Home | History | Annotate | Download | only in Analysis
      1 //===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the generic AliasAnalysis interface which is used as the
     11 // common interface used by all clients and implementations of alias analysis.
     12 //
     13 // This file also implements the default version of the AliasAnalysis interface
     14 // that is to be used when no other implementation is specified.  This does some
     15 // simple tests that detect obvious cases: two different global pointers cannot
     16 // alias, a global cannot alias a malloc, two different mallocs cannot alias,
     17 // etc.
     18 //
     19 // This alias analysis implementation really isn't very good for anything, but
     20 // it is very fast, and makes a nice clean default implementation.  Because it
     21 // handles lots of little corner cases, other, more complex, alias analysis
     22 // implementations may choose to rely on this pass to resolve these simple and
     23 // easy cases.
     24 //
     25 //===----------------------------------------------------------------------===//
     26 
     27 #include "llvm/Analysis/AliasAnalysis.h"
     28 #include "llvm/Analysis/CFG.h"
     29 #include "llvm/Analysis/CaptureTracking.h"
     30 #include "llvm/Analysis/ValueTracking.h"
     31 #include "llvm/IR/BasicBlock.h"
     32 #include "llvm/IR/DataLayout.h"
     33 #include "llvm/IR/Dominators.h"
     34 #include "llvm/IR/Function.h"
     35 #include "llvm/IR/Instructions.h"
     36 #include "llvm/IR/IntrinsicInst.h"
     37 #include "llvm/IR/LLVMContext.h"
     38 #include "llvm/IR/Type.h"
     39 #include "llvm/Pass.h"
     40 #include "llvm/Target/TargetLibraryInfo.h"
     41 using namespace llvm;
     42 
     43 // Register the AliasAnalysis interface, providing a nice name to refer to.
     44 INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA)
     45 char AliasAnalysis::ID = 0;
     46 
     47 //===----------------------------------------------------------------------===//
     48 // Default chaining methods
     49 //===----------------------------------------------------------------------===//
     50 
     51 AliasAnalysis::AliasResult
     52 AliasAnalysis::alias(const Location &LocA, const Location &LocB) {
     53   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     54   return AA->alias(LocA, LocB);
     55 }
     56 
     57 bool AliasAnalysis::pointsToConstantMemory(const Location &Loc,
     58                                            bool OrLocal) {
     59   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     60   return AA->pointsToConstantMemory(Loc, OrLocal);
     61 }
     62 
     63 AliasAnalysis::Location
     64 AliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
     65                               AliasAnalysis::ModRefResult &Mask) {
     66   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     67   return AA->getArgLocation(CS, ArgIdx, Mask);
     68 }
     69 
     70 void AliasAnalysis::deleteValue(Value *V) {
     71   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     72   AA->deleteValue(V);
     73 }
     74 
     75 void AliasAnalysis::copyValue(Value *From, Value *To) {
     76   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     77   AA->copyValue(From, To);
     78 }
     79 
     80 void AliasAnalysis::addEscapingUse(Use &U) {
     81   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     82   AA->addEscapingUse(U);
     83 }
     84 
     85 
     86 AliasAnalysis::ModRefResult
     87 AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
     88                              const Location &Loc) {
     89   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
     90 
     91   ModRefBehavior MRB = getModRefBehavior(CS);
     92   if (MRB == DoesNotAccessMemory)
     93     return NoModRef;
     94 
     95   ModRefResult Mask = ModRef;
     96   if (onlyReadsMemory(MRB))
     97     Mask = Ref;
     98 
     99   if (onlyAccessesArgPointees(MRB)) {
    100     bool doesAlias = false;
    101     ModRefResult AllArgsMask = NoModRef;
    102     if (doesAccessArgPointees(MRB)) {
    103       for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
    104            AI != AE; ++AI) {
    105         const Value *Arg = *AI;
    106         if (!Arg->getType()->isPointerTy())
    107           continue;
    108         ModRefResult ArgMask;
    109         Location CSLoc =
    110           getArgLocation(CS, (unsigned) std::distance(CS.arg_begin(), AI),
    111                          ArgMask);
    112         if (!isNoAlias(CSLoc, Loc)) {
    113           doesAlias = true;
    114           AllArgsMask = ModRefResult(AllArgsMask | ArgMask);
    115         }
    116       }
    117     }
    118     if (!doesAlias)
    119       return NoModRef;
    120     Mask = ModRefResult(Mask & AllArgsMask);
    121   }
    122 
    123   // If Loc is a constant memory location, the call definitely could not
    124   // modify the memory location.
