Home | History | Annotate | Download | only in ADT
      1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief This file implements a class to represent arbitrary precision
     12 /// integral constant values and operations on them.
     13 ///
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_ADT_APINT_H
     17 #define LLVM_ADT_APINT_H
     18 
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/Support/Compiler.h"
     21 #include "llvm/Support/MathExtras.h"
     22 #include <cassert>
     23 #include <climits>
     24 #include <cstring>
     25 #include <string>
     26 
     27 namespace llvm {
     28 class Deserializer;
     29 class FoldingSetNodeID;
     30 class Serializer;
     31 class StringRef;
     32 class hash_code;
     33 class raw_ostream;
     34 
     35 template <typename T> class SmallVectorImpl;
     36 
     37 // An unsigned host type used as a single part of a multi-part
     38 // bignum.
     39 typedef uint64_t integerPart;
     40 
     41 const unsigned int host_char_bit = 8;
     42 const unsigned int integerPartWidth =
     43     host_char_bit * static_cast<unsigned int>(sizeof(integerPart));
     44 
     45 //===----------------------------------------------------------------------===//
     46 //                              APInt Class
     47 //===----------------------------------------------------------------------===//
     48 
     49 /// \brief Class for arbitrary precision integers.
     50 ///
     51 /// APInt is a functional replacement for common case unsigned integer type like
     52 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
     53 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
     54 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
     55 /// and methods to manipulate integer values of any bit-width. It supports both
     56 /// the typical integer arithmetic and comparison operations as well as bitwise
     57 /// manipulation.
     58 ///
     59 /// The class has several invariants worth noting:
     60 ///   * All bit, byte, and word positions are zero-based.
     61 ///   * Once the bit width is set, it doesn't change except by the Truncate,
     62 ///     SignExtend, or ZeroExtend operations.
     63 ///   * All binary operators must be on APInt instances of the same bit width.
     64 ///     Attempting to use these operators on instances with different bit
     65 ///     widths will yield an assertion.
     66 ///   * The value is stored canonically as an unsigned value. For operations
     67 ///     where it makes a difference, there are both signed and unsigned variants
     68 ///     of the operation. For example, sdiv and udiv. However, because the bit
     69 ///     widths must be the same, operations such as Mul and Add produce the same
     70 ///     results regardless of whether the values are interpreted as signed or
     71 ///     not.
     72 ///   * In general, the class tries to follow the style of computation that LLVM
     73 ///     uses in its IR. This simplifies its use for LLVM.
     74 ///
     75 class APInt {
     76   unsigned BitWidth; ///< The number of bits in this APInt.
     77 
     78   /// This union is used to store the integer value. When the
     79   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
     80   union {
     81     uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
     82     uint64_t *pVal; ///< Used to store the >64 bits integer value.
     83   };
     84 
     85   /// This enum is used to hold the constants we needed for APInt.
     86   enum {
     87     /// Bits in a word
     88     APINT_BITS_PER_WORD =
     89         static_cast<unsigned int>(sizeof(uint64_t)) * CHAR_BIT,
     90     /// Byte size of a word
     91     APINT_WORD_SIZE = static_cast<unsigned int>(sizeof(uint64_t))
     92   };
     93 
     94   /// \brief Fast internal constructor
     95   ///
     96   /// This constructor is used only internally for speed of construction of
     97   /// temporaries. It is unsafe for general use so it is not public.
     98   APInt(uint64_t *val, unsigned bits) : BitWidth(bits), pVal(val) {}
     99 
    100   /// \brief Determine if this APInt just has one word to store value.
    101   ///
    102   /// \returns true if the number of bits <= 64, false otherwise.
    103   bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
    104 
    105   /// \brief Determine which word a bit is in.
    106   ///
    107   /// \returns the word position for the specified bit position.
    108   static unsigned whichWord(unsigned bitPosition) {
    109     return bitPosition / APINT_BITS_PER_WORD;
    110   }
    111 
    112   /// \brief Determine which bit in a word a bit is in.
    113   ///
    114   /// \returns the bit position in a word for the specified bit position
    115   /// in the APInt.
    116   static unsigned whichBit(unsigned bitPosition) {
    117     return bitPosition % APINT_BITS_PER_WORD;
    118   }
    119 
    120   /// \brief Get a single bit mask.
    121   ///
    122   /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
    123   /// This method generates and returns a uint64_t (word) mask for a single
    124   /// bit at a specific bit position. This is used to mask the bit in the
    125   /// corresponding word.
    126   static uint64_t maskBit(unsigned bitPosition) {
    127     return 1ULL << whichBit(bitPosition);
    128   }
    129 
    130   /// \brief Clear unused high order bits
    131   ///
    132   /// This method is used internally to clear the to "N" bits in the high order
    133   /// word that are not used by the APInt. This is needed after the most
    134   /// significant word is assigned a value to ensure that those bits are
    135   /// zero'd out.
    136   APInt &clearUnusedBits() {
    137     // Compute how many bits are used in the final word
    138     unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
    139     if (wordBits == 0)
    140       // If all bits are used, we want to leave the value alone. This also
    141       // avoids the undefined behavior of >> when the shift is the same size as
    142       // the word size (64).
    143       return *this;
    144 
    145     // Mask out the high bits.
    146     uint64_t mask = ~uint64_t(0ULL) >> (APINT_BITS_PER_WORD - wordBits);
    147     if (isSingleWord())
    148       VAL &= mask;
    149     else
    150       pVal[getNumWords() - 1] &= mask;
    151     return *this;
    152   }
    153 
    154   /// \brief Get the word corresponding to a bit position
    155   /// \returns the corresponding word for the specified bit position.
    156   uint64_t getWord(unsigned bitPosition) const {
    157     return isSingleWord() ? VAL : pVal[whichWord(bitPosition)];
    158   }
    159 
    160   /// \brief Convert a char array into an APInt
    161   ///
    162   /// \param radix 2, 8, 10, 16, or 36
    163   /// Converts a string into a number.  The string must be non-empty
    164   /// and well-formed as a number of the given base. The bit-width
    165   /// must be sufficient to hold the result.
    166   ///
    167   /// This is used by the constructors that take string arguments.
    168   ///
    169   /// StringRef::getAsInteger is superficially similar but (1) does
    170   /// not assume that the string is well-formed and (2) grows the
    171   /// result to hold the input.
    172   void fromString(unsigned numBits, StringRef str, uint8_t radix);
    173 
    174   /// \brief An internal division function for dividing APInts.
    175   ///
    176   /// This is used by the toString method to divide by the radix. It simply
    177   /// provides a more convenient form of divide for internal use since KnuthDiv
    178   /// has specific constraints on its inputs. If those constraints are not met
    179   /// then it provides a simpler form of divide.
    180   static void divide(const APInt LHS, unsigned lhsWords, const APInt &RHS,
    181                      unsigned rhsWords, APInt *Quotient, APInt *Remainder);
    182 
    183   /// out-of-line slow case for inline constructor
    184   void initSlowCase(unsigned numBits, uint64_t val, bool isSigned);
    185 
    186   /// shared code between two array constructors
    187   void initFromArray(ArrayRef<uint64_t> array);
    188 
    189   /// out-of-line slow case for inline copy constructor
    190   void initSlowCase(const APInt &that);
    191 
    192   /// out-of-line slow case for shl
    193   APInt shlSlowCase(unsigned shiftAmt) const;
    194 
    195   /// out-of-line slow case for operator&
    196   APInt AndSlowCase(const APInt &RHS) const;
    197 
    198   /// out-of-line slow case for operator|
    199   APInt OrSlowCase(const APInt &RHS) const;
    200 
    201   /// out-of-line slow case for operator^
    202   APInt XorSlowCase(const APInt &RHS) const;
    203 
    204   /// out-of-line slow case for operator=
    205   APInt &AssignSlowCase(const APInt &RHS);
    206 
    207   /// out-of-line slow case for operator==
    208   bool EqualSlowCase(const APInt &RHS) const;
    209 
    210   /// out-of-line slow case for operator==
    211   bool EqualSlowCase(uint64_t Val) const;
    212 
    213   /// out-of-line slow case for countLeadingZeros
    214   unsigned countLeadingZerosSlowCase() const;
    215 
    216   /// out-of-line slow case for countTrailingOnes
    217   unsigned countTrailingOnesSlowCase() const;
    218 
    219   /// out-of-line slow case for countPopulation
    220   unsigned countPopulationSlowCase() const;
    221 
    222 public:
    223   /// \name Constructors
    224   /// @{
    225 
    226   /// \brief Create a new APInt of numBits width, initialized as val.
    227   ///
    228   /// If isSigned is true then val is treated as if it were a signed value
    229   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
    230   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
    231   /// the range of val are zero filled).
    232   ///
    233   /// \param numBits the bit width of the constructed APInt
    234   /// \param val the initial value of the APInt
    235   /// \param isSigned how to treat signedness of val
    236   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
    237       : BitWidth(numBits), VAL(0) {
    238     assert(BitWidth && "bitwidth too small");
    239     if (isSingleWord())
    240       VAL = val;
    241     else
    242       initSlowCase(numBits, val, isSigned);
    243     clearUnusedBits();
    244   }
    245 
    246   /// \brief Construct an APInt of numBits width, initialized as bigVal[].
    247   ///
    248   /// Note that bigVal.size() can be smaller or larger than the corresponding
    249   /// bit width but any extraneous bits will be dropped.
