:
   1222         case EOpInitialize:
   1223         case EOpAdd:
   1224         case EOpSub:
   1225         case EOpDiv:
   1226         case EOpAddAssign:
   1227         case EOpSubAssign:
   1228         case EOpDivAssign:
   1229             {
   1230                 if ((left->isMatrix() && right->isVector()) ||
   1231                     (left->isVector() && right->isMatrix()))
   1232                     return false;
   1233 
   1234                 // Are the sizes compatible?
   1235                 if (left->getNominalSize() != right->getNominalSize() || left->getSecondarySize() != right->getSecondarySize())
   1236                 {
   1237                     // If the nominal size of operands do not match:
   1238                     // One of them must be scalar.
   1239                     if (!left->isScalar() && !right->isScalar())
   1240                         return false;
   1241 
   1242                     // Operator cannot be of type pure assignment.
   1243                     if (op == EOpAssign || op == EOpInitialize)
   1244                         return false;
   1245                 }
   1246 
   1247                 const int secondarySize = std::max(left->getSecondarySize(), right->getSecondarySize());
   1248 
   1249                 setType(TType(basicType, higherPrecision, EvqTemporary, nominalSize, secondarySize));
   1250             }
   1251             break;
   1252 
   1253         case EOpEqual:
   1254         case EOpNotEqual:
   1255         case EOpLessThan:
   1256         case EOpGreaterThan:
   1257         case EOpLessThanEqual:
   1258         case EOpGreaterThanEqual:
   1259             if ((left->getNominalSize() != right->getNominalSize()) ||
   1260                 (left->getSecondarySize() != right->getSecondarySize()))
   1261                 return false;
   1262             setType(TType(EbtBool, EbpUndefined));
   1263             break;
   1264 
   1265         default:
   1266             return false;
   1267     }
   1268 
   1269     return true;
   1270 }
   1271 
   1272 bool CompareStruct(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray)
   1273 {
   1274     const TFieldList& fields = leftNodeType.getStruct()->fields();
   1275 
   1276     size_t structSize = fields.size();
   1277     size_t index = 0;
   1278 
   1279     for (size_t j = 0; j < structSize; j++) {
   1280         size_t size = fields[j]->type()->getObjectSize();
   1281         for (size_t i = 0; i < size; i++) {
   1282             if (fields[j]->type()->getBasicType() == EbtStruct) {
   1283                 if (!CompareStructure(*fields[j]->type(), &rightUnionArray[index], &leftUnionArray[index]))
   1284                     return false;
   1285             } else {
   1286                 if (leftUnionArray[index] != rightUnionArray[index])
   1287                     return false;
   1288                 index++;
   1289             }
   1290 
   1291         }
   1292     }
   1293     return true;
   1294 }
   1295 
   1296 bool CompareStructure(const TType& leftNodeType, ConstantUnion* rightUnionArray, ConstantUnion* leftUnionArray)
   1297 {
   1298     if (leftNodeType.isArray()) {
   1299         TType typeWithoutArrayness = leftNodeType;
   1300         typeWithoutArrayness.clearArrayness();
   1301 
   1302         size_t arraySize = leftNodeType.getArraySize();
   1303 
   1304         for (size_t i = 0; i < arraySize; ++i) {
   1305             size_t offset = typeWithoutArrayness.getObjectSize() * i;
   1306             if (!CompareStruct(typeWithoutArrayness, &rightUnionArray[offset], &leftUnionArray[offset]))
   1307                 return false;
   1308         }
   1309     } else
   1310         return CompareStruct(leftNodeType, rightUnionArray, leftUnionArray);
   1311 
   1312     return true;
   1313 }
   1314 
   1315 //
   1316 // The fold functions see if an operation on a constant can be done in place,
   1317 // without generating run-time code.
   1318 //
   1319 // Returns the node to keep using, which may or may not be the node passed in.
