Home | History | Annotate | Download | only in Lex
      1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the NumericLiteralParser, CharLiteralParser, and
     11 // StringLiteralParser interfaces.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/Lex/LiteralSupport.h"
     16 #include "clang/Basic/CharInfo.h"
     17 #include "clang/Basic/TargetInfo.h"
     18 #include "clang/Lex/LexDiagnostic.h"
     19 #include "clang/Lex/Preprocessor.h"
     20 #include "llvm/ADT/StringExtras.h"
     21 #include "llvm/Support/ConvertUTF.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 
     24 using namespace clang;
     25 
     26 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
     27   switch (kind) {
     28   default: llvm_unreachable("Unknown token type!");
     29   case tok::char_constant:
     30   case tok::string_literal:
     31   case tok::utf8_string_literal:
     32     return Target.getCharWidth();
     33   case tok::wide_char_constant:
     34   case tok::wide_string_literal:
     35     return Target.getWCharWidth();
     36   case tok::utf16_char_constant:
     37   case tok::utf16_string_literal:
     38     return Target.getChar16Width();
     39   case tok::utf32_char_constant:
     40   case tok::utf32_string_literal:
     41     return Target.getChar32Width();
     42   }
     43 }
     44 
     45 static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
     46                                            FullSourceLoc TokLoc,
     47                                            const char *TokBegin,
     48                                            const char *TokRangeBegin,
     49                                            const char *TokRangeEnd) {
     50   SourceLocation Begin =
     51     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
     52                                    TokLoc.getManager(), Features);
     53   SourceLocation End =
     54     Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
     55                                    TokLoc.getManager(), Features);
     56   return CharSourceRange::getCharRange(Begin, End);
     57 }
     58 
     59 /// \brief Produce a diagnostic highlighting some portion of a literal.
     60 ///
     61 /// Emits the diagnostic \p DiagID, highlighting the range of characters from
     62 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
     63 /// a substring of a spelling buffer for the token beginning at \p TokBegin.
     64 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
     65                               const LangOptions &Features, FullSourceLoc TokLoc,
     66                               const char *TokBegin, const char *TokRangeBegin,
     67                               const char *TokRangeEnd, unsigned DiagID) {
     68   SourceLocation Begin =
     69     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
     70                                    TokLoc.getManager(), Features);
     71   return Diags->Report(Begin, DiagID) <<
     72     MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
     73 }
     74 
     75 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
     76 /// either a character or a string literal.
     77 static unsigned ProcessCharEscape(const char *ThisTokBegin,
     78                                   const char *&ThisTokBuf,
     79                                   const char *ThisTokEnd, bool &HadError,
     80                                   FullSourceLoc Loc, unsigned CharWidth,
     81                                   DiagnosticsEngine *Diags,
     82                                   const LangOptions &Features) {
     83   const char *EscapeBegin = ThisTokBuf;
     84 
     85   // Skip the '\' char.
     86   ++ThisTokBuf;
     87 
     88   // We know that this character can't be off the end of the buffer, because
     89   // that would have been \", which would not have been the end of string.
     90   unsigned ResultChar = *ThisTokBuf++;
     91   switch (ResultChar) {
     92   // These map to themselves.
     93   case '\\': case '\'': case '"': case '?': break;
     94 
     95     // These have fixed mappings.
     96   case 'a':
     97     // TODO: K&R: the meaning of '\\a' is different in traditional C
     98     ResultChar = 7;
     99     break;
    100   case 'b':
    101     ResultChar = 8;
    102     break;
    103   case 'e':
    104     if (Diags)
    105       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    106            diag::ext_nonstandard_escape) << "e";
    107     ResultChar = 27;
    108     break;
    109   case 'E':
    110     if (Diags)
    111       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    112            diag::ext_nonstandard_escape) << "E";
    113     ResultChar = 27;
    114     break;
    115   case 'f':
    116     ResultChar = 12;
    117     break;
    118   case 'n':
    119     ResultChar = 10;
    120     break;
    121   case 'r':
    122     ResultChar = 13;
    123     break;
    124   case 't':
    125     ResultChar = 9;
    126     break;
    127   case 'v':
    128     ResultChar = 11;
    129     break;
    130   case 'x': { // Hex escape.
    131     ResultChar = 0;
    132     if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
    133       if (Diags)
    134         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    135              diag::err_hex_escape_no_digits) << "x";
    136       HadError = 1;
    137       break;
    138     }
    139 
    140     // Hex escapes are a maximal series of hex digits.
    141     bool Overflow = false;
    142     for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
    143       int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
    144       if (CharVal == -1) break;
    145       // About to shift out a digit?
    146       Overflow |= (ResultChar & 0xF0000000) ? true : false;
    147       ResultChar <<= 4;
    148       ResultChar |= CharVal;
    149     }
    150 
    151     // See if any bits will be truncated when evaluated as a character.
    152     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
    153       Overflow = true;
    154       ResultChar &= ~0U >> (32-CharWidth);
    155     }
    156 
    157     // Check for overflow.
    158     if (Overflow && Diags)   // Too many digits to fit in
    159       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    160            diag::err_hex_escape_too_large);
    161     break;
    162   }
    163   case '0': case '1': case '2': case '3':
    164   case '4': case '5': case '6': case '7': {
    165     // Octal escapes.
    166     --ThisTokBuf;
    167     ResultChar = 0;
    168 
    169     // Octal escapes are a series of octal digits with maximum length 3.
    170     // "\0123" is a two digit sequence equal to "\012" "3".
    171     unsigned NumDigits = 0;
    172     do {
    173       ResultChar <<= 3;
    174       ResultChar |= *ThisTokBuf++ - '0';
    175       ++NumDigits;
    176     } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
    177              ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
    178 
    179     // Check for overflow.  Reject '\777', but not L'\777'.
    180     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
    181       if (Diags)
    182         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    183              diag::err_octal_escape_too_large);
    184       ResultChar &= ~0U >> (32-CharWidth);
    185     }
    186     break;
    187   }
    188 
    189     // Otherwise, these are not valid escapes.
    190   case '(': case '{': case '[': case '%':
    191     // GCC accepts these as extensions.  We warn about them as such though.
    192     if (Diags)
    193       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    194            diag::ext_nonstandard_escape)
    195         << std::string(1, ResultChar);
    196     break;
    197   default:
    198     if (!Diags)
    199       break;
    200 
    201     if (isPrintable(ResultChar))
    202       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    203            diag::ext_unknown_escape)
    204         << std::string(1, ResultChar);
    205     else
    206       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
    207            diag::ext_unknown_escape)
    208         << "x" + llvm::utohexstr(ResultChar);
    209     break;
    210   }
    211 
    212   return ResultChar;
    213 }
    214 
    215 static void appendCodePoint(unsigned Codepoint,
    216                             llvm::SmallVectorImpl<char> &Str) {
    217   char ResultBuf[4];
    218   char *ResultPtr = ResultBuf;
    219   bool Res = llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr);
    220   (void)Res;
    221   assert(Res && "Unexpected conversion failure");
    222   Str.append(ResultBuf, ResultPtr);
    223 }
    224 
    225 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
    226   for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
    227     if (*I != '\\') {
    228       Buf.push_back(*I);
    229       continue;
    230     }
    231 
    232     ++I;
    233     assert(*I == 'u' || *I == 'U');
    234 
    235     unsigned NumHexDigits;
    236     if (*I == 'u')
    237       NumHexDigits = 4;
    238     else
    239       NumHexDigits = 8;
    240 
    241     assert(I + NumHexDigits <= E);
    242 
    243     uint32_t CodePoint = 0;
    244     for (++I; NumHexDigits != 0; ++I, --NumHexDigits) {
    245       unsigned Value = llvm::hexDigitValue(*I);
    246       assert(Value != -1U);
    247 
    248       CodePoint <<= 4;
    249       CodePoint += Value;
    250     }
    251 
    252     appendCodePoint(CodePoint, Buf);
    253     --I;
    254   }
    255 }
    256 
    257 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
    258 /// return the UTF32.