    250   ///
    251   /// \param numBits the bit width of the constructed APInt
    252   /// \param bigVal a sequence of words to form the initial value of the APInt
    253   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
    254 
    255   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
    256   /// deprecated because this constructor is prone to ambiguity with the
    257   /// APInt(unsigned, uint64_t, bool) constructor.
    258   ///
    259   /// If this overload is ever deleted, care should be taken to prevent calls
    260   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
    261   /// constructor.
    262   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
    263 
    264   /// \brief Construct an APInt from a string representation.
    265   ///
    266   /// This constructor interprets the string \p str in the given radix. The
    267   /// interpretation stops when the first character that is not suitable for the
    268   /// radix is encountered, or the end of the string. Acceptable radix values
    269   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
    270   /// string to require more bits than numBits.
    271   ///
    272   /// \param numBits the bit width of the constructed APInt
    273   /// \param str the string to be interpreted
    274   /// \param radix the radix to use for the conversion
    275   APInt(unsigned numBits, StringRef str, uint8_t radix);
    276 
    277   /// Simply makes *this a copy of that.
    278   /// @brief Copy Constructor.
    279   APInt(const APInt &that) : BitWidth(that.BitWidth), VAL(0) {
    280     assert(BitWidth && "bitwidth too small");
    281     if (isSingleWord())
    282       VAL = that.VAL;
    283     else
    284       initSlowCase(that);
    285   }
    286 
    287   /// \brief Move Constructor.
    288   APInt(APInt &&that) : BitWidth(that.BitWidth), VAL(that.VAL) {
    289     that.BitWidth = 0;
    290   }
    291 
    292   /// \brief Destructor.
    293   ~APInt() {
    294     if (needsCleanup())
    295       delete[] pVal;
    296   }
    297 
    298   /// \brief Default constructor that creates an uninitialized APInt.
    299   ///
    300   /// This is useful for object deserialization (pair this with the static
    301   ///  method Read).
    302   explicit APInt() : BitWidth(1) {}
    303 
    304   /// \brief Returns whether this instance allocated memory.
    305   bool needsCleanup() const { return !isSingleWord(); }
    306 
    307   /// Used to insert APInt objects, or objects that contain APInt objects, into
    308   ///  FoldingSets.
    309   void Profile(FoldingSetNodeID &id) const;
    310 
    311   /// @}
    312   /// \name Value Tests
    313   /// @{
    314 
    315   /// \brief Determine sign of this APInt.
    316   ///
    317   /// This tests the high bit of this APInt to determine if it is set.
    318   ///
    319   /// \returns true if this APInt is negative, false otherwise
    320   bool isNegative() const { return (*this)[BitWidth - 1]; }
    321 
    322   /// \brief Determine if this APInt Value is non-negative (>= 0)
    323   ///
    324   /// This tests the high bit of the APInt to determine if it is unset.
    325   bool isNonNegative() const { return !isNegative(); }
    326 
    327   /// \brief Determine if this APInt Value is positive.
    328   ///
    329   /// This tests if the value of this APInt is positive (> 0). Note
    330   /// that 0 is not a positive value.
    331   ///
    332   /// \returns true if this APInt is positive.
    333   bool isStrictlyPositive() const { return isNonNegative() && !!*this; }
    334 
    335   /// \brief Determine if all bits are set
    336   ///
    337   /// This checks to see if the value has all bits of the APInt are set or not.
    338   bool isAllOnesValue() const {
    339     if (isSingleWord())
    340       return VAL == ~integerPart(0) >> (APINT_BITS_PER_WORD - BitWidth);
    341     return countPopulationSlowCase() == BitWidth;
    342   }
    343 
    344   /// \brief Determine if this is the largest unsigned value.
    345   ///
    346   /// This checks to see if the value of this APInt is the maximum unsigned
    347   /// value for the APInt's bit width.
    348   bool isMaxValue() const { return isAllOnesValue(); }
    349 
    350   /// \brief Determine if this is the largest signed value.
    351   ///
    352   /// This checks to see if the value of this APInt is the maximum signed
    353   /// value for the APInt's bit width.
    354   bool isMaxSignedValue() const {
    355     return BitWidth == 1 ? VAL == 0
    356                          : !isNegative() && countPopulation() == BitWidth - 1;
    357   }
    358 
    359   /// \brief Determine if this is the smallest unsigned value.
    360   ///
    361   /// This checks to see if the value of this APInt is the minimum unsigned
    362   /// value for the APInt's bit width.
    363   bool isMinValue() const { return !*this; }
    364 
    365   /// \brief Determine if this is the smallest signed value.
    366   ///
    367   /// This checks to see if the value of this APInt is the minimum signed
    368   /// value for the APInt's bit width.
    369   bool isMinSignedValue() const {
    370     return BitWidth == 1 ? VAL == 1 : isNegative() && isPowerOf2();
    371   }
    372 
    373   /// \brief Check if this APInt has an N-bits unsigned integer value.
    374   bool isIntN(unsigned N) const {
    375     assert(N && "N == 0 ???");
    376     return getActiveBits() <= N;
    377   }
    378 
    379   /// \brief Check if this APInt has an N-bits signed integer value.
    380   bool isSignedIntN(unsigned N) const {
    381     assert(N && "N == 0 ???");
    382     return getMinSignedBits() <= N;
    383   }
    384 
    385   /// \brief Check if this APInt's value is a power of two greater than zero.
    386   ///
    387   /// \returns true if the argument APInt value is a power of two > 0.
    388   bool isPowerOf2() const {
    389     if (isSingleWord())
    390       return isPowerOf2_64(VAL);
    391     return countPopulationSlowCase() == 1;
    392   }
    393 
    394   /// \brief Check if the APInt's value is returned by getSignBit.
    395   ///
    396   /// \returns true if this is the value returned by getSignBit.
    397   bool isSignBit() const { return isMinSignedValue(); }
    398 
    399   /// \brief Convert APInt to a boolean value.
    400   ///
    401   /// This converts the APInt to a boolean value as a test against zero.
    402   bool getBoolValue() const { return !!*this; }
    403 
    404   /// If this value is smaller than the specified limit, return it, otherwise
    405   /// return the limit value.  This causes the value to saturate to the limit.
    406   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
    407     return (getActiveBits() > 64 || getZExtValue() > Limit) ? Limit
    408                                                             : getZExtValue();
    409   }
    410 
    411   /// @}
    412   /// \name Value Generators
    413   /// @{
    414 
    415   /// \brief Gets maximum unsigned value of APInt for specific bit width.
    416   static APInt getMaxValue(unsigned numBits) {
    417     return getAllOnesValue(numBits);
    418   }
    419 
    420   /// \brief Gets maximum signed value of APInt for a specific bit width.
    421   static APInt getSignedMaxValue(unsigned numBits) {
    422     APInt API = getAllOnesValue(numBits);
    423     API.clearBit(numBits - 1);
    424     return API;
    425   }
    426 
    427   /// \brief Gets minimum unsigned value of APInt for a specific bit width.
    428   static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
    429 
    430   /// \brief Gets minimum signed value of APInt for a specific bit width.
    431   static APInt getSignedMinValue(unsigned numBits) {
    432     APInt API(numBits, 0);
    433     API.setBit(numBits - 1);
    434     return API;
    435   }
    436 
    437   /// \brief Get the SignBit for a specific bit width.
    438   ///
    439   /// This is just a wrapper function of getSignedMinValue(), and it helps code
    440   /// readability when we want to get a SignBit.
    441   static APInt getSignBit(unsigned BitWidth) {
    442     return getSignedMinValue(BitWidth);
    443   }
    444 
    445   /// \brief Get the all-ones value.
    446   ///
    447   /// \returns the all-ones value for an APInt of the specified bit-width.
    448   static APInt getAllOnesValue(unsigned numBits) {
    449     return APInt(numBits, UINT64_MAX, true);
    450   }
    451 
    452   /// \brief Get the '0' value.
    453   ///
    454   /// \returns the '0' value for an APInt of the specified bit-width.
    455   static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
    456 
    457   /// \brief Compute an APInt containing numBits highbits from this APInt.
    458   ///
    459   /// Get an APInt with the same BitWidth as this APInt, just zero mask
    460   /// the low bits and right shift to the least significant bit.
    461   ///
    462   /// \returns the high "numBits" bits of this APInt.
    463   APInt getHiBits(unsigned numBits) const;
    464 
    465   /// \brief Compute an APInt containing numBits lowbits from this APInt.
    466   ///
    467   /// Get an APInt with the same BitWidth as this APInt, just zero mask
    468   /// the high bits.
    469   ///
    470   /// \returns the low "numBits" bits of this APInt.
    471   APInt getLoBits(unsigned numBits) const;
    472 
    473   /// \brief Return an APInt with exactly one bit set in the result.
    474   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
    475     APInt Res(numBits, 0);
    476     Res.setBit(BitNo);
    477     return Res;
    478   }
    479 
    480   /// \brief Get a value with a block of bits set.
    481   ///
    482   /// Constructs an APInt value that has a contiguous range of bits set. The
    483   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
    484   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
    485   /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
    486   /// example, with parameters (32, 28, 4), you would get 0xF000000F.
    487   ///
    488   /// \param numBits the intended bit width of the result
    489   /// \param loBit the index of the lowest bit set.
    490   /// \param hiBit the index of the highest bit set.
    491   ///
    492   /// \returns An APInt value with the requested bits set.