    125   if ((Mask & Mod) && pointsToConstantMemory(Loc))
    126     Mask = ModRefResult(Mask & ~Mod);
    127 
    128   // If this is the end of the chain, don't forward.
    129   if (!AA) return Mask;
    130 
    131   // Otherwise, fall back to the next AA in the chain. But we can merge
    132   // in any mask we've managed to compute.
    133   return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask);
    134 }
    135 
    136 AliasAnalysis::ModRefResult
    137 AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
    138   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
    139 
    140   // If CS1 or CS2 are readnone, they don't interact.
    141   ModRefBehavior CS1B = getModRefBehavior(CS1);
    142   if (CS1B == DoesNotAccessMemory) return NoModRef;
    143 
    144   ModRefBehavior CS2B = getModRefBehavior(CS2);
    145   if (CS2B == DoesNotAccessMemory) return NoModRef;
    146 
    147   // If they both only read from memory, there is no dependence.
    148   if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
    149     return NoModRef;
    150 
    151   AliasAnalysis::ModRefResult Mask = ModRef;
    152 
    153   // If CS1 only reads memory, the only dependence on CS2 can be
    154   // from CS1 reading memory written by CS2.
    155   if (onlyReadsMemory(CS1B))
    156     Mask = ModRefResult(Mask & Ref);
    157 
    158   // If CS2 only access memory through arguments, accumulate the mod/ref
    159   // information from CS1's references to the memory referenced by
    160   // CS2's arguments.
    161   if (onlyAccessesArgPointees(CS2B)) {
    162     AliasAnalysis::ModRefResult R = NoModRef;
    163     if (doesAccessArgPointees(CS2B)) {
    164       for (ImmutableCallSite::arg_iterator
    165            I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
    166         const Value *Arg = *I;
    167         if (!Arg->getType()->isPointerTy())
    168           continue;
    169         ModRefResult ArgMask;
    170         Location CS2Loc =
    171           getArgLocation(CS2, (unsigned) std::distance(CS2.arg_begin(), I),
    172                          ArgMask);
    173         // ArgMask indicates what CS2 might do to CS2Loc, and the dependence of
    174         // CS1 on that location is the inverse.
    175         if (ArgMask == Mod)
    176           ArgMask = ModRef;
    177         else if (ArgMask == Ref)
    178           ArgMask = Mod;
    179 
    180         R = ModRefResult((R | (getModRefInfo(CS1, CS2Loc) & ArgMask)) & Mask);
    181         if (R == Mask)
    182           break;
    183       }
    184     }
    185     return R;
    186   }
    187 
    188   // If CS1 only accesses memory through arguments, check if CS2 references
    189   // any of the memory referenced by CS1's arguments. If not, return NoModRef.
    190   if (onlyAccessesArgPointees(CS1B)) {
    191     AliasAnalysis::ModRefResult R = NoModRef;
    192     if (doesAccessArgPointees(CS1B)) {
    193       for (ImmutableCallSite::arg_iterator
    194            I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
    195         const Value *Arg = *I;
    196         if (!Arg->getType()->isPointerTy())
    197           continue;
    198         ModRefResult ArgMask;
    199         Location CS1Loc =
    200           getArgLocation(CS1, (unsigned) std::distance(CS1.arg_begin(), I),
    201                          ArgMask);
    202         if ((getModRefInfo(CS2, CS1Loc) & ArgMask) != NoModRef) {
    203           R = Mask;
    204           break;
    205         }
    206       }
    207     }
    208     if (R == NoModRef)
    209       return R;
    210   }
    211 
    212   // If this is the end of the chain, don't forward.
    213   if (!AA) return Mask;
    214 
    215   // Otherwise, fall back to the next AA in the chain. But we can merge
    216   // in any mask we've managed to compute.
    217   return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
    218 }
    219 
    220 AliasAnalysis::ModRefBehavior
    221 AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
    222   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
    223 
    224   ModRefBehavior Min = UnknownModRefBehavior;
    225 
    226   // Call back into the alias analysis with the other form of getModRefBehavior
    227   // to see if it can give a better response.
    228   if (const Function *F = CS.getCalledFunction())
    229     Min = getModRefBehavior(F);
    230 
    231   // If this is the end of the chain, don't forward.
    232   if (!AA) return Min;
    233 
    234   // Otherwise, fall back to the next AA in the chain. But we can merge
    235   // in any result we've managed to compute.