    259 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
    260                              const char *ThisTokEnd,
    261                              uint32_t &UcnVal, unsigned short &UcnLen,
    262                              FullSourceLoc Loc, DiagnosticsEngine *Diags,
    263                              const LangOptions &Features,
    264                              bool in_char_string_literal = false) {
    265   const char *UcnBegin = ThisTokBuf;
    266 
    267   // Skip the '\u' char's.
    268   ThisTokBuf += 2;
    269 
    270   if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
    271     if (Diags)
    272       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    273            diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
    274     return false;
    275   }
    276   UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
    277   unsigned short UcnLenSave = UcnLen;
    278   for (; ThisTokBuf != ThisTokEnd && UcnLenSave; ++ThisTokBuf, UcnLenSave--) {
    279     int CharVal = llvm::hexDigitValue(ThisTokBuf[0]);
    280     if (CharVal == -1) break;
    281     UcnVal <<= 4;
    282     UcnVal |= CharVal;
    283   }
    284   // If we didn't consume the proper number of digits, there is a problem.
    285   if (UcnLenSave) {
    286     if (Diags)
    287       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    288            diag::err_ucn_escape_incomplete);
    289     return false;
    290   }
    291 
    292   // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
    293   if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
    294       UcnVal > 0x10FFFF) {                      // maximum legal UTF32 value
    295     if (Diags)
    296       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    297            diag::err_ucn_escape_invalid);
    298     return false;
    299   }
    300 
    301   // C++11 allows UCNs that refer to control characters and basic source
    302   // characters inside character and string literals
    303   if (UcnVal < 0xa0 &&
    304       (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) {  // $, @, `
    305     bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
    306     if (Diags) {
    307       char BasicSCSChar = UcnVal;
    308       if (UcnVal >= 0x20 && UcnVal < 0x7f)
    309         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    310              IsError ? diag::err_ucn_escape_basic_scs :
    311                        diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
    312             << StringRef(&BasicSCSChar, 1);
    313       else
    314         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    315              IsError ? diag::err_ucn_control_character :
    316                        diag::warn_cxx98_compat_literal_ucn_control_character);
    317     }
    318     if (IsError)
    319       return false;
    320   }
    321 
    322   if (!Features.CPlusPlus && !Features.C99 && Diags)
    323     Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
    324          diag::warn_ucn_not_valid_in_c89_literal);
    325 
    326   return true;
    327 }
    328 
    329 /// MeasureUCNEscape - Determine the number of bytes within the resulting string
    330 /// which this UCN will occupy.
    331 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
    332                             const char *ThisTokEnd, unsigned CharByteWidth,
    333                             const LangOptions &Features, bool &HadError) {
    334   // UTF-32: 4 bytes per escape.
    335   if (CharByteWidth == 4)
    336     return 4;
    337 
    338   uint32_t UcnVal = 0;
    339   unsigned short UcnLen = 0;
    340   FullSourceLoc Loc;
    341 
    342   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
    343                         UcnLen, Loc, nullptr, Features, true)) {
    344     HadError = true;
    345     return 0;
    346   }
    347 
    348   // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
    349   if (CharByteWidth == 2)
    350     return UcnVal <= 0xFFFF ? 2 : 4;
    351 
    352   // UTF-8.
    353   if (UcnVal < 0x80)
    354     return 1;
    355   if (UcnVal < 0x800)
    356     return 2;
    357   if (UcnVal < 0x10000)
    358     return 3;
    359   return 4;
    360 }
    361 
    362 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
    363 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
    364 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
    365 /// we will likely rework our support for UCN's.
    366 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
    367                             const char *ThisTokEnd,
    368                             char *&ResultBuf, bool &HadError,
    369                             FullSourceLoc Loc, unsigned CharByteWidth,
    370                             DiagnosticsEngine *Diags,
    371                             const LangOptions &Features) {
    372   typedef uint32_t UTF32;
    373   UTF32 UcnVal = 0;
    374   unsigned short UcnLen = 0;
    375   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
    376                         Loc, Diags, Features, true)) {
    377     HadError = true;
    378     return;
    379   }
    380 
    381   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
    382          "only character widths of 1, 2, or 4 bytes supported");
    383 
    384   (void)UcnLen;
    385   assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
    386 
    387   if (CharByteWidth == 4) {
    388     // FIXME: Make the type of the result buffer correct instead of
    389     // using reinterpret_cast.
    390     UTF32 *ResultPtr = reinterpret_cast<UTF32*>(ResultBuf);
    391     *ResultPtr = UcnVal;
    392     ResultBuf += 4;
    393     return;
    394   }
    395 
    396   if (CharByteWidth == 2) {
    397     // FIXME: Make the type of the result buffer correct instead of
    398     // using reinterpret_cast.
    399     UTF16 *ResultPtr = reinterpret_cast<UTF16*>(ResultBuf);
    400 
    401     if (UcnVal <= (UTF32)0xFFFF) {
    402       *ResultPtr = UcnVal;
    403       ResultBuf += 2;
    404       return;
    405     }
    406 
    407     // Convert to UTF16.
    408     UcnVal -= 0x10000;
    409     *ResultPtr     = 0xD800 + (UcnVal >> 10);
    410     *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
    411     ResultBuf += 4;
    412     return;
    413   }
    414 
    415   assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
    416 
    417   // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
    418   // The conversion below was inspired by:
    419   //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
    420   // First, we determine how many bytes the result will require.
    421   typedef uint8_t UTF8;
    422 
    423   unsigned short bytesToWrite = 0;
    424   if (UcnVal < (UTF32)0x80)
    425     bytesToWrite = 1;
    426   else if (UcnVal < (UTF32)0x800)
    427     bytesToWrite = 2;
    428   else if (UcnVal < (UTF32)0x10000)
    429     bytesToWrite = 3;
    430   else
    431     bytesToWrite = 4;
    432 
    433   const unsigned byteMask = 0xBF;
    434   const unsigned byteMark = 0x80;
    435 
    436   // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
    437   // into the first byte, depending on how many bytes follow.
    438   static const UTF8 firstByteMark[5] = {
    439     0x00, 0x00, 0xC0, 0xE0, 0xF0
    440   };
    441   // Finally, we write the bytes into ResultBuf.
    442   ResultBuf += bytesToWrite;
    443   switch (bytesToWrite) { // note: everything falls through.
    444   case 4: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
    445   case 3: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
    446   case 2: *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
    447   case 1: *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
    448   }
    449   // Update the buffer.