    493   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
    494     assert(hiBit <= numBits && "hiBit out of range");
    495     assert(loBit < numBits && "loBit out of range");
    496     if (hiBit < loBit)
    497       return getLowBitsSet(numBits, hiBit) |
    498              getHighBitsSet(numBits, numBits - loBit);
    499     return getLowBitsSet(numBits, hiBit - loBit).shl(loBit);
    500   }
    501 
    502   /// \brief Get a value with high bits set
    503   ///
    504   /// Constructs an APInt value that has the top hiBitsSet bits set.
    505   ///
    506   /// \param numBits the bitwidth of the result
    507   /// \param hiBitsSet the number of high-order bits set in the result.
    508   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
    509     assert(hiBitsSet <= numBits && "Too many bits to set!");
    510     // Handle a degenerate case, to avoid shifting by word size
    511     if (hiBitsSet == 0)
    512       return APInt(numBits, 0);
    513     unsigned shiftAmt = numBits - hiBitsSet;
    514     // For small values, return quickly
    515     if (numBits <= APINT_BITS_PER_WORD)
    516       return APInt(numBits, ~0ULL << shiftAmt);
    517     return getAllOnesValue(numBits).shl(shiftAmt);
    518   }
    519 
    520   /// \brief Get a value with low bits set
    521   ///
    522   /// Constructs an APInt value that has the bottom loBitsSet bits set.
    523   ///
    524   /// \param numBits the bitwidth of the result
    525   /// \param loBitsSet the number of low-order bits set in the result.
    526   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
    527     assert(loBitsSet <= numBits && "Too many bits to set!");
    528     // Handle a degenerate case, to avoid shifting by word size
    529     if (loBitsSet == 0)
    530       return APInt(numBits, 0);
    531     if (loBitsSet == APINT_BITS_PER_WORD)
    532       return APInt(numBits, UINT64_MAX);
    533     // For small values, return quickly.
    534     if (loBitsSet <= APINT_BITS_PER_WORD)
    535       return APInt(numBits, UINT64_MAX >> (APINT_BITS_PER_WORD - loBitsSet));
    536     return getAllOnesValue(numBits).lshr(numBits - loBitsSet);
    537   }
    538 
    539   /// \brief Return a value containing V broadcasted over NewLen bits.
    540   static APInt getSplat(unsigned NewLen, const APInt &V) {
    541     assert(NewLen >= V.getBitWidth() && "Can't splat to smaller bit width!");
    542 
    543     APInt Val = V.zextOrSelf(NewLen);
    544     for (unsigned I = V.getBitWidth(); I < NewLen; I <<= 1)
    545       Val |= Val << I;
    546 
    547     return Val;
    548   }
    549 
    550   /// \brief Determine if two APInts have the same value, after zero-extending
    551   /// one of them (if needed!) to ensure that the bit-widths match.
    552   static bool isSameValue(const APInt &I1, const APInt &I2) {
    553     if (I1.getBitWidth() == I2.getBitWidth())
    554       return I1 == I2;
    555 
    556     if (I1.getBitWidth() > I2.getBitWidth())
    557       return I1 == I2.zext(I1.getBitWidth());
    558 
    559     return I1.zext(I2.getBitWidth()) == I2;
    560   }
    561 
    562   /// \brief Overload to compute a hash_code for an APInt value.
    563   friend hash_code hash_value(const APInt &Arg);
    564 
    565   /// This function returns a pointer to the internal storage of the APInt.
    566   /// This is useful for writing out the APInt in binary form without any
    567   /// conversions.
    568   const uint64_t *getRawData() const {
    569     if (isSingleWord())
    570       return &VAL;
    571     return &pVal[0];
    572   }
    573 
    574   /// @}
    575   /// \name Unary Operators
    576   /// @{
    577 
    578   /// \brief Postfix increment operator.
    579   ///
    580   /// \returns a new APInt value representing *this incremented by one
    581   const APInt operator++(int) {
    582     APInt API(*this);
    583     ++(*this);
    584     return API;
    585   }
    586 
    587   /// \brief Prefix increment operator.
    588   ///
    589   /// \returns *this incremented by one
    590   APInt &operator++();
    591 
    592   /// \brief Postfix decrement operator.
    593   ///
    594   /// \returns a new APInt representing *this decremented by one.
    595   const APInt operator--(int) {
    596     APInt API(*this);
    597     --(*this);
    598     return API;
    599   }
    600 
    601   /// \brief Prefix decrement operator.
    602   ///
    603   /// \returns *this decremented by one.
    604   APInt &operator--();
    605 
    606   /// \brief Unary bitwise complement operator.
    607   ///
    608   /// Performs a bitwise complement operation on this APInt.
    609   ///
    610   /// \returns an APInt that is the bitwise complement of *this
    611   APInt operator~() const {
    612     APInt Result(*this);
    613     Result.flipAllBits();
    614     return Result;
    615   }
    616 
    617   /// \brief Unary negation operator
    618   ///
    619   /// Negates *this using two's complement logic.
    620   ///
    621   /// \returns An APInt value representing the negation of *this.
    622   APInt operator-() const { return APInt(BitWidth, 0) - (*this); }
    623 
    624   /// \brief Logical negation operator.
    625   ///
    626   /// Performs logical negation operation on this APInt.
    627   ///
    628   /// \returns true if *this is zero, false otherwise.
    629   bool operator!() const {
    630     if (isSingleWord())
    631       return !VAL;
    632 
    633     for (unsigned i = 0; i != getNumWords(); ++i)
    634       if (pVal[i])
    635         return false;
    636     return true;
    637   }
    638 
    639   /// @}
    640   /// \name Assignment Operators
    641   /// @{
    642 
    643   /// \brief Copy assignment operator.
    644   ///
    645   /// \returns *this after assignment of RHS.
    646   APInt &operator=(const APInt &RHS) {
    647     // If the bitwidths are the same, we can avoid mucking with memory
    648     if (isSingleWord() && RHS.isSingleWord()) {
    649       VAL = RHS.VAL;
    650       BitWidth = RHS.BitWidth;
    651       return clearUnusedBits();
    652     }
    653 
    654     return AssignSlowCase(RHS);
    655   }
    656 
    657   /// @brief Move assignment operator.
    658   APInt &operator=(APInt &&that) {
    659     if (!isSingleWord())
    660       delete[] pVal;
    661 
    662     BitWidth = that.BitWidth;
    663     VAL = that.VAL;
    664 
    665     that.BitWidth = 0;
    666 
    667     return *this;
    668   }
    669 
    670   /// \brief Assignment operator.
    671   ///
    672   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
    673   /// the bit width, the excess bits are truncated. If the bit width is larger
    674   /// than 64, the value is zero filled in the unspecified high order bits.
    675   ///
    676   /// \returns *this after assignment of RHS value.
    677   APInt &operator=(uint64_t RHS);
    678 
    679   /// \brief Bitwise AND assignment operator.
    680   ///
    681   /// Performs a bitwise AND operation on this APInt and RHS. The result is
    682   /// assigned to *this.
    683   ///
    684   /// \returns *this after ANDing with RHS.
    685   APInt &operator&=(const APInt &RHS);
    686 
    687   /// \brief Bitwise OR assignment operator.
    688   ///
    689   /// Performs a bitwise OR operation on this APInt and RHS. The result is
    690   /// assigned *this;
    691   ///
    692   /// \returns *this after ORing with RHS.
    693   APInt &operator|=(const APInt &RHS);
    694 
    695   /// \brief Bitwise OR assignment operator.
    696   ///
    697   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
    698   /// logically zero-extended or truncated to match the bit-width of
    699   /// the LHS.
    700   APInt &operator|=(uint64_t RHS) {
    701     if (isSingleWord()) {
    702       VAL |= RHS;
    703       clearUnusedBits();
    704     } else {
    705       pVal[0] |= RHS;
    706     }
    707     return *this;
    708   }
    709 
    710   /// \brief Bitwise XOR assignment operator.
    711   ///
    712   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
    713   /// assigned to *this.
    714   ///
    715   /// \returns *this after XORing with RHS.
    716   APInt &operator^=(const APInt &RHS);
    717 
    718   /// \brief Multiplication assignment operator.
    719   ///
    720   /// Multiplies this APInt by RHS and assigns the result to *this.
    721   ///
    722   /// \returns *this
    723   APInt &operator*=(const APInt &RHS);
    724 
    725   /// \brief Addition assignment operator.
    726   ///
    727   /// Adds RHS to *this and assigns the result to *this.
    728   ///
    729   /// \returns *this
    730   APInt &operator+=(const APInt &RHS);
    731 
    732   /// \brief Subtraction assignment operator.
    733   ///
    734   /// Subtracts RHS from *this and assigns the result to *this.
    735   ///
    736   /// \returns *this
    737   APInt &operator-=(const APInt &RHS);
    738 
    739   /// \brief Left-shift assignment function.
    740   ///
    741   /// Shifts *this left by shiftAmt and assigns the result to *this.
    742   ///
    743   /// \returns *this after shifting left by shiftAmt
    744   APInt &operator<<=(unsigned shiftAmt) {
    745     *this = shl(shiftAmt);
    746     return *this;
    747   }
    748 
    749   /// @}
    750   /// \name Binary Operators
    751   /// @{
    752 
    753   /// \brief Bitwise AND operator.
    754   ///
    755   /// Performs a bitwise AND operation on *this and RHS.
    756   ///
    757   /// \returns An APInt value representing the bitwise AND of *this and RHS.