   1320 //
   1321 
   1322 TIntermTyped* TIntermConstantUnion::fold(TOperator op, TIntermTyped* constantNode, TInfoSink& infoSink)
   1323 {
   1324     ConstantUnion *unionArray = getUnionArrayPointer();
   1325 
   1326     if (!unionArray)
   1327         return 0;
   1328 
   1329     size_t objectSize = getType().getObjectSize();
   1330 
   1331     if (constantNode)
   1332     {
   1333         // binary operations
   1334         TIntermConstantUnion *node = constantNode->getAsConstantUnion();
   1335         ConstantUnion *rightUnionArray = node->getUnionArrayPointer();
   1336         TType returnType = getType();
   1337 
   1338         if (!rightUnionArray)
   1339             return 0;
   1340 
   1341         // for a case like float f = 1.2 + vec4(2,3,4,5);
   1342         if (constantNode->getType().getObjectSize() == 1 && objectSize > 1)
   1343         {
   1344             rightUnionArray = new ConstantUnion[objectSize];
   1345             for (size_t i = 0; i < objectSize; ++i)
   1346             {
   1347                 rightUnionArray[i] = *node->getUnionArrayPointer();
   1348             }
   1349             returnType = getType();
   1350         }
   1351         else if (constantNode->getType().getObjectSize() > 1 && objectSize == 1)
   1352         {
   1353             // for a case like float f = vec4(2,3,4,5) + 1.2;
   1354             unionArray = new ConstantUnion[constantNode->getType().getObjectSize()];
   1355             for (size_t i = 0; i < constantNode->getType().getObjectSize(); ++i)
   1356             {
   1357                 unionArray[i] = *getUnionArrayPointer();
   1358             }
   1359             returnType = node->getType();
   1360             objectSize = constantNode->getType().getObjectSize();
   1361         }
   1362 
   1363         ConstantUnion* tempConstArray = 0;
   1364         TIntermConstantUnion *tempNode;
   1365 
   1366         bool boolNodeFlag = false;
   1367         switch(op) {
   1368           case EOpAdd:
   1369             tempConstArray = new ConstantUnion[objectSize];
   1370             {
   1371                 for (size_t i = 0; i < objectSize; i++)
   1372                     tempConstArray[i] = unionArray[i] + rightUnionArray[i];
   1373             }
   1374             break;
   1375           case EOpSub:
   1376             tempConstArray = new ConstantUnion[objectSize];
   1377             {
   1378                 for (size_t i = 0; i < objectSize; i++)
   1379                     tempConstArray[i] = unionArray[i] - rightUnionArray[i];
   1380             }
   1381             break;
   1382 
   1383           case EOpMul:
   1384           case EOpVectorTimesScalar:
   1385           case EOpMatrixTimesScalar:
   1386             tempConstArray = new ConstantUnion[objectSize];
   1387             {
   1388                 for (size_t i = 0; i < objectSize; i++)
   1389                     tempConstArray[i] = unionArray[i] * rightUnionArray[i];
   1390             }
   1391             break;
   1392 
   1393           case EOpMatrixTimesMatrix:
   1394             {
   1395                 if (getType().getBasicType() != EbtFloat || node->getBasicType() != EbtFloat)
   1396                 {
   1397                     infoSink.info.message(EPrefixInternalError, getLine(), "Constant Folding cannot be done for matrix multiply");
   1398                     return 0;
   1399                 }
   1400 
   1401                 const int leftCols = getCols();
   1402                 const int leftRows = getRows();
   1403                 const int rightCols = constantNode->getType().getCols();
   1404                 const int rightRows = constantNode->getType().getRows();
   1405                 const int resultCols = rightCols;
   1406                 const int resultRows = leftRows;
   1407 
   1408                 tempConstArray = new ConstantUnion[resultCols*resultRows];
   1409                 for (int row = 0; row < resultRows; row++)
   1410                 {
   1411                     for (int column = 0; column < resultCols; column++)
   1412                     {
   1413                         tempConstArray[resultRows * column + row].setFConst(0.0f);
   1414                         for (int i = 0; i < leftCols; i++)
   1415                         {
   1416                             tempConstArray[resultRows * column + row].setFConst(tempConstArray[resultRows * column + row].getFConst() + unionArray[i * leftRows + row].getFConst() * (rightUnionArray[column * rightRows + i].getFConst()));
   1417                         }
   1418                     }
   1419                 }
   1420 
   1421                 // update return type for matrix product
   1422                 returnType.setPrimarySize(resultCols);