    450   ResultBuf += bytesToWrite;
    451 }
    452 
    453 
    454 ///       integer-constant: [C99 6.4.4.1]
    455 ///         decimal-constant integer-suffix
    456 ///         octal-constant integer-suffix
    457 ///         hexadecimal-constant integer-suffix
    458 ///         binary-literal integer-suffix [GNU, C++1y]
    459 ///       user-defined-integer-literal: [C++11 lex.ext]
    460 ///         decimal-literal ud-suffix
    461 ///         octal-literal ud-suffix
    462 ///         hexadecimal-literal ud-suffix
    463 ///         binary-literal ud-suffix [GNU, C++1y]
    464 ///       decimal-constant:
    465 ///         nonzero-digit
    466 ///         decimal-constant digit
    467 ///       octal-constant:
    468 ///         0
    469 ///         octal-constant octal-digit
    470 ///       hexadecimal-constant:
    471 ///         hexadecimal-prefix hexadecimal-digit
    472 ///         hexadecimal-constant hexadecimal-digit
    473 ///       hexadecimal-prefix: one of
    474 ///         0x 0X
    475 ///       binary-literal:
    476 ///         0b binary-digit
    477 ///         0B binary-digit
    478 ///         binary-literal binary-digit
    479 ///       integer-suffix:
    480 ///         unsigned-suffix [long-suffix]
    481 ///         unsigned-suffix [long-long-suffix]
    482 ///         long-suffix [unsigned-suffix]
    483 ///         long-long-suffix [unsigned-sufix]
    484 ///       nonzero-digit:
    485 ///         1 2 3 4 5 6 7 8 9
    486 ///       octal-digit:
    487 ///         0 1 2 3 4 5 6 7
    488 ///       hexadecimal-digit:
    489 ///         0 1 2 3 4 5 6 7 8 9
    490 ///         a b c d e f
    491 ///         A B C D E F
    492 ///       binary-digit:
    493 ///         0
    494 ///         1
    495 ///       unsigned-suffix: one of
    496 ///         u U
    497 ///       long-suffix: one of
    498 ///         l L
    499 ///       long-long-suffix: one of
    500 ///         ll LL
    501 ///
    502 ///       floating-constant: [C99 6.4.4.2]
    503 ///         TODO: add rules...
    504 ///
    505 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
    506                                            SourceLocation TokLoc,
    507                                            Preprocessor &PP)
    508   : PP(PP), ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
    509 
    510   // This routine assumes that the range begin/end matches the regex for integer
    511   // and FP constants (specifically, the 'pp-number' regex), and assumes that
    512   // the byte at "*end" is both valid and not part of the regex.  Because of
    513   // this, it doesn't have to check for 'overscan' in various places.
    514   assert(!isPreprocessingNumberBody(*ThisTokEnd) && "didn't maximally munch?");
    515 
    516   s = DigitsBegin = ThisTokBegin;
    517   saw_exponent = false;
    518   saw_period = false;
    519   saw_ud_suffix = false;
    520   isLong = false;
    521   isUnsigned = false;
    522   isLongLong = false;
    523   isFloat = false;
    524   isImaginary = false;
    525   MicrosoftInteger = 0;
    526   hadError = false;
    527 
    528   if (*s == '0') { // parse radix
    529     ParseNumberStartingWithZero(TokLoc);
    530     if (hadError)
    531       return;
    532   } else { // the first digit is non-zero
    533     radix = 10;
    534     s = SkipDigits(s);
    535     if (s == ThisTokEnd) {
    536       // Done.
    537     } else if (isHexDigit(*s) && !(*s == 'e' || *s == 'E')) {
    538       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
    539               diag::err_invalid_decimal_digit) << StringRef(s, 1);
    540       hadError = true;
    541       return;
    542     } else if (*s == '.') {
    543       checkSeparator(TokLoc, s, CSK_AfterDigits);
    544       s++;
    545       saw_period = true;
    546       checkSeparator(TokLoc, s, CSK_BeforeDigits);
    547       s = SkipDigits(s);
    548     }
    549     if ((*s == 'e' || *s == 'E')) { // exponent
    550       checkSeparator(TokLoc, s, CSK_AfterDigits);
    551       const char *Exponent = s;
    552       s++;
    553       saw_exponent = true;
    554       if (*s == '+' || *s == '-')  s++; // sign
    555       checkSeparator(TokLoc, s, CSK_BeforeDigits);
    556       const char *first_non_digit = SkipDigits(s);
    557       if (first_non_digit != s) {
    558         s = first_non_digit;
    559       } else {
    560         PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent - ThisTokBegin),
    561                 diag::err_exponent_has_no_digits);
    562         hadError = true;
    563         return;
    564       }
    565     }
    566   }
    567 
    568   SuffixBegin = s;
    569   checkSeparator(TokLoc, s, CSK_AfterDigits);
    570 
    571   // Parse the suffix.  At this point we can classify whether we have an FP or
    572   // integer constant.
    573   bool isFPConstant = isFloatingLiteral();
    574   const char *ImaginarySuffixLoc = nullptr;
    575 
    576   // Loop over all of the characters of the suffix.  If we see something bad,
    577   // we break out of the loop.
    578   for (; s != ThisTokEnd; ++s) {
    579     switch (*s) {
    580     case 'f':      // FP Suffix for "float"
    581     case 'F':
    582       if (!isFPConstant) break;  // Error for integer constant.
    583       if (isFloat || isLong) break; // FF, LF invalid.
    584       isFloat = true;
    585       continue;  // Success.
    586     case 'u':
    587     case 'U':
    588       if (isFPConstant) break;  // Error for floating constant.
    589       if (isUnsigned) break;    // Cannot be repeated.
    590       isUnsigned = true;
    591       continue;  // Success.
    592     case 'l':
    593     case 'L':
    594       if (isLong || isLongLong) break;  // Cannot be repeated.
    595       if (isFloat) break;               // LF invalid.
    596 
    597       // Check for long long.  The L's need to be adjacent and the same case.
    598       if (s+1 != ThisTokEnd && s[1] == s[0]) {
    599         if (isFPConstant) break;        // long long invalid for floats.
    600         isLongLong = true;
    601         ++s;  // Eat both of them.
    602       } else {
    603         isLong = true;
    604       }
    605       continue;  // Success.
    606     case 'i':
    607     case 'I':
    608       if (PP.getLangOpts().MicrosoftExt) {
    609         if (isLong || isLongLong || MicrosoftInteger)
    610           break;
    611 
    612         // Allow i8, i16, i32, i64, and i128.
    613         if (s + 1 != ThisTokEnd) {
    614           switch (s[1]) {
    615             case '8':
    616               if (isFPConstant) break;
    617               s += 2; // i8 suffix
    618               MicrosoftInteger = 8;
    619               break;
    620             case '1':
    621               if (isFPConstant) break;
    622               if (s + 2 == ThisTokEnd) break;
    623               if (s[2] == '6') {
    624                 s += 3; // i16 suffix
    625                 MicrosoftInteger = 16;
    626               }
    627               else if (s[2] == '2') {
    628                 if (s + 3 == ThisTokEnd) break;
    629                 if (s[3] == '8') {
    630                   s += 4; // i128 suffix
    631                   MicrosoftInteger = 128;
    632                 }
    633               }
    634               break;
    635             case '3':
    636               if (isFPConstant) break;
    637               if (s + 2 == ThisTokEnd) break;
    638               if (s[2] == '2') {
    639                 s += 3; // i32 suffix
    640                 MicrosoftInteger = 32;
    641               }
    642               break;
    643             case '6':
    644               if (isFPConstant) break;
    645               if (s + 2 == ThisTokEnd) break;
    646               if (s[2] == '4') {
    647                 s += 3; // i64 suffix
    648                 MicrosoftInteger = 64;
    649               }
    650               break;
    651             default:
    652               break;
    653           }
    654           if (MicrosoftInteger)
    655             break;
    656         }
    657       }
    658       // "i", "if", and "il" are user-defined suffixes in C++1y.
    659       if (PP.getLangOpts().CPlusPlus1y && *s == 'i')
    660         break;
    661       // fall through.
    662     case 'j':
    663     case 'J':
    664       if (isImaginary) break;   // Cannot be repeated.
    665       isImaginary = true;
    666       ImaginarySuffixLoc = s;
    667       continue;  // Success.
    668     }
    669     // If we reached here, there was an error or a ud-suffix.