    236   return ModRefBehavior(AA->getModRefBehavior(CS) & Min);
    237 }
    238 
    239 AliasAnalysis::ModRefBehavior
    240 AliasAnalysis::getModRefBehavior(const Function *F) {
    241   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
    242   return AA->getModRefBehavior(F);
    243 }
    244 
    245 //===----------------------------------------------------------------------===//
    246 // AliasAnalysis non-virtual helper method implementation
    247 //===----------------------------------------------------------------------===//
    248 
    249 AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) {
    250   return Location(LI->getPointerOperand(),
    251                   getTypeStoreSize(LI->getType()),
    252                   LI->getMetadata(LLVMContext::MD_tbaa));
    253 }
    254 
    255 AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) {
    256   return Location(SI->getPointerOperand(),
    257                   getTypeStoreSize(SI->getValueOperand()->getType()),
    258                   SI->getMetadata(LLVMContext::MD_tbaa));
    259 }
    260 
    261 AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) {
    262   return Location(VI->getPointerOperand(),
    263                   UnknownSize,
    264                   VI->getMetadata(LLVMContext::MD_tbaa));
    265 }
    266 
    267 AliasAnalysis::Location
    268 AliasAnalysis::getLocation(const AtomicCmpXchgInst *CXI) {
    269   return Location(CXI->getPointerOperand(),
    270                   getTypeStoreSize(CXI->getCompareOperand()->getType()),
    271                   CXI->getMetadata(LLVMContext::MD_tbaa));
    272 }
    273 
    274 AliasAnalysis::Location
    275 AliasAnalysis::getLocation(const AtomicRMWInst *RMWI) {
    276   return Location(RMWI->getPointerOperand(),
    277                   getTypeStoreSize(RMWI->getValOperand()->getType()),
    278                   RMWI->getMetadata(LLVMContext::MD_tbaa));
    279 }
    280 
    281 AliasAnalysis::Location
    282 AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) {
    283   uint64_t Size = UnknownSize;
    284   if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
    285     Size = C->getValue().getZExtValue();
    286 
    287   // memcpy/memmove can have TBAA tags. For memcpy, they apply
    288   // to both the source and the destination.
    289   MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
    290 
    291   return Location(MTI->getRawSource(), Size, TBAATag);
    292 }
    293 
    294 AliasAnalysis::Location
    295 AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) {
    296   uint64_t Size = UnknownSize;
    297   if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
    298     Size = C->getValue().getZExtValue();
    299 
    300   // memcpy/memmove can have TBAA tags. For memcpy, they apply
    301   // to both the source and the destination.
    302   MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
    303 
    304   return Location(MTI->getRawDest(), Size, TBAATag);
    305 }
    306 
    307 
    308 
    309 AliasAnalysis::ModRefResult
    310 AliasAnalysis::getModRefInfo(const LoadInst *L, const Location &Loc) {
    311   // Be conservative in the face of volatile/atomic.
    312   if (!L->isUnordered())
    313     return ModRef;
    314 
    315   // If the load address doesn't alias the given address, it doesn't read
    316   // or write the specified memory.
    317   if (!alias(getLocation(L), Loc))
    318     return NoModRef;
    319 
    320   // Otherwise, a load just reads.
    321   return Ref;
    322 }
    323 
    324 AliasAnalysis::ModRefResult
    325 AliasAnalysis::getModRefInfo(const StoreInst *S, const Location &Loc) {
    326   // Be conservative in the face of volatile/atomic.
    327   if (!S->isUnordered())
    328     return ModRef;
    329 
    330   // If the store address cannot alias the pointer in question, then the
    331   // specified memory cannot be modified by the store.
    332   if (!alias(getLocation(S), Loc))
    333     return NoModRef;
    334 
    335   // If the pointer is a pointer to constant memory, then it could not have been
    336   // modified by this store.
    337   if (pointsToConstantMemory(Loc))
    338     return NoModRef;
    339 
    340   // Otherwise, a store just writes.
    341   return Mod;
    342 }
    343 
    344 AliasAnalysis::ModRefResult
    345 AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) {
    346   // If the va_arg address cannot alias the pointer in question, then the
    347   // specified memory cannot be accessed by the va_arg.
    348   if (!alias(getLocation(V), Loc))
    349     return NoModRef;
    350 
    351   // If the pointer is a pointer to constant memory, then it could not have been
    352   // modified by this va_arg.
    353   if (pointsToConstantMemory(Loc))
    354     return NoModRef;
    355 
    356   // Otherwise, a va_arg reads and writes.
    357   return ModRef;
    358 }
    359 
    360 AliasAnalysis::ModRefResult
    361 AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc) {
    362   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
    363   if (CX->getSuccessOrdering() > Monotonic)
    364     return ModRef;
    365 
    366   // If the cmpxchg address does not alias the location, it does not access it.