    758   APInt operator&(const APInt &RHS) const {
    759     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    760     if (isSingleWord())
    761       return APInt(getBitWidth(), VAL & RHS.VAL);
    762     return AndSlowCase(RHS);
    763   }
    764   APInt LLVM_ATTRIBUTE_UNUSED_RESULT And(const APInt &RHS) const {
    765     return this->operator&(RHS);
    766   }
    767 
    768   /// \brief Bitwise OR operator.
    769   ///
    770   /// Performs a bitwise OR operation on *this and RHS.
    771   ///
    772   /// \returns An APInt value representing the bitwise OR of *this and RHS.
    773   APInt operator|(const APInt &RHS) const {
    774     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    775     if (isSingleWord())
    776       return APInt(getBitWidth(), VAL | RHS.VAL);
    777     return OrSlowCase(RHS);
    778   }
    779 
    780   /// \brief Bitwise OR function.
    781   ///
    782   /// Performs a bitwise or on *this and RHS. This is implemented bny simply
    783   /// calling operator|.
    784   ///
    785   /// \returns An APInt value representing the bitwise OR of *this and RHS.
    786   APInt LLVM_ATTRIBUTE_UNUSED_RESULT Or(const APInt &RHS) const {
    787     return this->operator|(RHS);
    788   }
    789 
    790   /// \brief Bitwise XOR operator.
    791   ///
    792   /// Performs a bitwise XOR operation on *this and RHS.
    793   ///
    794   /// \returns An APInt value representing the bitwise XOR of *this and RHS.
    795   APInt operator^(const APInt &RHS) const {
    796     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
    797     if (isSingleWord())
    798       return APInt(BitWidth, VAL ^ RHS.VAL);
    799     return XorSlowCase(RHS);
    800   }
    801 
    802   /// \brief Bitwise XOR function.
    803   ///
    804   /// Performs a bitwise XOR operation on *this and RHS. This is implemented
    805   /// through the usage of operator^.
    806   ///
    807   /// \returns An APInt value representing the bitwise XOR of *this and RHS.
    808   APInt LLVM_ATTRIBUTE_UNUSED_RESULT Xor(const APInt &RHS) const {
    809     return this->operator^(RHS);
    810   }
    811 
    812   /// \brief Multiplication operator.
    813   ///
    814   /// Multiplies this APInt by RHS and returns the result.
    815   APInt operator*(const APInt &RHS) const;
    816 
    817   /// \brief Addition operator.
    818   ///
    819   /// Adds RHS to this APInt and returns the result.
    820   APInt operator+(const APInt &RHS) const;
    821   APInt operator+(uint64_t RHS) const { return (*this) + APInt(BitWidth, RHS); }
    822 
    823   /// \brief Subtraction operator.
    824   ///
    825   /// Subtracts RHS from this APInt and returns the result.
    826   APInt operator-(const APInt &RHS) const;
    827   APInt operator-(uint64_t RHS) const { return (*this) - APInt(BitWidth, RHS); }
    828 
    829   /// \brief Left logical shift operator.
    830   ///
    831   /// Shifts this APInt left by \p Bits and returns the result.
    832   APInt operator<<(unsigned Bits) const { return shl(Bits); }
    833 
    834   /// \brief Left logical shift operator.
    835   ///
    836   /// Shifts this APInt left by \p Bits and returns the result.
    837   APInt operator<<(const APInt &Bits) const { return shl(Bits); }
    838 
    839   /// \brief Arithmetic right-shift function.
    840   ///
    841   /// Arithmetic right-shift this APInt by shiftAmt.
    842   APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(unsigned shiftAmt) const;
    843 
    844   /// \brief Logical right-shift function.
    845   ///
    846   /// Logical right-shift this APInt by shiftAmt.
    847   APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(unsigned shiftAmt) const;
    848 
    849   /// \brief Left-shift function.
    850   ///
    851   /// Left-shift this APInt by shiftAmt.
    852   APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(unsigned shiftAmt) const {
    853     assert(shiftAmt <= BitWidth && "Invalid shift amount");
    854     if (isSingleWord()) {
    855       if (shiftAmt >= BitWidth)
    856         return APInt(BitWidth, 0); // avoid undefined shift results
    857       return APInt(BitWidth, VAL << shiftAmt);
    858     }
    859     return shlSlowCase(shiftAmt);
    860   }
    861 
    862   /// \brief Rotate left by rotateAmt.
    863   APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(unsigned rotateAmt) const;
    864 
    865   /// \brief Rotate right by rotateAmt.
    866   APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(unsigned rotateAmt) const;
    867 
    868   /// \brief Arithmetic right-shift function.
    869   ///
    870   /// Arithmetic right-shift this APInt by shiftAmt.
    871   APInt LLVM_ATTRIBUTE_UNUSED_RESULT ashr(const APInt &shiftAmt) const;
    872 
    873   /// \brief Logical right-shift function.
    874   ///
    875   /// Logical right-shift this APInt by shiftAmt.
    876   APInt LLVM_ATTRIBUTE_UNUSED_RESULT lshr(const APInt &shiftAmt) const;
    877 
    878   /// \brief Left-shift function.
    879   ///
    880   /// Left-shift this APInt by shiftAmt.
    881   APInt LLVM_ATTRIBUTE_UNUSED_RESULT shl(const APInt &shiftAmt) const;
    882 
    883   /// \brief Rotate left by rotateAmt.
    884   APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotl(const APInt &rotateAmt) const;
    885 
    886   /// \brief Rotate right by rotateAmt.
    887   APInt LLVM_ATTRIBUTE_UNUSED_RESULT rotr(const APInt &rotateAmt) const;
    888 
    889   /// \brief Unsigned division operation.
    890   ///
    891   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
    892   /// RHS are treated as unsigned quantities for purposes of this division.
    893   ///
    894   /// \returns a new APInt value containing the division result
    895   APInt LLVM_ATTRIBUTE_UNUSED_RESULT udiv(const APInt &RHS) const;
    896 
    897   /// \brief Signed division function for APInt.
    898   ///
    899   /// Signed divide this APInt by APInt RHS.
    900   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sdiv(const APInt &RHS) const;
    901 
    902   /// \brief Unsigned remainder operation.
    903   ///
    904   /// Perform an unsigned remainder operation on this APInt with RHS being the
    905   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
    906   /// of this operation. Note that this is a true remainder operation and not a
    907   /// modulo operation because the sign follows the sign of the dividend which
    908   /// is *this.
    909   ///
    910   /// \returns a new APInt value containing the remainder result
    911   APInt LLVM_ATTRIBUTE_UNUSED_RESULT urem(const APInt &RHS) const;
    912 
    913   /// \brief Function for signed remainder operation.
    914   ///
    915   /// Signed remainder operation on APInt.
    916   APInt LLVM_ATTRIBUTE_UNUSED_RESULT srem(const APInt &RHS) const;
    917 
    918   /// \brief Dual division/remainder interface.
    919   ///
    920   /// Sometimes it is convenient to divide two APInt values and obtain both the
    921   /// quotient and remainder. This function does both operations in the same
    922   /// computation making it a little more efficient. The pair of input arguments
    923   /// may overlap with the pair of output arguments. It is safe to call
    924   /// udivrem(X, Y, X, Y), for example.
    925   static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
    926                       APInt &Remainder);
    927 
    928   static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
    929                       APInt &Remainder);
    930 
    931   // Operations that return overflow indicators.
    932   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
    933   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
    934   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
    935   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
    936   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
    937   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
    938   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
    939   APInt sshl_ov(unsigned Amt, bool &Overflow) const;
    940 
    941   /// \brief Array-indexing support.
    942   ///
    943   /// \returns the bit value at bitPosition
    944   bool operator[](unsigned bitPosition) const {
    945     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
    946     return (maskBit(bitPosition) &
    947             (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) !=
    948            0;
    949   }
    950 
    951   /// @}
    952   /// \name Comparison Operators
    953   /// @{
    954 
    955   /// \brief Equality operator.
    956   ///
    957   /// Compares this APInt with RHS for the validity of the equality
    958   /// relationship.
    959   bool operator==(const APInt &RHS) const {
    960     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
    961     if (isSingleWord())
    962       return VAL == RHS.VAL;
    963     return EqualSlowCase(RHS);
    964   }
    965 
    966   /// \brief Equality operator.
    967   ///
    968   /// Compares this APInt with a uint64_t for the validity of the equality
    969   /// relationship.
    970   ///
    971   /// \returns true if *this == Val
    972   bool operator==(uint64_t Val) const {
    973     if (isSingleWord())
    974       return VAL == Val;
    975     return EqualSlowCase(Val);
    976   }
    977 
    978   /// \brief Equality comparison.
    979   ///
    980   /// Compares this APInt with RHS for the validity of the equality
    981   /// relationship.
    982   ///
    983   /// \returns true if *this == Val
    984   bool eq(const APInt &RHS) const { return (*this) == RHS; }
    985 
    986   /// \brief Inequality operator.
    987   ///
    988   /// Compares this APInt with RHS for the validity of the inequality
    989   /// relationship.
    990   ///
    991   /// \returns true if *this != Val
    992   bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
    993 
    994   /// \brief Inequality operator.
    995   ///
    996   /// Compares this APInt with a uint64_t for the validity of the inequality
    997   /// relationship.
    998   ///
    999   /// \returns true if *this != Val
   1000   bool operator!=(uint64_t Val) const { return !((*this) == Val); }
   1001 
   1002   /// \brief Inequality comparison
   1003   ///
   1004   /// Compares this APInt with RHS for the validity of the inequality
   1005   /// relationship.