    670     break;
    671   }
    672 
    673   if (s != ThisTokEnd) {
    674     // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
    675     expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
    676     if (isValidUDSuffix(PP.getLangOpts(), UDSuffixBuf)) {
    677       // Any suffix pieces we might have parsed are actually part of the
    678       // ud-suffix.
    679       isLong = false;
    680       isUnsigned = false;
    681       isLongLong = false;
    682       isFloat = false;
    683       isImaginary = false;
    684       MicrosoftInteger = 0;
    685 
    686       saw_ud_suffix = true;
    687       return;
    688     }
    689 
    690     // Report an error if there are any.
    691     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, SuffixBegin - ThisTokBegin),
    692             isFPConstant ? diag::err_invalid_suffix_float_constant :
    693                            diag::err_invalid_suffix_integer_constant)
    694       << StringRef(SuffixBegin, ThisTokEnd-SuffixBegin);
    695     hadError = true;
    696     return;
    697   }
    698 
    699   if (isImaginary) {
    700     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc,
    701                                        ImaginarySuffixLoc - ThisTokBegin),
    702             diag::ext_imaginary_constant);
    703   }
    704 }
    705 
    706 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
    707 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
    708 /// treat it as an invalid suffix.
    709 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
    710                                            StringRef Suffix) {
    711   if (!LangOpts.CPlusPlus11 || Suffix.empty())
    712     return false;
    713 
    714   // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
    715   if (Suffix[0] == '_')
    716     return true;
    717 
    718   // In C++11, there are no library suffixes.
    719   if (!LangOpts.CPlusPlus1y)
    720     return false;
    721 
    722   // In C++1y, "s", "h", "min", "ms", "us", and "ns" are used in the library.
    723   // Per tweaked N3660, "il", "i", and "if" are also used in the library.
    724   return llvm::StringSwitch<bool>(Suffix)
    725       .Cases("h", "min", "s", true)
    726       .Cases("ms", "us", "ns", true)
    727       .Cases("il", "i", "if", true)
    728       .Default(false);
    729 }
    730 
    731 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
    732                                           const char *Pos,
    733                                           CheckSeparatorKind IsAfterDigits) {
    734   if (IsAfterDigits == CSK_AfterDigits) {
    735     if (Pos == ThisTokBegin)
    736       return;
    737     --Pos;
    738   } else if (Pos == ThisTokEnd)
    739     return;
    740 
    741   if (isDigitSeparator(*Pos))
    742     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin),
    743             diag::err_digit_separator_not_between_digits)
    744       << IsAfterDigits;
    745 }
    746 
    747 /// ParseNumberStartingWithZero - This method is called when the first character
    748 /// of the number is found to be a zero.  This means it is either an octal
    749 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
    750 /// a floating point number (01239.123e4).  Eat the prefix, determining the
    751 /// radix etc.
    752 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
    753   assert(s[0] == '0' && "Invalid method call");
    754   s++;
    755 
    756   int c1 = s[0];
    757   int c2 = s[1];
    758 
    759   // Handle a hex number like 0x1234.
    760   if ((c1 == 'x' || c1 == 'X') && (isHexDigit(c2) || c2 == '.')) {
    761     s++;
    762     radix = 16;
    763     DigitsBegin = s;
    764     s = SkipHexDigits(s);
    765     bool noSignificand = (s == DigitsBegin);
    766     if (s == ThisTokEnd) {
    767       // Done.
    768     } else if (*s == '.') {
    769       s++;
    770       saw_period = true;
    771       const char *floatDigitsBegin = s;
    772       checkSeparator(TokLoc, s, CSK_BeforeDigits);
    773       s = SkipHexDigits(s);
    774       noSignificand &= (floatDigitsBegin == s);
    775     }
    776 
    777     if (noSignificand) {
    778       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin),
    779         diag::err_hexconstant_requires_digits);
    780       hadError = true;
    781       return;
    782     }
    783 
    784     // A binary exponent can appear with or with a '.'. If dotted, the
    785     // binary exponent is required.
    786     if (*s == 'p' || *s == 'P') {
    787       checkSeparator(TokLoc, s, CSK_AfterDigits);
    788       const char *Exponent = s;
    789       s++;
    790       saw_exponent = true;
    791       if (*s == '+' || *s == '-')  s++; // sign
    792       const char *first_non_digit = SkipDigits(s);
    793       if (first_non_digit == s) {
    794         PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
    795                 diag::err_exponent_has_no_digits);
    796         hadError = true;
    797         return;
    798       }
    799       checkSeparator(TokLoc, s, CSK_BeforeDigits);
    800       s = first_non_digit;
    801 
    802       if (!PP.getLangOpts().HexFloats)
    803         PP.Diag(TokLoc, diag::ext_hexconstant_invalid);
    804     } else if (saw_period) {
    805       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
    806               diag::err_hexconstant_requires_exponent);
    807       hadError = true;
    808     }
    809     return;
    810   }
    811 
    812   // Handle simple binary numbers 0b01010
    813   if ((c1 == 'b' || c1 == 'B') && (c2 == '0' || c2 == '1')) {
    814     // 0b101010 is a C++1y / GCC extension.
    815     PP.Diag(TokLoc,
    816             PP.getLangOpts().CPlusPlus1y
    817               ? diag::warn_cxx11_compat_binary_literal
    818               : PP.getLangOpts().CPlusPlus
    819                 ? diag::ext_binary_literal_cxx1y
    820                 : diag::ext_binary_literal);
    821     ++s;
    822     radix = 2;
    823     DigitsBegin = s;
    824     s = SkipBinaryDigits(s);
    825     if (s == ThisTokEnd) {
    826       // Done.
    827     } else if (isHexDigit(*s)) {
    828       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
    829               diag::err_invalid_binary_digit) << StringRef(s, 1);
    830       hadError = true;
    831     }
    832     // Other suffixes will be diagnosed by the caller.
    833     return;
    834   }
    835 
    836   // For now, the radix is set to 8. If we discover that we have a
    837   // floating point constant, the radix will change to 10. Octal floating
    838   // point constants are not permitted (only decimal and hexadecimal).
    839   radix = 8;
    840   DigitsBegin = s;
    841   s = SkipOctalDigits(s);
    842   if (s == ThisTokEnd)
    843     return; // Done, simple octal number like 01234
    844 
    845   // If we have some other non-octal digit that *is* a decimal digit, see if
    846   // this is part of a floating point number like 094.123 or 09e1.
    847   if (isDigit(*s)) {
    848     const char *EndDecimal = SkipDigits(s);
    849     if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
    850       s = EndDecimal;
    851       radix = 10;
    852     }
    853   }
    854 
    855   // If we have a hex digit other than 'e' (which denotes a FP exponent) then
    856   // the code is using an incorrect base.
    857   if (isHexDigit(*s) && *s != 'e' && *s != 'E') {
    858     PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
    859             diag::err_invalid_octal_digit) << StringRef(s, 1);
    860     hadError = true;
    861     return;
    862   }
    863 
    864   if (*s == '.') {
    865     s++;
    866     radix = 10;
    867     saw_period = true;
    868     checkSeparator(TokLoc, s, CSK_BeforeDigits);
    869     s = SkipDigits(s); // Skip suffix.