    367   if (!alias(getLocation(CX), Loc))
    368     return NoModRef;
    369 
    370   return ModRef;
    371 }
    372 
    373 AliasAnalysis::ModRefResult
    374 AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc) {
    375   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
    376   if (RMW->getOrdering() > Monotonic)
    377     return ModRef;
    378 
    379   // If the atomicrmw address does not alias the location, it does not access it.
    380   if (!alias(getLocation(RMW), Loc))
    381     return NoModRef;
    382 
    383   return ModRef;
    384 }
    385 
    386 namespace {
    387   /// Only find pointer captures which happen before the given instruction. Uses
    388   /// the dominator tree to determine whether one instruction is before another.
    389   /// Only support the case where the Value is defined in the same basic block
    390   /// as the given instruction and the use.
    391   struct CapturesBefore : public CaptureTracker {
    392     CapturesBefore(const Instruction *I, DominatorTree *DT)
    393       : BeforeHere(I), DT(DT), Captured(false) {}
    394 
    395     void tooManyUses() override { Captured = true; }
    396 
    397     bool shouldExplore(const Use *U) override {
    398       Instruction *I = cast<Instruction>(U->getUser());
    399       BasicBlock *BB = I->getParent();
    400       // We explore this usage only if the usage can reach "BeforeHere".
    401       // If use is not reachable from entry, there is no need to explore.
    402       if (BeforeHere != I && !DT->isReachableFromEntry(BB))
    403         return false;
    404       // If the value is defined in the same basic block as use and BeforeHere,
    405       // there is no need to explore the use if BeforeHere dominates use.
    406       // Check whether there is a path from I to BeforeHere.
    407       if (BeforeHere != I && DT->dominates(BeforeHere, I) &&
    408           !isPotentiallyReachable(I, BeforeHere, DT))
    409         return false;
    410       return true;
    411     }
    412 
    413     bool captured(const Use *U) override {
    414       Instruction *I = cast<Instruction>(U->getUser());
    415       BasicBlock *BB = I->getParent();
    416       // Same logic as in shouldExplore.
    417       if (BeforeHere != I && !DT->isReachableFromEntry(BB))
    418         return false;
    419       if (BeforeHere != I && DT->dominates(BeforeHere, I) &&
    420           !isPotentiallyReachable(I, BeforeHere, DT))
    421         return false;
    422       Captured = true;
    423       return true;
    424     }
    425 
    426     const Instruction *BeforeHere;
    427     DominatorTree *DT;
    428 
    429     bool Captured;
    430   };
    431 }
    432 
    433 // FIXME: this is really just shoring-up a deficiency in alias analysis.
    434 // BasicAA isn't willing to spend linear time determining whether an alloca
    435 // was captured before or after this particular call, while we are. However,
    436 // with a smarter AA in place, this test is just wasting compile time.
    437 AliasAnalysis::ModRefResult
    438 AliasAnalysis::callCapturesBefore(const Instruction *I,
    439                                   const AliasAnalysis::Location &MemLoc,
    440                                   DominatorTree *DT) {
    441   if (!DT || !DL) return AliasAnalysis::ModRef;
    442 
    443   const Value *Object = GetUnderlyingObject(MemLoc.Ptr, DL);
    444   if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
    445       isa<Constant>(Object))
    446     return AliasAnalysis::ModRef;
    447 
    448   ImmutableCallSite CS(I);
    449   if (!CS.getInstruction() || CS.getInstruction() == Object)
    450     return AliasAnalysis::ModRef;
    451 
    452   CapturesBefore CB(I, DT);
    453   llvm::PointerMayBeCaptured(Object, &CB);
    454   if (CB.Captured)
    455     return AliasAnalysis::ModRef;
    456 
    457   unsigned ArgNo = 0;
    458   AliasAnalysis::ModRefResult R = AliasAnalysis::NoModRef;
    459   for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
    460        CI != CE; ++CI, ++ArgNo) {
    461     // Only look at the no-capture or byval pointer arguments.  If this
    462     // pointer were passed to arguments that were neither of these, then it
    463     // couldn't be no-capture.
    464     if (!(*CI)->getType()->isPointerTy() ||
    465         (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
    466       continue;
    467 
    468     // If this is a no-capture pointer argument, see if we can tell that it
    469     // is impossible to alias the pointer we're checking.  If not, we have to
    470     // assume that the call could touch the pointer, even though it doesn't
    471     // escape.