   1006   ///
   1007   /// \returns true if *this != Val
   1008   bool ne(const APInt &RHS) const { return !((*this) == RHS); }
   1009 
   1010   /// \brief Unsigned less than comparison
   1011   ///
   1012   /// Regards both *this and RHS as unsigned quantities and compares them for
   1013   /// the validity of the less-than relationship.
   1014   ///
   1015   /// \returns true if *this < RHS when both are considered unsigned.
   1016   bool ult(const APInt &RHS) const;
   1017 
   1018   /// \brief Unsigned less than comparison
   1019   ///
   1020   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1021   /// the validity of the less-than relationship.
   1022   ///
   1023   /// \returns true if *this < RHS when considered unsigned.
   1024   bool ult(uint64_t RHS) const { return ult(APInt(getBitWidth(), RHS)); }
   1025 
   1026   /// \brief Signed less than comparison
   1027   ///
   1028   /// Regards both *this and RHS as signed quantities and compares them for
   1029   /// validity of the less-than relationship.
   1030   ///
   1031   /// \returns true if *this < RHS when both are considered signed.
   1032   bool slt(const APInt &RHS) const;
   1033 
   1034   /// \brief Signed less than comparison
   1035   ///
   1036   /// Regards both *this as a signed quantity and compares it with RHS for
   1037   /// the validity of the less-than relationship.
   1038   ///
   1039   /// \returns true if *this < RHS when considered signed.
   1040   bool slt(uint64_t RHS) const { return slt(APInt(getBitWidth(), RHS)); }
   1041 
   1042   /// \brief Unsigned less or equal comparison
   1043   ///
   1044   /// Regards both *this and RHS as unsigned quantities and compares them for
   1045   /// validity of the less-or-equal relationship.
   1046   ///
   1047   /// \returns true if *this <= RHS when both are considered unsigned.
   1048   bool ule(const APInt &RHS) const { return ult(RHS) || eq(RHS); }
   1049 
   1050   /// \brief Unsigned less or equal comparison
   1051   ///
   1052   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1053   /// the validity of the less-or-equal relationship.
   1054   ///
   1055   /// \returns true if *this <= RHS when considered unsigned.
   1056   bool ule(uint64_t RHS) const { return ule(APInt(getBitWidth(), RHS)); }
   1057 
   1058   /// \brief Signed less or equal comparison
   1059   ///
   1060   /// Regards both *this and RHS as signed quantities and compares them for
   1061   /// validity of the less-or-equal relationship.
   1062   ///
   1063   /// \returns true if *this <= RHS when both are considered signed.
   1064   bool sle(const APInt &RHS) const { return slt(RHS) || eq(RHS); }
   1065 
   1066   /// \brief Signed less or equal comparison
   1067   ///
   1068   /// Regards both *this as a signed quantity and compares it with RHS for the
   1069   /// validity of the less-or-equal relationship.
   1070   ///
   1071   /// \returns true if *this <= RHS when considered signed.
   1072   bool sle(uint64_t RHS) const { return sle(APInt(getBitWidth(), RHS)); }
   1073 
   1074   /// \brief Unsigned greather than comparison
   1075   ///
   1076   /// Regards both *this and RHS as unsigned quantities and compares them for
   1077   /// the validity of the greater-than relationship.
   1078   ///
   1079   /// \returns true if *this > RHS when both are considered unsigned.
   1080   bool ugt(const APInt &RHS) const { return !ult(RHS) && !eq(RHS); }
   1081 
   1082   /// \brief Unsigned greater than comparison
   1083   ///
   1084   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1085   /// the validity of the greater-than relationship.
   1086   ///
   1087   /// \returns true if *this > RHS when considered unsigned.
   1088   bool ugt(uint64_t RHS) const { return ugt(APInt(getBitWidth(), RHS)); }
   1089 
   1090   /// \brief Signed greather than comparison
   1091   ///
   1092   /// Regards both *this and RHS as signed quantities and compares them for the
   1093   /// validity of the greater-than relationship.
   1094   ///
   1095   /// \returns true if *this > RHS when both are considered signed.
   1096   bool sgt(const APInt &RHS) const { return !slt(RHS) && !eq(RHS); }
   1097 
   1098   /// \brief Signed greater than comparison
   1099   ///
   1100   /// Regards both *this as a signed quantity and compares it with RHS for
   1101   /// the validity of the greater-than relationship.
   1102   ///
   1103   /// \returns true if *this > RHS when considered signed.
   1104   bool sgt(uint64_t RHS) const { return sgt(APInt(getBitWidth(), RHS)); }
   1105 
   1106   /// \brief Unsigned greater or equal comparison
   1107   ///
   1108   /// Regards both *this and RHS as unsigned quantities and compares them for
   1109   /// validity of the greater-or-equal relationship.
   1110   ///
   1111   /// \returns true if *this >= RHS when both are considered unsigned.
   1112   bool uge(const APInt &RHS) const { return !ult(RHS); }
   1113 
   1114   /// \brief Unsigned greater or equal comparison
   1115   ///
   1116   /// Regards both *this as an unsigned quantity and compares it with RHS for
   1117   /// the validity of the greater-or-equal relationship.
   1118   ///
   1119   /// \returns true if *this >= RHS when considered unsigned.
   1120   bool uge(uint64_t RHS) const { return uge(APInt(getBitWidth(), RHS)); }
   1121 
   1122   /// \brief Signed greather or equal comparison
   1123   ///
   1124   /// Regards both *this and RHS as signed quantities and compares them for
   1125   /// validity of the greater-or-equal relationship.
   1126   ///
   1127   /// \returns true if *this >= RHS when both are considered signed.
   1128   bool sge(const APInt &RHS) const { return !slt(RHS); }
   1129 
   1130   /// \brief Signed greater or equal comparison
   1131   ///
   1132   /// Regards both *this as a signed quantity and compares it with RHS for
   1133   /// the validity of the greater-or-equal relationship.
   1134   ///
   1135   /// \returns true if *this >= RHS when considered signed.
   1136   bool sge(uint64_t RHS) const { return sge(APInt(getBitWidth(), RHS)); }
   1137 
   1138   /// This operation tests if there are any pairs of corresponding bits
   1139   /// between this APInt and RHS that are both set.
   1140   bool intersects(const APInt &RHS) const { return (*this & RHS) != 0; }
   1141 
   1142   /// @}
   1143   /// \name Resizing Operators
   1144   /// @{
   1145 
   1146   /// \brief Truncate to new width.
   1147   ///
   1148   /// Truncate the APInt to a specified width. It is an error to specify a width
   1149   /// that is greater than or equal to the current width.
   1150   APInt LLVM_ATTRIBUTE_UNUSED_RESULT trunc(unsigned width) const;
   1151 
   1152   /// \brief Sign extend to a new width.
   1153   ///
   1154   /// This operation sign extends the APInt to a new width. If the high order
   1155   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
   1156   /// It is an error to specify a width that is less than or equal to the
   1157   /// current width.
   1158   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sext(unsigned width) const;
   1159 
   1160   /// \brief Zero extend to a new width.
   1161   ///
   1162   /// This operation zero extends the APInt to a new width. The high order bits
   1163   /// are filled with 0 bits.  It is an error to specify a width that is less
   1164   /// than or equal to the current width.
   1165   APInt LLVM_ATTRIBUTE_UNUSED_RESULT zext(unsigned width) const;
   1166 
   1167   /// \brief Sign extend or truncate to width
   1168   ///
   1169   /// Make this APInt have the bit width given by \p width. The value is sign
   1170   /// extended, truncated, or left alone to make it that width.
   1171   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrTrunc(unsigned width) const;
   1172 
   1173   /// \brief Zero extend or truncate to width
   1174   ///
   1175   /// Make this APInt have the bit width given by \p width. The value is zero
   1176   /// extended, truncated, or left alone to make it that width.
   1177   APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrTrunc(unsigned width) const;
   1178 
   1179   /// \brief Sign extend or truncate to width
   1180   ///
   1181   /// Make this APInt have the bit width given by \p width. The value is sign
   1182   /// extended, or left alone to make it that width.
   1183   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sextOrSelf(unsigned width) const;
   1184 
   1185   /// \brief Zero extend or truncate to width
   1186   ///
   1187   /// Make this APInt have the bit width given by \p width. The value is zero
   1188   /// extended, or left alone to make it that width.
   1189   APInt LLVM_ATTRIBUTE_UNUSED_RESULT zextOrSelf(unsigned width) const;
   1190 
   1191   /// @}
   1192   /// \name Bit Manipulation Operators
   1193   /// @{
   1194 
   1195   /// \brief Set every bit to 1.
   1196   void setAllBits() {
   1197     if (isSingleWord())
   1198       VAL = UINT64_MAX;
   1199     else {
   1200       // Set all the bits in all the words.
   1201       for (unsigned i = 0; i < getNumWords(); ++i)
   1202         pVal[i] = UINT64_MAX;
   1203     }
   1204     // Clear the unused ones
   1205     clearUnusedBits();
   1206   }
   1207 
   1208   /// \brief Set a given bit to 1.
   1209   ///
   1210   /// Set the given bit to 1 whose position is given as "bitPosition".
   1211   void setBit(unsigned bitPosition);
   1212 
   1213   /// \brief Set every bit to 0.
   1214   void clearAllBits() {
   1215     if (isSingleWord())
   1216       VAL = 0;
   1217     else
   1218       memset(pVal, 0, getNumWords() * APINT_WORD_SIZE);
   1219   }
   1220 
   1221   /// \brief Set a given bit to 0.