    870   }
    871   if (*s == 'e' || *s == 'E') { // exponent
    872     checkSeparator(TokLoc, s, CSK_AfterDigits);
    873     const char *Exponent = s;
    874     s++;
    875     radix = 10;
    876     saw_exponent = true;
    877     if (*s == '+' || *s == '-')  s++; // sign
    878     const char *first_non_digit = SkipDigits(s);
    879     if (first_non_digit != s) {
    880       checkSeparator(TokLoc, s, CSK_BeforeDigits);
    881       s = first_non_digit;
    882     } else {
    883       PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
    884               diag::err_exponent_has_no_digits);
    885       hadError = true;
    886       return;
    887     }
    888   }
    889 }
    890 
    891 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
    892   switch (Radix) {
    893   case 2:
    894     return NumDigits <= 64;
    895   case 8:
    896     return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
    897   case 10:
    898     return NumDigits <= 19; // floor(log10(2^64))
    899   case 16:
    900     return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
    901   default:
    902     llvm_unreachable("impossible Radix");
    903   }
    904 }
    905 
    906 /// GetIntegerValue - Convert this numeric literal value to an APInt that
    907 /// matches Val's input width.  If there is an overflow, set Val to the low bits
    908 /// of the result and return true.  Otherwise, return false.
    909 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
    910   // Fast path: Compute a conservative bound on the maximum number of
    911   // bits per digit in this radix. If we can't possibly overflow a
    912   // uint64 based on that bound then do the simple conversion to
    913   // integer. This avoids the expensive overflow checking below, and
    914   // handles the common cases that matter (small decimal integers and
    915   // hex/octal values which don't overflow).
    916   const unsigned NumDigits = SuffixBegin - DigitsBegin;
    917   if (alwaysFitsInto64Bits(radix, NumDigits)) {
    918     uint64_t N = 0;
    919     for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
    920       if (!isDigitSeparator(*Ptr))
    921         N = N * radix + llvm::hexDigitValue(*Ptr);
    922 
    923     // This will truncate the value to Val's input width. Simply check
    924     // for overflow by comparing.
    925     Val = N;
    926     return Val.getZExtValue() != N;
    927   }
    928 
    929   Val = 0;
    930   const char *Ptr = DigitsBegin;
    931 
    932   llvm::APInt RadixVal(Val.getBitWidth(), radix);
    933   llvm::APInt CharVal(Val.getBitWidth(), 0);
    934   llvm::APInt OldVal = Val;
    935 
    936   bool OverflowOccurred = false;
    937   while (Ptr < SuffixBegin) {
    938     if (isDigitSeparator(*Ptr)) {
    939       ++Ptr;
    940       continue;
    941     }
    942 
    943     unsigned C = llvm::hexDigitValue(*Ptr++);
    944 
    945     // If this letter is out of bound for this radix, reject it.
    946     assert(C < radix && "NumericLiteralParser ctor should have rejected this");
    947 
    948     CharVal = C;
    949 
    950     // Add the digit to the value in the appropriate radix.  If adding in digits
    951     // made the value smaller, then this overflowed.
    952     OldVal = Val;
    953 
    954     // Multiply by radix, did overflow occur on the multiply?
    955     Val *= RadixVal;
    956     OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
    957 
    958     // Add value, did overflow occur on the value?
    959     //   (a + b) ult b  <=> overflow
    960     Val += CharVal;
    961     OverflowOccurred |= Val.ult(CharVal);
    962   }
    963   return OverflowOccurred;
    964 }
    965 
    966 llvm::APFloat::opStatus
    967 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
    968   using llvm::APFloat;
    969 
    970   unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
    971 
    972   llvm::SmallString<16> Buffer;
    973   StringRef Str(ThisTokBegin, n);
    974   if (Str.find('\'') != StringRef::npos) {
    975     Buffer.reserve(n);
    976     std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
    977                         &isDigitSeparator);
    978     Str = Buffer;
    979   }
    980 
    981   return Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
    982 }
    983 
    984 
    985 /// \verbatim
    986 ///       user-defined-character-literal: [C++11 lex.ext]
    987 ///         character-literal ud-suffix
    988 ///       ud-suffix:
    989 ///         identifier
    990 ///       character-literal: [C++11 lex.ccon]
    991 ///         ' c-char-sequence '
    992 ///         u' c-char-sequence '
    993 ///         U' c-char-sequence '
    994 ///         L' c-char-sequence '
    995 ///       c-char-sequence:
    996 ///         c-char
    997 ///         c-char-sequence c-char
    998 ///       c-char:
    999 ///         any member of the source character set except the single-quote ',
   1000 ///           backslash \, or new-line character
   1001 ///         escape-sequence
   1002 ///         universal-character-name
   1003 ///       escape-sequence:
   1004 ///         simple-escape-sequence
   1005 ///         octal-escape-sequence
   1006 ///         hexadecimal-escape-sequence
   1007 ///       simple-escape-sequence:
   1008 ///         one of \' \" \? \\ \a \b \f \n \r \t \v
   1009 ///       octal-escape-sequence:
   1010 ///         \ octal-digit
   1011 ///         \ octal-digit octal-digit
   1012 ///         \ octal-digit octal-digit octal-digit
   1013 ///       hexadecimal-escape-sequence:
   1014 ///         \x hexadecimal-digit
   1015 ///         hexadecimal-escape-sequence hexadecimal-digit
   1016 ///       universal-character-name: [C++11 lex.charset]
   1017 ///         \u hex-quad
   1018 ///         \U hex-quad hex-quad
   1019 ///       hex-quad:
   1020 ///         hex-digit hex-digit hex-digit hex-digit
   1021 /// \endverbatim
   1022 ///
   1023 CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
   1024                                      SourceLocation Loc, Preprocessor &PP,
   1025                                      tok::TokenKind kind) {
   1026   // At this point we know that the character matches the regex "(L|u|U)?'.*'".
   1027   HadError = false;
   1028 
   1029   Kind = kind;
   1030 
   1031   const char *TokBegin = begin;
   1032 
   1033   // Skip over wide character determinant.
   1034   if (Kind != tok::char_constant) {
   1035     ++begin;
   1036   }
   1037 
   1038   // Skip over the entry quote.
   1039   assert(begin[0] == '\'' && "Invalid token lexed");
   1040   ++begin;
   1041 
   1042   // Remove an optional ud-suffix.
   1043   if (end[-1] != '\'') {
   1044     const char *UDSuffixEnd = end;
   1045     do {
   1046       --end;
   1047     } while (end[-1] != '\'');
   1048     // FIXME: Don't bother with this if !tok.hasUCN().
   1049     expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
   1050     UDSuffixOffset = end - TokBegin;
   1051   }
   1052 
   1053   // Trim the ending quote.
   1054   assert(end != begin && "Invalid token lexed");
   1055   --end;
   1056 
   1057   // FIXME: The "Value" is an uint64_t so we can handle char literals of
   1058   // up to 64-bits.
   1059   // FIXME: This extensively assumes that 'char' is 8-bits.
   1060   assert(PP.getTargetInfo().getCharWidth() == 8 &&
   1061          "Assumes char is 8 bits");
   1062   assert(PP.getTargetInfo().getIntWidth() <= 64 &&
   1063          (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
   1064          "Assumes sizeof(int) on target is <= 64 and a multiple of char");
   1065   assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
   1066          "Assumes sizeof(wchar) on target is <= 64");
   1067 
   1068   SmallVector<uint32_t, 4> codepoint_buffer;
   1069   codepoint_buffer.resize(end - begin);
   1070   uint32_t *buffer_begin = &codepoint_buffer.front();
   1071   uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
   1072 
   1073   // Unicode escapes representing characters that cannot be correctly
   1074   // represented in a single code unit are disallowed in character literals
   1075   // by this implementation.