    472     if (isNoAlias(AliasAnalysis::Location(*CI),
    473 		  AliasAnalysis::Location(Object)))
    474       continue;
    475     if (CS.doesNotAccessMemory(ArgNo))
    476       continue;
    477     if (CS.onlyReadsMemory(ArgNo)) {
    478       R = AliasAnalysis::Ref;
    479       continue;
    480     }
    481     return AliasAnalysis::ModRef;
    482   }
    483   return R;
    484 }
    485 
    486 // AliasAnalysis destructor: DO NOT move this to the header file for
    487 // AliasAnalysis or else clients of the AliasAnalysis class may not depend on
    488 // the AliasAnalysis.o file in the current .a file, causing alias analysis
    489 // support to not be included in the tool correctly!
    490 //
    491 AliasAnalysis::~AliasAnalysis() {}
    492 
    493 /// InitializeAliasAnalysis - Subclasses must call this method to initialize the
    494 /// AliasAnalysis interface before any other methods are called.
    495 ///
    496 void AliasAnalysis::InitializeAliasAnalysis(Pass *P) {
    497   DataLayoutPass *DLP = P->getAnalysisIfAvailable<DataLayoutPass>();
    498   DL = DLP ? &DLP->getDataLayout() : nullptr;
    499   TLI = P->getAnalysisIfAvailable<TargetLibraryInfo>();
    500   AA = &P->getAnalysis<AliasAnalysis>();
    501 }
    502 
    503 // getAnalysisUsage - All alias analysis implementations should invoke this
    504 // directly (using AliasAnalysis::getAnalysisUsage(AU)).
    505 void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
    506   AU.addRequired<AliasAnalysis>();         // All AA's chain
    507 }
    508 
    509 /// getTypeStoreSize - Return the DataLayout store size for the given type,
    510 /// if known, or a conservative value otherwise.
    511 ///
    512 uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
    513   return DL ? DL->getTypeStoreSize(Ty) : UnknownSize;
    514 }
    515 
    516 /// canBasicBlockModify - Return true if it is possible for execution of the
    517 /// specified basic block to modify the value pointed to by Ptr.
    518 ///
    519 bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
    520                                         const Location &Loc) {
    521   return canInstructionRangeModify(BB.front(), BB.back(), Loc);
    522 }
    523 
    524 /// canInstructionRangeModify - Return true if it is possible for the execution
    525 /// of the specified instructions to modify the value pointed to by Ptr.  The
    526 /// instructions to consider are all of the instructions in the range of [I1,I2]
    527 /// INCLUSIVE.  I1 and I2 must be in the same basic block.
    528 ///
    529 bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1,
    530                                               const Instruction &I2,
    531                                               const Location &Loc) {
    532   assert(I1.getParent() == I2.getParent() &&
    533          "Instructions not in same basic block!");
    534   BasicBlock::const_iterator I = &I1;
    535   BasicBlock::const_iterator E = &I2;
    536   ++E;  // Convert from inclusive to exclusive range.
    537 
    538   for (; I != E; ++I) // Check every instruction in range
    539     if (getModRefInfo(I, Loc) & Mod)
    540       return true;
    541   return false;
    542 }
    543 
    544 /// isNoAliasCall - Return true if this pointer is returned by a noalias
    545 /// function.
    546 bool llvm::isNoAliasCall(const Value *V) {
    547   if (isa<CallInst>(V) || isa<InvokeInst>(V))
    548     return ImmutableCallSite(cast<Instruction>(V))
    549       .paramHasAttr(0, Attribute::NoAlias);
    550   return false;
    551 }
    552 
    553 /// isNoAliasArgument - Return true if this is an argument with the noalias
    554 /// attribute.
    555 bool llvm::isNoAliasArgument(const Value *V)
    556 {
    557   if (const Argument *A = dyn_cast<Argument>(V))
    558     return A->hasNoAliasAttr();
    559   return false;
    560 }
    561 
    562 /// isIdentifiedObject - Return true if this pointer refers to a distinct and
    563 /// identifiable object.  This returns true for:
    564 ///    Global Variables and Functions (but not Global Aliases)
    565 ///    Allocas and Mallocs
    566 ///    ByVal and NoAlias Arguments
    567 ///    NoAlias returns
    568 ///
    569 bool llvm::isIdentifiedObject(const Value *V) {
    570   if (isa<AllocaInst>(V))
    571     return true;
    572   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
    573     return true;
    574   if (isNoAliasCall(V))
    575     return true;
    576   if (const Argument *A = dyn_cast<Argument>(V))
    577     return A->hasNoAliasAttr() || A->hasByValAttr();
    578   return false;
    579 }
    580