   1423                 returnType.setSecondarySize(resultRows);
   1424             }
   1425             break;
   1426 
   1427           case EOpDiv:
   1428             {
   1429                 tempConstArray = new ConstantUnion[objectSize];
   1430                 for (size_t i = 0; i < objectSize; i++)
   1431                 {
   1432                     switch (getType().getBasicType())
   1433                     {
   1434                       case EbtFloat:
   1435                         if (rightUnionArray[i] == 0.0f)
   1436                         {
   1437                             infoSink.info.message(EPrefixWarning, getLine(), "Divide by zero error during constant folding");
   1438                             tempConstArray[i].setFConst(unionArray[i].getFConst() < 0 ? -FLT_MAX : FLT_MAX);
   1439                         }
   1440                         else
   1441                         {
   1442                             tempConstArray[i].setFConst(unionArray[i].getFConst() / rightUnionArray[i].getFConst());
   1443                         }
   1444                         break;
   1445 
   1446                       case EbtInt:
   1447                         if (rightUnionArray[i] == 0)
   1448                         {
   1449                             infoSink.info.message(EPrefixWarning, getLine(), "Divide by zero error during constant folding");
   1450                             tempConstArray[i].setIConst(INT_MAX);
   1451                         }
   1452                         else
   1453                         {
   1454                             tempConstArray[i].setIConst(unionArray[i].getIConst() / rightUnionArray[i].getIConst());
   1455                         }
   1456                         break;
   1457 
   1458                       case EbtUInt:
   1459                         if (rightUnionArray[i] == 0)
   1460                         {
   1461                             infoSink.info.message(EPrefixWarning, getLine(), "Divide by zero error during constant folding");
   1462                             tempConstArray[i].setUConst(UINT_MAX);
   1463                         }
   1464                         else
   1465                         {
   1466                             tempConstArray[i].setUConst(unionArray[i].getUConst() / rightUnionArray[i].getUConst());
   1467                         }
   1468                         break;
   1469 
   1470                       default:
   1471                         infoSink.info.message(EPrefixInternalError, getLine(), "Constant folding cannot be done for \"/\"");
   1472                         return 0;
   1473                     }
   1474                 }
   1475             }
   1476             break;
   1477 
   1478           case EOpMatrixTimesVector:
   1479             {
   1480                 if (node->getBasicType() != EbtFloat)
   1481                 {
   1482                     infoSink.info.message(EPrefixInternalError, getLine(), "Constant Folding cannot be done for matrix times vector");
   1483                     return 0;
   1484                 }
   1485 
   1486                 const int matrixCols = getCols();
   1487                 const int matrixRows = getRows();
   1488 
   1489                 tempConstArray = new ConstantUnion[matrixRows];
   1490 
   1491                 for (int matrixRow = 0; matrixRow < matrixRows; matrixRow++)
   1492                 {
   1493                     tempConstArray[matrixRow].setFConst(0.0f);
   1494                     for (int col = 0; col < matrixCols; col++)
   1495                     {
   1496                         tempConstArray[matrixRow].setFConst(tempConstArray[matrixRow].getFConst() + ((unionArray[col * matrixRows + matrixRow].getFConst()) * rightUnionArray[col].getFConst()));
   1497                     }
   1498                 }
   1499 
   1500                 returnType = node->getType();
   1501                 returnType.setPrimarySize(matrixRows);
   1502 
   1503                 tempNode = new TIntermConstantUnion(tempConstArray, returnType);
   1504                 tempNode->setLine(getLine());
   1505 
   1506                 return tempNode;
   1507             }
   1508 
   1509           case EOpVectorTimesMatrix:
   1510             {
   1511                 if (getType().getBasicType() != EbtFloat)
   1512                 {
   1513                     infoSink.info.message(EPrefixInternalError, getLine(), "Constant Folding cannot be done for vector times matrix");
   1514                     return 0;
   1515                 }
   1516 
   1517                 const int matrixCols = constantNode->getType().getCols();
   1518                 const int matrixRows = constantNode->getType().getRows();
   1519 
   1520                 tempConstArray = new ConstantUnion[matrixCols];