   1222   ///
   1223   /// Set the given bit to 0 whose position is given as "bitPosition".
   1224   void clearBit(unsigned bitPosition);
   1225 
   1226   /// \brief Toggle every bit to its opposite value.
   1227   void flipAllBits() {
   1228     if (isSingleWord())
   1229       VAL ^= UINT64_MAX;
   1230     else {
   1231       for (unsigned i = 0; i < getNumWords(); ++i)
   1232         pVal[i] ^= UINT64_MAX;
   1233     }
   1234     clearUnusedBits();
   1235   }
   1236 
   1237   /// \brief Toggles a given bit to its opposite value.
   1238   ///
   1239   /// Toggle a given bit to its opposite value whose position is given
   1240   /// as "bitPosition".
   1241   void flipBit(unsigned bitPosition);
   1242 
   1243   /// @}
   1244   /// \name Value Characterization Functions
   1245   /// @{
   1246 
   1247   /// \brief Return the number of bits in the APInt.
   1248   unsigned getBitWidth() const { return BitWidth; }
   1249 
   1250   /// \brief Get the number of words.
   1251   ///
   1252   /// Here one word's bitwidth equals to that of uint64_t.
   1253   ///
   1254   /// \returns the number of words to hold the integer value of this APInt.
   1255   unsigned getNumWords() const { return getNumWords(BitWidth); }
   1256 
   1257   /// \brief Get the number of words.
   1258   ///
   1259   /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
   1260   ///
   1261   /// \returns the number of words to hold the integer value with a given bit
   1262   /// width.
   1263   static unsigned getNumWords(unsigned BitWidth) {
   1264     return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
   1265   }
   1266 
   1267   /// \brief Compute the number of active bits in the value
   1268   ///
   1269   /// This function returns the number of active bits which is defined as the
   1270   /// bit width minus the number of leading zeros. This is used in several
   1271   /// computations to see how "wide" the value is.
   1272   unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
   1273 
   1274   /// \brief Compute the number of active words in the value of this APInt.
   1275   ///
   1276   /// This is used in conjunction with getActiveData to extract the raw value of
   1277   /// the APInt.
   1278   unsigned getActiveWords() const {
   1279     unsigned numActiveBits = getActiveBits();
   1280     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
   1281   }
   1282 
   1283   /// \brief Get the minimum bit size for this signed APInt
   1284   ///
   1285   /// Computes the minimum bit width for this APInt while considering it to be a
   1286   /// signed (and probably negative) value. If the value is not negative, this
   1287   /// function returns the same value as getActiveBits()+1. Otherwise, it
   1288   /// returns the smallest bit width that will retain the negative value. For
   1289   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
   1290   /// for -1, this function will always return 1.
   1291   unsigned getMinSignedBits() const {
   1292     if (isNegative())
   1293       return BitWidth - countLeadingOnes() + 1;
   1294     return getActiveBits() + 1;
   1295   }
   1296 
   1297   /// \brief Get zero extended value
   1298   ///
   1299   /// This method attempts to return the value of this APInt as a zero extended
   1300   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
   1301   /// uint64_t. Otherwise an assertion will result.
   1302   uint64_t getZExtValue() const {
   1303     if (isSingleWord())
   1304       return VAL;
   1305     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
   1306     return pVal[0];
   1307   }
   1308 
   1309   /// \brief Get sign extended value
   1310   ///
   1311   /// This method attempts to return the value of this APInt as a sign extended
   1312   /// int64_t. The bit width must be <= 64 or the value must fit within an
   1313   /// int64_t. Otherwise an assertion will result.
   1314   int64_t getSExtValue() const {
   1315     if (isSingleWord())
   1316       return int64_t(VAL << (APINT_BITS_PER_WORD - BitWidth)) >>
   1317              (APINT_BITS_PER_WORD - BitWidth);
   1318     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
   1319     return int64_t(pVal[0]);
   1320   }
   1321 
   1322   /// \brief Get bits required for string value.
   1323   ///
   1324   /// This method determines how many bits are required to hold the APInt
   1325   /// equivalent of the string given by \p str.
   1326   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
   1327 
   1328   /// \brief The APInt version of the countLeadingZeros functions in
   1329   ///   MathExtras.h.
   1330   ///
   1331   /// It counts the number of zeros from the most significant bit to the first
   1332   /// one bit.
   1333   ///
   1334   /// \returns BitWidth if the value is zero, otherwise returns the number of
   1335   ///   zeros from the most significant bit to the first one bits.
   1336   unsigned countLeadingZeros() const {
   1337     if (isSingleWord()) {
   1338       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
   1339       return llvm::countLeadingZeros(VAL) - unusedBits;
   1340     }
   1341     return countLeadingZerosSlowCase();
   1342   }
   1343 
   1344   /// \brief Count the number of leading one bits.
   1345   ///
   1346   /// This function is an APInt version of the countLeadingOnes_{32,64}
   1347   /// functions in MathExtras.h. It counts the number of ones from the most
   1348   /// significant bit to the first zero bit.
   1349   ///
   1350   /// \returns 0 if the high order bit is not set, otherwise returns the number
   1351   /// of 1 bits from the most significant to the least
   1352   unsigned countLeadingOnes() const;
   1353 
   1354   /// Computes the number of leading bits of this APInt that are equal to its
   1355   /// sign bit.
   1356   unsigned getNumSignBits() const {
   1357     return isNegative() ? countLeadingOnes() : countLeadingZeros();
   1358   }
   1359 
   1360   /// \brief Count the number of trailing zero bits.
   1361   ///
   1362   /// This function is an APInt version of the countTrailingZeros_{32,64}
   1363   /// functions in MathExtras.h. It counts the number of zeros from the least
   1364   /// significant bit to the first set bit.
   1365   ///
   1366   /// \returns BitWidth if the value is zero, otherwise returns the number of
   1367   /// zeros from the least significant bit to the first one bit.
   1368   unsigned countTrailingZeros() const;
   1369 
   1370   /// \brief Count the number of trailing one bits.
   1371   ///
   1372   /// This function is an APInt version of the countTrailingOnes_{32,64}
   1373   /// functions in MathExtras.h. It counts the number of ones from the least
   1374   /// significant bit to the first zero bit.
   1375   ///
   1376   /// \returns BitWidth if the value is all ones, otherwise returns the number
   1377   /// of ones from the least significant bit to the first zero bit.
   1378   unsigned countTrailingOnes() const {
   1379     if (isSingleWord())
   1380       return CountTrailingOnes_64(VAL);
   1381     return countTrailingOnesSlowCase();
   1382   }
   1383 
   1384   /// \brief Count the number of bits set.
   1385   ///
   1386   /// This function is an APInt version of the countPopulation_{32,64} functions
   1387   /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
   1388   ///
   1389   /// \returns 0 if the value is zero, otherwise returns the number of set bits.
   1390   unsigned countPopulation() const {
   1391     if (isSingleWord())
   1392       return CountPopulation_64(VAL);
   1393     return countPopulationSlowCase();
   1394   }
   1395 
   1396   /// @}
   1397   /// \name Conversion Functions
   1398   /// @{
   1399   void print(raw_ostream &OS, bool isSigned) const;
   1400 
   1401   /// Converts an APInt to a string and append it to Str.  Str is commonly a
   1402   /// SmallString.
   1403   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
   1404                 bool formatAsCLiteral = false) const;
   1405 
   1406   /// Considers the APInt to be unsigned and converts it into a string in the
   1407   /// radix given. The radix can be 2, 8, 10 16, or 36.
   1408   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
   1409     toString(Str, Radix, false, false);
   1410   }
   1411 
   1412   /// Considers the APInt to be signed and converts it into a string in the
   1413   /// radix given. The radix can be 2, 8, 10, 16, or 36.
   1414   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
   1415     toString(Str, Radix, true, false);
   1416   }
   1417 
   1418   /// \brief Return the APInt as a std::string.
   1419   ///
   1420   /// Note that this is an inefficient method.  It is better to pass in a
   1421   /// SmallVector/SmallString to the methods above to avoid thrashing the heap
   1422   /// for the string.
   1423   std::string toString(unsigned Radix, bool Signed) const;
   1424 
   1425   /// \returns a byte-swapped representation of this APInt Value.
   1426   APInt LLVM_ATTRIBUTE_UNUSED_RESULT byteSwap() const;
   1427 
   1428   /// \brief Converts this APInt to a double value.
   1429   double roundToDouble(bool isSigned) const;
   1430 
   1431   /// \brief Converts this unsigned APInt to a double value.
   1432   double roundToDouble() const { return roundToDouble(false); }
   1433 
   1434   /// \brief Converts this signed APInt to a double value.
   1435   double signedRoundToDouble() const { return roundToDouble(true); }
   1436 
   1437   /// \brief Converts APInt bits to a double
   1438   ///
   1439   /// The conversion does not do a translation from integer to double, it just
   1440   /// re-interprets the bits as a double. Note that it is valid to do this on
   1441   /// any bit width. Exactly 64 bits will be translated.
   1442   double bitsToDouble() const {
   1443     union {
   1444       uint64_t I;
   1445       double D;
   1446     } T;
   1447     T.I = (isSingleWord() ? VAL : pVal[0]);
   1448     return T.D;
   1449   }
   1450 
   1451   /// \brief Converts APInt bits to a double
   1452   ///
   1453   /// The conversion does not do a translation from integer to float, it just
   1454   /// re-interprets the bits as a float. Note that it is valid to do this on
   1455   /// any bit width. Exactly 32 bits will be translated.