   1076   uint32_t largest_character_for_kind;
   1077   if (tok::wide_char_constant == Kind) {
   1078     largest_character_for_kind =
   1079         0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
   1080   } else if (tok::utf16_char_constant == Kind) {
   1081     largest_character_for_kind = 0xFFFF;
   1082   } else if (tok::utf32_char_constant == Kind) {
   1083     largest_character_for_kind = 0x10FFFF;
   1084   } else {
   1085     largest_character_for_kind = 0x7Fu;
   1086   }
   1087 
   1088   while (begin != end) {
   1089     // Is this a span of non-escape characters?
   1090     if (begin[0] != '\\') {
   1091       char const *start = begin;
   1092       do {
   1093         ++begin;
   1094       } while (begin != end && *begin != '\\');
   1095 
   1096       char const *tmp_in_start = start;
   1097       uint32_t *tmp_out_start = buffer_begin;
   1098       ConversionResult res =
   1099           ConvertUTF8toUTF32(reinterpret_cast<UTF8 const **>(&start),
   1100                              reinterpret_cast<UTF8 const *>(begin),
   1101                              &buffer_begin, buffer_end, strictConversion);
   1102       if (res != conversionOK) {
   1103         // If we see bad encoding for unprefixed character literals, warn and
   1104         // simply copy the byte values, for compatibility with gcc and
   1105         // older versions of clang.
   1106         bool NoErrorOnBadEncoding = isAscii();
   1107         unsigned Msg = diag::err_bad_character_encoding;
   1108         if (NoErrorOnBadEncoding)
   1109           Msg = diag::warn_bad_character_encoding;
   1110         PP.Diag(Loc, Msg);
   1111         if (NoErrorOnBadEncoding) {
   1112           start = tmp_in_start;
   1113           buffer_begin = tmp_out_start;
   1114           for (; start != begin; ++start, ++buffer_begin)
   1115             *buffer_begin = static_cast<uint8_t>(*start);
   1116         } else {
   1117           HadError = true;
   1118         }
   1119       } else {
   1120         for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
   1121           if (*tmp_out_start > largest_character_for_kind) {
   1122             HadError = true;
   1123             PP.Diag(Loc, diag::err_character_too_large);
   1124           }
   1125         }
   1126       }
   1127 
   1128       continue;
   1129     }
   1130     // Is this a Universal Character Name escape?
   1131     if (begin[1] == 'u' || begin[1] == 'U') {
   1132       unsigned short UcnLen = 0;
   1133       if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
   1134                             FullSourceLoc(Loc, PP.getSourceManager()),
   1135                             &PP.getDiagnostics(), PP.getLangOpts(), true)) {
   1136         HadError = true;
   1137       } else if (*buffer_begin > largest_character_for_kind) {
   1138         HadError = true;
   1139         PP.Diag(Loc, diag::err_character_too_large);
   1140       }
   1141 
   1142       ++buffer_begin;
   1143       continue;
   1144     }
   1145     unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
   1146     uint64_t result =
   1147       ProcessCharEscape(TokBegin, begin, end, HadError,
   1148                         FullSourceLoc(Loc,PP.getSourceManager()),
   1149                         CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
   1150     *buffer_begin++ = result;
   1151   }
   1152 
   1153   unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
   1154 
   1155   if (NumCharsSoFar > 1) {
   1156     if (isWide())
   1157       PP.Diag(Loc, diag::warn_extraneous_char_constant);
   1158     else if (isAscii() && NumCharsSoFar == 4)
   1159       PP.Diag(Loc, diag::ext_four_char_character_literal);
   1160     else if (isAscii())
   1161       PP.Diag(Loc, diag::ext_multichar_character_literal);
   1162     else
   1163       PP.Diag(Loc, diag::err_multichar_utf_character_literal);
   1164     IsMultiChar = true;
   1165   } else {
   1166     IsMultiChar = false;
   1167   }
   1168 
   1169   llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
   1170 
   1171   // Narrow character literals act as though their value is concatenated
   1172   // in this implementation, but warn on overflow.
   1173   bool multi_char_too_long = false;
   1174   if (isAscii() && isMultiChar()) {
   1175     LitVal = 0;
   1176     for (size_t i = 0; i < NumCharsSoFar; ++i) {
   1177       // check for enough leading zeros to shift into
   1178       multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
   1179       LitVal <<= 8;
   1180       LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
   1181     }
   1182   } else if (NumCharsSoFar > 0) {
   1183     // otherwise just take the last character
   1184     LitVal = buffer_begin[-1];
   1185   }
   1186 
   1187   if (!HadError && multi_char_too_long) {
   1188     PP.Diag(Loc, diag::warn_char_constant_too_large);
   1189   }
   1190 
   1191   // Transfer the value from APInt to uint64_t
   1192   Value = LitVal.getZExtValue();
   1193 
   1194   // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
   1195   // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
   1196   // character constants are not sign extended in the this implementation:
   1197   // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
   1198   if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
   1199       PP.getLangOpts().CharIsSigned)
   1200     Value = (signed char)Value;
   1201 }
   1202 
   1203 /// \verbatim
   1204 ///       string-literal: [C++0x lex.string]
   1205 ///         encoding-prefix " [s-char-sequence] "
   1206 ///         encoding-prefix R raw-string
   1207 ///       encoding-prefix:
   1208 ///         u8
   1209 ///         u
   1210 ///         U
   1211 ///         L
   1212 ///       s-char-sequence:
   1213 ///         s-char
   1214 ///         s-char-sequence s-char
   1215 ///       s-char:
   1216 ///         any member of the source character set except the double-quote ",
   1217 ///           backslash \, or new-line character
   1218 ///         escape-sequence
   1219 ///         universal-character-name
   1220 ///       raw-string:
   1221 ///         " d-char-sequence ( r-char-sequence ) d-char-sequence "
   1222 ///       r-char-sequence:
   1223 ///         r-char
   1224 ///         r-char-sequence r-char
   1225 ///       r-char:
   1226 ///         any member of the source character set, except a right parenthesis )
   1227 ///           followed by the initial d-char-sequence (which may be empty)
   1228 ///           followed by a double quote ".
   1229 ///       d-char-sequence:
   1230 ///         d-char
   1231 ///         d-char-sequence d-char
   1232 ///       d-char:
   1233 ///         any member of the basic source character set except:
   1234 ///           space, the left parenthesis (, the right parenthesis ),
   1235 ///           the backslash \, and the control characters representing horizontal
   1236 ///           tab, vertical tab, form feed, and newline.
   1237 ///       escape-sequence: [C++0x lex.ccon]
   1238 ///         simple-escape-sequence
   1239 ///         octal-escape-sequence
   1240 ///         hexadecimal-escape-sequence
   1241 ///       simple-escape-sequence:
   1242 ///         one of \' \" \? \\ \a \b \f \n \r \t \v
   1243 ///       octal-escape-sequence:
   1244 ///         \ octal-digit
   1245 ///         \ octal-digit octal-digit
   1246 ///         \ octal-digit octal-digit octal-digit
   1247 ///       hexadecimal-escape-sequence:
   1248 ///         \x hexadecimal-digit
   1249 ///         hexadecimal-escape-sequence hexadecimal-digit
   1250 ///       universal-character-name:
   1251 ///         \u hex-quad
   1252 ///         \U hex-quad hex-quad
   1253 ///       hex-quad:
   1254 ///         hex-digit hex-digit hex-digit hex-digit
   1255 /// \endverbatim
   1256 ///
   1257 StringLiteralParser::
   1258 StringLiteralParser(ArrayRef<Token> StringToks,
   1259                     Preprocessor &PP, bool Complain)
   1260   : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
   1261     Target(PP.getTargetInfo()), Diags(Complain ? &PP.getDiagnostics() :nullptr),
   1262     MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
   1263     ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
   1264   init(StringToks);
   1265 }
   1266 
   1267 void StringLiteralParser::init(ArrayRef<Token> StringToks){
   1268   // The literal token may have come from an invalid source location (e.g. due
   1269   // to a PCH error), in which case the token length will be 0.