   1521 
   1522                 for (int matrixCol = 0; matrixCol < matrixCols; matrixCol++)
   1523                 {
   1524                     tempConstArray[matrixCol].setFConst(0.0f);
   1525                     for (int matrixRow = 0; matrixRow < matrixRows; matrixRow++)
   1526                     {
   1527                         tempConstArray[matrixCol].setFConst(tempConstArray[matrixCol].getFConst() + ((unionArray[matrixRow].getFConst()) * rightUnionArray[matrixCol * matrixRows + matrixRow].getFConst()));
   1528                     }
   1529                 }
   1530 
   1531                 returnType.setPrimarySize(matrixCols);
   1532             }
   1533             break;
   1534 
   1535           case EOpLogicalAnd: // this code is written for possible future use, will not get executed currently
   1536             {
   1537                 tempConstArray = new ConstantUnion[objectSize];
   1538                 for (size_t i = 0; i < objectSize; i++)
   1539                 {
   1540                     tempConstArray[i] = unionArray[i] && rightUnionArray[i];
   1541                 }
   1542             }
   1543             break;
   1544 
   1545           case EOpLogicalOr: // this code is written for possible future use, will not get executed currently
   1546             {
   1547                 tempConstArray = new ConstantUnion[objectSize];
   1548                 for (size_t i = 0; i < objectSize; i++)
   1549                 {
   1550                     tempConstArray[i] = unionArray[i] || rightUnionArray[i];
   1551                 }
   1552             }
   1553             break;
   1554 
   1555           case EOpLogicalXor:
   1556             {
   1557                 tempConstArray = new ConstantUnion[objectSize];
   1558                 for (size_t i = 0; i < objectSize; i++)
   1559                 {
   1560                     switch (getType().getBasicType())
   1561                     {
   1562                       case EbtBool:
   1563                         tempConstArray[i].setBConst((unionArray[i] == rightUnionArray[i]) ? false : true);
   1564                         break;
   1565                       default:
   1566                         UNREACHABLE();
   1567                         break;
   1568                     }
   1569                 }
   1570             }
   1571             break;
   1572 
   1573           case EOpLessThan:
   1574             assert(objectSize == 1);
   1575             tempConstArray = new ConstantUnion[1];
   1576             tempConstArray->setBConst(*unionArray < *rightUnionArray);
   1577             returnType = TType(EbtBool, EbpUndefined, EvqConst);
   1578             break;
   1579 
   1580           case EOpGreaterThan:
   1581             assert(objectSize == 1);
   1582             tempConstArray = new ConstantUnion[1];
   1583             tempConstArray->setBConst(*unionArray > *rightUnionArray);
   1584             returnType = TType(EbtBool, EbpUndefined, EvqConst);
   1585             break;
   1586 
   1587           case EOpLessThanEqual:
   1588             {
   1589                 assert(objectSize == 1);
   1590                 ConstantUnion constant;
   1591                 constant.setBConst(*unionArray > *rightUnionArray);
   1592                 tempConstArray = new ConstantUnion[1];
   1593                 tempConstArray->setBConst(!constant.getBConst());
   1594                 returnType = TType(EbtBool, EbpUndefined, EvqConst);
   1595                 break;
   1596             }
   1597 
   1598           case EOpGreaterThanEqual:
   1599             {
   1600                 assert(objectSize == 1);
   1601                 ConstantUnion constant;
   1602                 constant.setBConst(*unionArray < *rightUnionArray);
   1603                 tempConstArray = new ConstantUnion[1];
   1604                 tempConstArray->setBConst(!constant.getBConst());
   1605                 returnType = TType(EbtBool, EbpUndefined, EvqConst);
   1606                 break;
   1607             }
   1608 
   1609           case EOpEqual:
   1610             if (getType().getBasicType() == EbtStruct)
   1611             {
   1612                 if (!CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
   1613                     boolNodeFlag = true;
   1614             }
   1615             else
   1616             {
   1617                 for (size_t i = 0; i < objectSize; i++)
   1618                 {
   1619                     if (unionArray[i] != rightUnionArray[i])
   1620                     {
   1621                         boolNodeFlag = true;
   1622                         break;  // break out of for loop
   1623                     }
   1624                 }
   1625             }
   1626 