   1456   float bitsToFloat() const {
   1457     union {
   1458       unsigned I;
   1459       float F;
   1460     } T;
   1461     T.I = unsigned((isSingleWord() ? VAL : pVal[0]));
   1462     return T.F;
   1463   }
   1464 
   1465   /// \brief Converts a double to APInt bits.
   1466   ///
   1467   /// The conversion does not do a translation from double to integer, it just
   1468   /// re-interprets the bits of the double.
   1469   static APInt LLVM_ATTRIBUTE_UNUSED_RESULT doubleToBits(double V) {
   1470     union {
   1471       uint64_t I;
   1472       double D;
   1473     } T;
   1474     T.D = V;
   1475     return APInt(sizeof T * CHAR_BIT, T.I);
   1476   }
   1477 
   1478   /// \brief Converts a float to APInt bits.
   1479   ///
   1480   /// The conversion does not do a translation from float to integer, it just
   1481   /// re-interprets the bits of the float.
   1482   static APInt LLVM_ATTRIBUTE_UNUSED_RESULT floatToBits(float V) {
   1483     union {
   1484       unsigned I;
   1485       float F;
   1486     } T;
   1487     T.F = V;
   1488     return APInt(sizeof T * CHAR_BIT, T.I);
   1489   }
   1490 
   1491   /// @}
   1492   /// \name Mathematics Operations
   1493   /// @{
   1494 
   1495   /// \returns the floor log base 2 of this APInt.
   1496   unsigned logBase2() const { return BitWidth - 1 - countLeadingZeros(); }
   1497 
   1498   /// \returns the ceil log base 2 of this APInt.
   1499   unsigned ceilLogBase2() const {
   1500     return BitWidth - (*this - 1).countLeadingZeros();
   1501   }
   1502 
   1503   /// \returns the nearest log base 2 of this APInt. Ties round up.
   1504   ///
   1505   /// NOTE: When we have a BitWidth of 1, we define:
   1506   ///
   1507   ///   log2(0) = UINT32_MAX
   1508   ///   log2(1) = 0
   1509   ///
   1510   /// to get around any mathematical concerns resulting from
   1511   /// referencing 2 in a space where 2 does no exist.
   1512   unsigned nearestLogBase2() const {
   1513     // Special case when we have a bitwidth of 1. If VAL is 1, then we
   1514     // get 0. If VAL is 0, we get UINT64_MAX which gets truncated to
   1515     // UINT32_MAX.
   1516     if (BitWidth == 1)
   1517       return VAL - 1;
   1518 
   1519     // Handle the zero case.
   1520     if (!getBoolValue())
   1521       return UINT32_MAX;
   1522 
   1523     // The non-zero case is handled by computing:
   1524     //
   1525     //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
   1526     //
   1527     // where x[i] is referring to the value of the ith bit of x.
   1528     unsigned lg = logBase2();
   1529     return lg + unsigned((*this)[lg - 1]);
   1530   }
   1531 
   1532   /// \returns the log base 2 of this APInt if its an exact power of two, -1
   1533   /// otherwise
   1534   int32_t exactLogBase2() const {
   1535     if (!isPowerOf2())
   1536       return -1;
   1537     return logBase2();
   1538   }
   1539 
   1540   /// \brief Compute the square root
   1541   APInt LLVM_ATTRIBUTE_UNUSED_RESULT sqrt() const;
   1542 
   1543   /// \brief Get the absolute value;
   1544   ///
   1545   /// If *this is < 0 then return -(*this), otherwise *this;
   1546   APInt LLVM_ATTRIBUTE_UNUSED_RESULT abs() const {
   1547     if (isNegative())
   1548       return -(*this);
   1549     return *this;
   1550   }
   1551 
   1552   /// \returns the multiplicative inverse for a given modulo.
   1553   APInt multiplicativeInverse(const APInt &modulo) const;
   1554 
   1555   /// @}
   1556   /// \name Support for division by constant
   1557   /// @{
   1558 
   1559   /// Calculate the magic number for signed division by a constant.
   1560   struct ms;
   1561   ms magic() const;
   1562 
   1563   /// Calculate the magic number for unsigned division by a constant.
   1564   struct mu;
   1565   mu magicu(unsigned LeadingZeros = 0) const;
   1566 
   1567   /// @}
   1568   /// \name Building-block Operations for APInt and APFloat
   1569   /// @{
   1570 
   1571   // These building block operations operate on a representation of arbitrary
   1572   // precision, two's-complement, bignum integer values. They should be
   1573   // sufficient to implement APInt and APFloat bignum requirements. Inputs are
   1574   // generally a pointer to the base of an array of integer parts, representing
   1575   // an unsigned bignum, and a count of how many parts there are.
   1576 
   1577   /// Sets the least significant part of a bignum to the input value, and zeroes
   1578   /// out higher parts.
   1579   static void tcSet(integerPart *, integerPart, unsigned int);
   1580 
   1581   /// Assign one bignum to another.
   1582   static void tcAssign(integerPart *, const integerPart *, unsigned int);
   1583 
   1584   /// Returns true if a bignum is zero, false otherwise.
   1585   static bool tcIsZero(const integerPart *, unsigned int);
   1586 
   1587   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
   1588   static int tcExtractBit(const integerPart *, unsigned int bit);
   1589 
   1590   /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
   1591   /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
   1592   /// significant bit of DST.  All high bits above srcBITS in DST are
   1593   /// zero-filled.
   1594   static void tcExtract(integerPart *, unsigned int dstCount,
   1595                         const integerPart *, unsigned int srcBits,
   1596                         unsigned int srcLSB);
   1597 
   1598   /// Set the given bit of a bignum.  Zero-based.
   1599   static void tcSetBit(integerPart *, unsigned int bit);
   1600 
   1601   /// Clear the given bit of a bignum.  Zero-based.
   1602   static void tcClearBit(integerPart *, unsigned int bit);
   1603 
   1604   /// Returns the bit number of the least or most significant set bit of a
   1605   /// number.  If the input number has no bits set -1U is returned.
   1606   static unsigned int tcLSB(const integerPart *, unsigned int);
   1607   static unsigned int tcMSB(const integerPart *parts, unsigned int n);
   1608 
   1609   /// Negate a bignum in-place.
   1610   static void tcNegate(integerPart *, unsigned int);
   1611 
   1612   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
   1613   static integerPart tcAdd(integerPart *, const integerPart *,
   1614                            integerPart carry, unsigned);
   1615 
   1616   /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
   1617   static integerPart tcSubtract(integerPart *, const integerPart *,
   1618                                 integerPart carry, unsigned);
   1619 
   1620   /// DST += SRC * MULTIPLIER + PART   if add is true
   1621   /// DST  = SRC * MULTIPLIER + PART   if add is false
   1622   ///
   1623   /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
   1624   /// start at the same point, i.e. DST == SRC.
   1625   ///
   1626   /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
   1627   /// Otherwise DST is filled with the least significant DSTPARTS parts of the
   1628   /// result, and if all of the omitted higher parts were zero return zero,
   1629   /// otherwise overflow occurred and return one.
   1630   static int tcMultiplyPart(integerPart *dst, const integerPart *src,
   1631                             integerPart multiplier, integerPart carry,
   1632                             unsigned int srcParts, unsigned int dstParts,
   1633                             bool add);
   1634 
   1635   /// DST = LHS * RHS, where DST has the same width as the operands and is
   1636   /// filled with the least significant parts of the result.  Returns one if
   1637   /// overflow occurred, otherwise zero.  DST must be disjoint from both
   1638   /// operands.
   1639   static int tcMultiply(integerPart *, const integerPart *, const integerPart *,
   1640                         unsigned);
   1641 
   1642   /// DST = LHS * RHS, where DST has width the sum of the widths of the
   1643   /// operands.  No overflow occurs.  DST must be disjoint from both
   1644   /// operands. Returns the number of parts required to hold the result.
   1645   static unsigned int tcFullMultiply(integerPart *, const integerPart *,
   1646                                      const integerPart *, unsigned, unsigned);
   1647 
   1648   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
   1649   /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
   1650   /// REMAINDER to the remainder, return zero.  i.e.
   1651   ///
   1652   ///  OLD_LHS = RHS * LHS + REMAINDER
   1653   ///
   1654   /// SCRATCH is a bignum of the same size as the operands and result for use by
   1655   /// the routine; its contents need not be initialized and are destroyed.  LHS,
   1656   /// REMAINDER and SCRATCH must be distinct.
   1657   static int tcDivide(integerPart *lhs, const integerPart *rhs,
   1658                       integerPart *remainder, integerPart *scratch,
   1659                       unsigned int parts);
   1660 
   1661   /// Shift a bignum left COUNT bits.  Shifted in bits are zero.  There are no
   1662   /// restrictions on COUNT.
   1663   static void tcShiftLeft(integerPart *, unsigned int parts,
   1664                           unsigned int count);
   1665 
   1666   /// Shift a bignum right COUNT bits.  Shifted in bits are zero.  There are no
   1667   /// restrictions on COUNT.
   1668   static void tcShiftRight(integerPart *, unsigned int parts,
   1669                            unsigned int count);
   1670 
   1671   /// The obvious AND, OR and XOR and complement operations.
   1672   static void tcAnd(integerPart *, const integerPart *, unsigned int);
   1673   static void tcOr(integerPart *, const integerPart *, unsigned int);
   1674   static void tcXor(integerPart *, const integerPart *, unsigned int);
   1675   static void tcComplement(integerPart *, unsigned int);
   1676 
   1677   /// Comparison (unsigned) of two bignums.