   1270   if (StringToks.empty() || StringToks[0].getLength() < 2)
   1271     return DiagnoseLexingError(SourceLocation());
   1272 
   1273   // Scan all of the string portions, remember the max individual token length,
   1274   // computing a bound on the concatenated string length, and see whether any
   1275   // piece is a wide-string.  If any of the string portions is a wide-string
   1276   // literal, the result is a wide-string literal [C99 6.4.5p4].
   1277   assert(!StringToks.empty() && "expected at least one token");
   1278   MaxTokenLength = StringToks[0].getLength();
   1279   assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
   1280   SizeBound = StringToks[0].getLength()-2;  // -2 for "".
   1281   Kind = StringToks[0].getKind();
   1282 
   1283   hadError = false;
   1284 
   1285   // Implement Translation Phase #6: concatenation of string literals
   1286   /// (C99 5.1.1.2p1).  The common case is only one string fragment.
   1287   for (unsigned i = 1; i != StringToks.size(); ++i) {
   1288     if (StringToks[i].getLength() < 2)
   1289       return DiagnoseLexingError(StringToks[i].getLocation());
   1290 
   1291     // The string could be shorter than this if it needs cleaning, but this is a
   1292     // reasonable bound, which is all we need.
   1293     assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
   1294     SizeBound += StringToks[i].getLength()-2;  // -2 for "".
   1295 
   1296     // Remember maximum string piece length.
   1297     if (StringToks[i].getLength() > MaxTokenLength)
   1298       MaxTokenLength = StringToks[i].getLength();
   1299 
   1300     // Remember if we see any wide or utf-8/16/32 strings.
   1301     // Also check for illegal concatenations.
   1302     if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
   1303       if (isAscii()) {
   1304         Kind = StringToks[i].getKind();
   1305       } else {
   1306         if (Diags)
   1307           Diags->Report(StringToks[i].getLocation(),
   1308                         diag::err_unsupported_string_concat);
   1309         hadError = true;
   1310       }
   1311     }
   1312   }
   1313 
   1314   // Include space for the null terminator.
   1315   ++SizeBound;
   1316 
   1317   // TODO: K&R warning: "traditional C rejects string constant concatenation"
   1318 
   1319   // Get the width in bytes of char/wchar_t/char16_t/char32_t
   1320   CharByteWidth = getCharWidth(Kind, Target);
   1321   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
   1322   CharByteWidth /= 8;
   1323 
   1324   // The output buffer size needs to be large enough to hold wide characters.
   1325   // This is a worst-case assumption which basically corresponds to L"" "long".
   1326   SizeBound *= CharByteWidth;
   1327 
   1328   // Size the temporary buffer to hold the result string data.
   1329   ResultBuf.resize(SizeBound);
   1330 
   1331   // Likewise, but for each string piece.
   1332   SmallString<512> TokenBuf;
   1333   TokenBuf.resize(MaxTokenLength);
   1334 
   1335   // Loop over all the strings, getting their spelling, and expanding them to
   1336   // wide strings as appropriate.
   1337   ResultPtr = &ResultBuf[0];   // Next byte to fill in.
   1338 
   1339   Pascal = false;
   1340 
   1341   SourceLocation UDSuffixTokLoc;
   1342 
   1343   for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
   1344     const char *ThisTokBuf = &TokenBuf[0];
   1345     // Get the spelling of the token, which eliminates trigraphs, etc.  We know
   1346     // that ThisTokBuf points to a buffer that is big enough for the whole token
   1347     // and 'spelled' tokens can only shrink.
   1348     bool StringInvalid = false;
   1349     unsigned ThisTokLen =
   1350       Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
   1351                          &StringInvalid);
   1352     if (StringInvalid)
   1353       return DiagnoseLexingError(StringToks[i].getLocation());
   1354 
   1355     const char *ThisTokBegin = ThisTokBuf;
   1356     const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
   1357 
   1358     // Remove an optional ud-suffix.
   1359     if (ThisTokEnd[-1] != '"') {
   1360       const char *UDSuffixEnd = ThisTokEnd;
   1361       do {
   1362         --ThisTokEnd;
   1363       } while (ThisTokEnd[-1] != '"');
   1364 
   1365       StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
   1366 
   1367       if (UDSuffixBuf.empty()) {
   1368         if (StringToks[i].hasUCN())
   1369           expandUCNs(UDSuffixBuf, UDSuffix);
   1370         else
   1371           UDSuffixBuf.assign(UDSuffix);
   1372         UDSuffixToken = i;
   1373         UDSuffixOffset = ThisTokEnd - ThisTokBuf;
   1374         UDSuffixTokLoc = StringToks[i].getLocation();
   1375       } else {
   1376         SmallString<32> ExpandedUDSuffix;
   1377         if (StringToks[i].hasUCN()) {
   1378           expandUCNs(ExpandedUDSuffix, UDSuffix);
   1379           UDSuffix = ExpandedUDSuffix;
   1380         }
   1381 
   1382         // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
   1383         // result of a concatenation involving at least one user-defined-string-
   1384         // literal, all the participating user-defined-string-literals shall
   1385         // have the same ud-suffix.
   1386         if (UDSuffixBuf != UDSuffix) {
   1387           if (Diags) {
   1388             SourceLocation TokLoc = StringToks[i].getLocation();
   1389             Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
   1390               << UDSuffixBuf << UDSuffix
   1391               << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
   1392               << SourceRange(TokLoc, TokLoc);
   1393           }
   1394           hadError = true;
   1395         }
   1396       }
   1397     }
   1398 
   1399     // Strip the end quote.
   1400     --ThisTokEnd;
   1401 
   1402     // TODO: Input character set mapping support.
   1403 
   1404     // Skip marker for wide or unicode strings.
   1405     if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
   1406       ++ThisTokBuf;
   1407       // Skip 8 of u8 marker for utf8 strings.
   1408       if (ThisTokBuf[0] == '8')
   1409         ++ThisTokBuf;
   1410     }
   1411 
   1412     // Check for raw string
   1413     if (ThisTokBuf[0] == 'R') {
   1414       ThisTokBuf += 2; // skip R"
   1415 
   1416       const char *Prefix = ThisTokBuf;
   1417       while (ThisTokBuf[0] != '(')
   1418         ++ThisTokBuf;
   1419       ++ThisTokBuf; // skip '('
   1420 
   1421       // Remove same number of characters from the end
   1422       ThisTokEnd -= ThisTokBuf - Prefix;
   1423       assert(ThisTokEnd >= ThisTokBuf && "malformed raw string literal");
   1424 
   1425       // Copy the string over
   1426       if (CopyStringFragment(StringToks[i], ThisTokBegin,
   1427                              StringRef(ThisTokBuf, ThisTokEnd - ThisTokBuf)))
   1428         hadError = true;
   1429     } else {
   1430       if (ThisTokBuf[0] != '"') {
   1431         // The file may have come from PCH and then changed after loading the
   1432         // PCH; Fail gracefully.
   1433         return DiagnoseLexingError(StringToks[i].getLocation());
   1434       }
   1435       ++ThisTokBuf; // skip "
   1436 
   1437       // Check if this is a pascal string
   1438       if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
   1439           ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
   1440 
   1441         // If the \p sequence is found in the first token, we have a pascal string
   1442         // Otherwise, if we already have a pascal string, ignore the first \p
   1443         if (i == 0) {
   1444           ++ThisTokBuf;
   1445           Pascal = true;
   1446         } else if (Pascal)
   1447           ThisTokBuf += 2;
   1448       }
   1449 
   1450       while (ThisTokBuf != ThisTokEnd) {
   1451         // Is this a span of non-escape characters?