   1627             tempConstArray = new ConstantUnion[1];
   1628             if (!boolNodeFlag)
   1629             {
   1630                 tempConstArray->setBConst(true);
   1631             }
   1632             else
   1633             {
   1634                 tempConstArray->setBConst(false);
   1635             }
   1636 
   1637             tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
   1638             tempNode->setLine(getLine());
   1639 
   1640             return tempNode;
   1641 
   1642           case EOpNotEqual:
   1643             if (getType().getBasicType() == EbtStruct)
   1644             {
   1645                 if (CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
   1646                     boolNodeFlag = true;
   1647             }
   1648             else
   1649             {
   1650                 for (size_t i = 0; i < objectSize; i++)
   1651                 {
   1652                     if (unionArray[i] == rightUnionArray[i])
   1653                     {
   1654                         boolNodeFlag = true;
   1655                         break;  // break out of for loop
   1656                     }
   1657                 }
   1658             }
   1659 
   1660             tempConstArray = new ConstantUnion[1];
   1661             if (!boolNodeFlag)
   1662             {
   1663                 tempConstArray->setBConst(true);
   1664             }
   1665             else
   1666             {
   1667                 tempConstArray->setBConst(false);
   1668             }
   1669 
   1670             tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EbpUndefined, EvqConst));
   1671             tempNode->setLine(getLine());
   1672 
   1673             return tempNode;
   1674 
   1675           default:
   1676             infoSink.info.message(EPrefixInternalError, getLine(), "Invalid operator for constant folding");
   1677             return 0;
   1678         }
   1679         tempNode = new TIntermConstantUnion(tempConstArray, returnType);
   1680         tempNode->setLine(getLine());
   1681 
   1682         return tempNode;
   1683     }
   1684     else
   1685     {
   1686         //
   1687         // Do unary operations
   1688         //
   1689         TIntermConstantUnion *newNode = 0;
   1690         ConstantUnion* tempConstArray = new ConstantUnion[objectSize];
   1691         for (size_t i = 0; i < objectSize; i++)
   1692         {
   1693             switch(op)
   1694             {
   1695               case EOpNegative:
   1696                 switch (getType().getBasicType())
   1697                 {
   1698                   case EbtFloat: tempConstArray[i].setFConst(-unionArray[i].getFConst()); break;
   1699                   case EbtInt:   tempConstArray[i].setIConst(-unionArray[i].getIConst()); break;
   1700                   case EbtUInt:  tempConstArray[i].setUConst(static_cast<unsigned int>(-static_cast<int>(unionArray[i].getUConst()))); break;
   1701                   default:
   1702                     infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
   1703                     return 0;
   1704                 }
   1705                 break;
   1706 
   1707               case EOpLogicalNot: // this code is written for possible future use, will not get executed currently
   1708                 switch (getType().getBasicType())
   1709                 {
   1710                   case EbtBool:  tempConstArray[i].setBConst(!unionArray[i].getBConst()); break;
   1711                   default:
   1712                     infoSink.info.message(EPrefixInternalError, getLine(), "Unary operation not folded into constant");
   1713                     return 0;
   1714                 }
   1715                 break;
   1716 
   1717               default:
   1718                 return 0;
   1719             }
   1720         }
   1721         newNode = new TIntermConstantUnion(tempConstArray, getType());
   1722         newNode->setLine(getLine());
   1723         return newNode;
   1724     }
   1725 }
   1726 
   1727 TIntermTyped* TIntermediate::promoteConstantUnion(TBasicType promoteTo, TIntermConstantUnion* node)
   1728 {
   1729     size_t size = node->getType().getObjectSize();
   1730 
   1731     ConstantUnion *leftUnionArray = new ConstantUnion[size];
   1732 
   1733     for (size_t i=0; i < size; i++) {
   1734 
   1735         switch (promoteTo) {
   1736             case EbtFloat:
   1737                 switch (node->getType().getBasicType()) {
   1738                     case EbtInt:
   1739                         leftUnionArray[i].setFConst(static_cast<float>(node->getIConst(i)));
   1740                         break;
   1741                     case EbtUInt:
   1742                         leftUnionArray[i].setFConst(static_cast<float>(node->getUConst(i)));