   1678   static int tcCompare(const integerPart *, const integerPart *, unsigned int);
   1679 
   1680   /// Increment a bignum in-place.  Return the carry flag.
   1681   static integerPart tcIncrement(integerPart *, unsigned int);
   1682 
   1683   /// Decrement a bignum in-place.  Return the borrow flag.
   1684   static integerPart tcDecrement(integerPart *, unsigned int);
   1685 
   1686   /// Set the least significant BITS and clear the rest.
   1687   static void tcSetLeastSignificantBits(integerPart *, unsigned int,
   1688                                         unsigned int bits);
   1689 
   1690   /// \brief debug method
   1691   void dump() const;
   1692 
   1693   /// @}
   1694 };
   1695 
   1696 /// Magic data for optimising signed division by a constant.
   1697 struct APInt::ms {
   1698   APInt m;    ///< magic number
   1699   unsigned s; ///< shift amount
   1700 };
   1701 
   1702 /// Magic data for optimising unsigned division by a constant.
   1703 struct APInt::mu {
   1704   APInt m;    ///< magic number
   1705   bool a;     ///< add indicator
   1706   unsigned s; ///< shift amount
   1707 };
   1708 
   1709 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
   1710 
   1711 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
   1712 
   1713 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
   1714   I.print(OS, true);
   1715   return OS;
   1716 }
   1717 
   1718 namespace APIntOps {
   1719 
   1720 /// \brief Determine the smaller of two APInts considered to be signed.
   1721 inline APInt smin(const APInt &A, const APInt &B) { return A.slt(B) ? A : B; }
   1722 
   1723 /// \brief Determine the larger of two APInts considered to be signed.
   1724 inline APInt smax(const APInt &A, const APInt &B) { return A.sgt(B) ? A : B; }
   1725 
   1726 /// \brief Determine the smaller of two APInts considered to be signed.
   1727 inline APInt umin(const APInt &A, const APInt &B) { return A.ult(B) ? A : B; }
   1728 
   1729 /// \brief Determine the larger of two APInts considered to be unsigned.
   1730 inline APInt umax(const APInt &A, const APInt &B) { return A.ugt(B) ? A : B; }
   1731 
   1732 /// \brief Check if the specified APInt has a N-bits unsigned integer value.
   1733 inline bool isIntN(unsigned N, const APInt &APIVal) { return APIVal.isIntN(N); }
   1734 
   1735 /// \brief Check if the specified APInt has a N-bits signed integer value.
   1736 inline bool isSignedIntN(unsigned N, const APInt &APIVal) {
   1737   return APIVal.isSignedIntN(N);
   1738 }
   1739 
   1740 /// \returns true if the argument APInt value is a sequence of ones starting at
   1741 /// the least significant bit with the remainder zero.
   1742 inline bool isMask(unsigned numBits, const APInt &APIVal) {
   1743   return numBits <= APIVal.getBitWidth() &&
   1744          APIVal == APInt::getLowBitsSet(APIVal.getBitWidth(), numBits);
   1745 }
   1746 
   1747 /// \brief Return true if the argument APInt value contains a sequence of ones
   1748 /// with the remainder zero.
   1749 inline bool isShiftedMask(unsigned numBits, const APInt &APIVal) {
   1750   return isMask(numBits, (APIVal - APInt(numBits, 1)) | APIVal);
   1751 }
   1752 
   1753 /// \brief Returns a byte-swapped representation of the specified APInt Value.
   1754 inline APInt byteSwap(const APInt &APIVal) { return APIVal.byteSwap(); }
   1755 
   1756 /// \brief Returns the floor log base 2 of the specified APInt value.
   1757 inline unsigned logBase2(const APInt &APIVal) { return APIVal.logBase2(); }
   1758 
   1759 /// \brief Compute GCD of two APInt values.
   1760 ///
   1761 /// This function returns the greatest common divisor of the two APInt values
   1762 /// using Euclid's algorithm.
   1763 ///
   1764 /// \returns the greatest common divisor of Val1 and Val2
   1765 APInt GreatestCommonDivisor(const APInt &Val1, const APInt &Val2);
   1766 
   1767 /// \brief Converts the given APInt to a double value.
   1768 ///
   1769 /// Treats the APInt as an unsigned value for conversion purposes.
   1770 inline double RoundAPIntToDouble(const APInt &APIVal) {
   1771   return APIVal.roundToDouble();
   1772 }
   1773 
   1774 /// \brief Converts the given APInt to a double value.
   1775 ///
   1776 /// Treats the APInt as a signed value for conversion purposes.
   1777 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
   1778   return APIVal.signedRoundToDouble();
   1779 }
   1780 
   1781 /// \brief Converts the given APInt to a float vlalue.
   1782 inline float RoundAPIntToFloat(const APInt &APIVal) {
   1783   return float(RoundAPIntToDouble(APIVal));
   1784 }
   1785 
   1786 /// \brief Converts the given APInt to a float value.
   1787 ///
   1788 /// Treast the APInt as a signed value for conversion purposes.
   1789 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
   1790   return float(APIVal.signedRoundToDouble());
   1791 }
   1792 
   1793 /// \brief Converts the given double value into a APInt.
   1794 ///
   1795 /// This function convert a double value to an APInt value.
   1796 APInt RoundDoubleToAPInt(double Double, unsigned width);
   1797 
   1798 /// \brief Converts a float value into a APInt.
   1799 ///
   1800 /// Converts a float value into an APInt value.
   1801 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
   1802   return RoundDoubleToAPInt(double(Float), width);
   1803 }
   1804 
   1805 /// \brief Arithmetic right-shift function.
   1806 ///
   1807 /// Arithmetic right-shift the APInt by shiftAmt.
   1808 inline APInt ashr(const APInt &LHS, unsigned shiftAmt) {
   1809   return LHS.ashr(shiftAmt);
   1810 }
   1811 
   1812 /// \brief Logical right-shift function.
   1813 ///
   1814 /// Logical right-shift the APInt by shiftAmt.
   1815 inline APInt lshr(const APInt &LHS, unsigned shiftAmt) {
   1816   return LHS.lshr(shiftAmt);
   1817 }
   1818 
   1819 /// \brief Left-shift function.
   1820 ///
   1821 /// Left-shift the APInt by shiftAmt.
   1822 inline APInt shl(const APInt &LHS, unsigned shiftAmt) {
   1823   return LHS.shl(shiftAmt);
   1824 }
   1825 
   1826 /// \brief Signed division function for APInt.
   1827 ///
   1828 /// Signed divide APInt LHS by APInt RHS.
   1829 inline APInt sdiv(const APInt &LHS, const APInt &RHS) { return LHS.sdiv(RHS); }
   1830 
   1831 /// \brief Unsigned division function for APInt.
   1832 ///
   1833 /// Unsigned divide APInt LHS by APInt RHS.
   1834 inline APInt udiv(const APInt &LHS, const APInt &RHS) { return LHS.udiv(RHS); }
   1835 
   1836 /// \brief Function for signed remainder operation.
   1837 ///
   1838 /// Signed remainder operation on APInt.
   1839 inline APInt srem(const APInt &LHS, const APInt &RHS) { return LHS.srem(RHS); }
   1840 
   1841 /// \brief Function for unsigned remainder operation.
   1842 ///
   1843 /// Unsigned remainder operation on APInt.
   1844 inline APInt urem(const APInt &LHS, const APInt &RHS) { return LHS.urem(RHS); }
   1845 
   1846 /// \brief Function for multiplication operation.
   1847 ///
   1848 /// Performs multiplication on APInt values.
   1849 inline APInt mul(const APInt &LHS, const APInt &RHS) { return LHS * RHS; }
   1850 
   1851 /// \brief Function for addition operation.
   1852 ///
   1853 /// Performs addition on APInt values.
   1854 inline APInt add(const APInt &LHS, const APInt &RHS) { return LHS + RHS; }
   1855 
   1856 /// \brief Function for subtraction operation.
   1857 ///
   1858 /// Performs subtraction on APInt values.
   1859 inline APInt sub(const APInt &LHS, const APInt &RHS) { return LHS - RHS; }
   1860 
   1861 /// \brief Bitwise AND function for APInt.
   1862 ///
   1863 /// Performs bitwise AND operation on APInt LHS and
   1864 /// APInt RHS.
   1865 inline APInt And(const APInt &LHS, const APInt &RHS) { return LHS & RHS; }
   1866 
   1867 /// \brief Bitwise OR function for APInt.
   1868 ///
   1869 /// Performs bitwise OR operation on APInt LHS and APInt RHS.
   1870 inline APInt Or(const APInt &LHS, const APInt &RHS) { return LHS | RHS; }
   1871 
   1872 /// \brief Bitwise XOR function for APInt.
   1873 ///
   1874 /// Performs bitwise XOR operation on APInt.
   1875 inline APInt Xor(const APInt &LHS, const APInt &RHS) { return LHS ^ RHS; }
   1876 
   1877 /// \brief Bitwise complement function.
   1878 ///
   1879 /// Performs a bitwise complement operation on APInt.
   1880 inline APInt Not(const APInt &APIVal) { return ~APIVal; }
   1881 
   1882 } // End of APIntOps namespace
   1883 
   1884 // See friend declaration above. This additional declaration is required in
   1885 // order to compile LLVM with IBM xlC compiler.
   1886 hash_code hash_value(const APInt &Arg);
   1887 } // End of llvm namespace
   1888 
   1889 #endif
   1890