   1743                         break;
   1744                     case EbtBool:
   1745                         leftUnionArray[i].setFConst(static_cast<float>(node->getBConst(i)));
   1746                         break;
   1747                     case EbtFloat:
   1748                         leftUnionArray[i].setFConst(static_cast<float>(node->getFConst(i)));
   1749                         break;
   1750                     default:
   1751                         infoSink.info.message(EPrefixInternalError, node->getLine(), "Cannot promote");
   1752                         return 0;
   1753                 }
   1754                 break;
   1755             case EbtInt:
   1756                 switch (node->getType().getBasicType()) {
   1757                     case EbtInt:
   1758                         leftUnionArray[i].setIConst(static_cast<int>(node->getIConst(i)));
   1759                         break;
   1760                     case EbtUInt:
   1761                         leftUnionArray[i].setIConst(static_cast<int>(node->getUConst(i)));
   1762                         break;
   1763                     case EbtBool:
   1764                         leftUnionArray[i].setIConst(static_cast<int>(node->getBConst(i)));
   1765                         break;
   1766                     case EbtFloat:
   1767                         leftUnionArray[i].setIConst(static_cast<int>(node->getFConst(i)));
   1768                         break;
   1769                     default:
   1770                         infoSink.info.message(EPrefixInternalError, node->getLine(), "Cannot promote");
   1771                         return 0;
   1772                 }
   1773                 break;
   1774             case EbtUInt:
   1775                 switch (node->getType().getBasicType()) {
   1776                     case EbtInt:
   1777                         leftUnionArray[i].setUConst(static_cast<unsigned int>(node->getIConst(i)));
   1778                         break;
   1779                     case EbtUInt:
   1780                         leftUnionArray[i].setUConst(static_cast<unsigned int>(node->getUConst(i)));
   1781                         break;
   1782                     case EbtBool:
   1783                         leftUnionArray[i].setUConst(static_cast<unsigned int>(node->getBConst(i)));
   1784                         break;
   1785                     case EbtFloat:
   1786                         leftUnionArray[i].setUConst(static_cast<unsigned int>(node->getFConst(i)));
   1787                         break;
   1788                     default:
   1789                         infoSink.info.message(EPrefixInternalError, node->getLine(), "Cannot promote");
   1790                         return 0;
   1791                 }
   1792                 break;
   1793             case EbtBool:
   1794                 switch (node->getType().getBasicType()) {
   1795                     case EbtInt:
   1796                         leftUnionArray[i].setBConst(node->getIConst(i) != 0);
   1797                         break;
   1798                     case EbtUInt:
   1799                         leftUnionArray[i].setBConst(node->getUConst(i) != 0);
   1800                         break;
   1801                     case EbtBool:
   1802                         leftUnionArray[i].setBConst(node->getBConst(i));
   1803                         break;
   1804                     case EbtFloat:
   1805                         leftUnionArray[i].setBConst(node->getFConst(i) != 0.0f);
   1806                         break;
   1807                     default:
   1808                         infoSink.info.message(EPrefixInternalError, node->getLine(), "Cannot promote");
   1809                         return 0;
   1810                 }
   1811 
   1812                 break;
   1813             default:
   1814                 infoSink.info.message(EPrefixInternalError, node->getLine(), "Incorrect data type found");
   1815                 return 0;
   1816         }
   1817 
   1818     }
   1819 
   1820     const TType& t = node->getType();
   1821 
   1822     return addConstantUnion(leftUnionArray, TType(promoteTo, t.getPrecision(), t.getQualifier(), t.getNominalSize(), t.getSecondarySize(), t.isArray()), node->getLine());
   1823 }
   1824 
   1825 // static
   1826 TString TIntermTraverser::hash(const TString& name, ShHashFunction64 hashFunction)
   1827 {
   1828     if (hashFunction == NULL || name.empty())
   1829         return name;
   1830     khronos_uint64_t number = (*hashFunction)(name.c_str(), name.length());
   1831     TStringStream stream;
   1832     stream << HASHED_NAME_PREFIX << std::hex << number;
   1833     TString hashedName = stream.str();
   1834     return hashedName;
   1835 }
   1836