   1452         if (ThisTokBuf[0] != '\\') {
   1453           const char *InStart = ThisTokBuf;
   1454           do {
   1455             ++ThisTokBuf;
   1456           } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
   1457 
   1458           // Copy the character span over.
   1459           if (CopyStringFragment(StringToks[i], ThisTokBegin,
   1460                                  StringRef(InStart, ThisTokBuf - InStart)))
   1461             hadError = true;
   1462           continue;
   1463         }
   1464         // Is this a Universal Character Name escape?
   1465         if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
   1466           EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
   1467                           ResultPtr, hadError,
   1468                           FullSourceLoc(StringToks[i].getLocation(), SM),
   1469                           CharByteWidth, Diags, Features);
   1470           continue;
   1471         }
   1472         // Otherwise, this is a non-UCN escape character.  Process it.
   1473         unsigned ResultChar =
   1474           ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
   1475                             FullSourceLoc(StringToks[i].getLocation(), SM),
   1476                             CharByteWidth*8, Diags, Features);
   1477 
   1478         if (CharByteWidth == 4) {
   1479           // FIXME: Make the type of the result buffer correct instead of
   1480           // using reinterpret_cast.
   1481           UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultPtr);
   1482           *ResultWidePtr = ResultChar;
   1483           ResultPtr += 4;
   1484         } else if (CharByteWidth == 2) {
   1485           // FIXME: Make the type of the result buffer correct instead of
   1486           // using reinterpret_cast.
   1487           UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultPtr);
   1488           *ResultWidePtr = ResultChar & 0xFFFF;
   1489           ResultPtr += 2;
   1490         } else {
   1491           assert(CharByteWidth == 1 && "Unexpected char width");
   1492           *ResultPtr++ = ResultChar & 0xFF;
   1493         }
   1494       }
   1495     }
   1496   }
   1497 
   1498   if (Pascal) {
   1499     if (CharByteWidth == 4) {
   1500       // FIXME: Make the type of the result buffer correct instead of
   1501       // using reinterpret_cast.
   1502       UTF32 *ResultWidePtr = reinterpret_cast<UTF32*>(ResultBuf.data());
   1503       ResultWidePtr[0] = GetNumStringChars() - 1;
   1504     } else if (CharByteWidth == 2) {
   1505       // FIXME: Make the type of the result buffer correct instead of
   1506       // using reinterpret_cast.
   1507       UTF16 *ResultWidePtr = reinterpret_cast<UTF16*>(ResultBuf.data());
   1508       ResultWidePtr[0] = GetNumStringChars() - 1;
   1509     } else {
   1510       assert(CharByteWidth == 1 && "Unexpected char width");
   1511       ResultBuf[0] = GetNumStringChars() - 1;
   1512     }
   1513 
   1514     // Verify that pascal strings aren't too large.
   1515     if (GetStringLength() > 256) {
   1516       if (Diags)
   1517         Diags->Report(StringToks.front().getLocation(),
   1518                       diag::err_pascal_string_too_long)
   1519           << SourceRange(StringToks.front().getLocation(),
   1520                          StringToks.back().getLocation());
   1521       hadError = true;
   1522       return;
   1523     }
   1524   } else if (Diags) {
   1525     // Complain if this string literal has too many characters.
   1526     unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
   1527 
   1528     if (GetNumStringChars() > MaxChars)
   1529       Diags->Report(StringToks.front().getLocation(),
   1530                     diag::ext_string_too_long)
   1531         << GetNumStringChars() << MaxChars
   1532         << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
   1533         << SourceRange(StringToks.front().getLocation(),
   1534                        StringToks.back().getLocation());
   1535   }
   1536 }
   1537 
   1538 static const char *resyncUTF8(const char *Err, const char *End) {
   1539   if (Err == End)
   1540     return End;
   1541   End = Err + std::min<unsigned>(getNumBytesForUTF8(*Err), End-Err);
   1542   while (++Err != End && (*Err & 0xC0) == 0x80)
   1543     ;
   1544   return Err;
   1545 }
   1546 
   1547 /// \brief This function copies from Fragment, which is a sequence of bytes
   1548 /// within Tok's contents (which begin at TokBegin) into ResultPtr.
   1549 /// Performs widening for multi-byte characters.
   1550 bool StringLiteralParser::CopyStringFragment(const Token &Tok,
   1551                                              const char *TokBegin,
   1552                                              StringRef Fragment) {
   1553   const UTF8 *ErrorPtrTmp;
   1554   if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
   1555     return false;
   1556 
   1557   // If we see bad encoding for unprefixed string literals, warn and
   1558   // simply copy the byte values, for compatibility with gcc and older
   1559   // versions of clang.
   1560   bool NoErrorOnBadEncoding = isAscii();
   1561   if (NoErrorOnBadEncoding) {
   1562     memcpy(ResultPtr, Fragment.data(), Fragment.size());
   1563     ResultPtr += Fragment.size();
   1564   }
   1565 
   1566   if (Diags) {
   1567     const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
   1568 
   1569     FullSourceLoc SourceLoc(Tok.getLocation(), SM);
   1570     const DiagnosticBuilder &Builder =
   1571       Diag(Diags, Features, SourceLoc, TokBegin,
   1572            ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
   1573            NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
   1574                                 : diag::err_bad_string_encoding);
   1575 
   1576     const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
   1577     StringRef NextFragment(NextStart, Fragment.end()-NextStart);
   1578 
   1579     // Decode into a dummy buffer.
   1580     SmallString<512> Dummy;
   1581     Dummy.reserve(Fragment.size() * CharByteWidth);
   1582     char *Ptr = Dummy.data();
   1583 
   1584     while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
   1585       const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
   1586       NextStart = resyncUTF8(ErrorPtr, Fragment.end());
   1587       Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
   1588                                      ErrorPtr, NextStart);
   1589       NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
   1590     }
   1591   }
   1592   return !NoErrorOnBadEncoding;
   1593 }
   1594 
   1595 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
   1596   hadError = true;
   1597   if (Diags)
   1598     Diags->Report(Loc, diag::err_lexing_string);
   1599 }
   1600 
   1601 /// getOffsetOfStringByte - This function returns the offset of the
   1602 /// specified byte of the string data represented by Token.  This handles
   1603 /// advancing over escape sequences in the string.
   1604 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
   1605                                                     unsigned ByteNo) const {
   1606   // Get the spelling of the token.
   1607   SmallString<32> SpellingBuffer;
   1608   SpellingBuffer.resize(Tok.getLength());
   1609 
   1610   bool StringInvalid = false;
   1611   const char *SpellingPtr = &SpellingBuffer[0];
   1612   unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
   1613                                        &StringInvalid);
   1614   if (StringInvalid)
   1615     return 0;
   1616 
   1617   const char *SpellingStart = SpellingPtr;
   1618   const char *SpellingEnd = SpellingPtr+TokLen;
   1619 
   1620   // Handle UTF-8 strings just like narrow strings.
   1621   if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
   1622     SpellingPtr += 2;
   1623 
   1624   assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
   1625          SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
   1626 
   1627   // For raw string literals, this is easy.
   1628   if (SpellingPtr[0] == 'R') {
   1629     assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
   1630     // Skip 'R"'.
   1631     SpellingPtr += 2;
   1632     while (*SpellingPtr != '(') {
   1633       ++SpellingPtr;
   1634       assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
   1635     }
   1636     // Skip '('.
   1637     ++SpellingPtr;
   1638     return SpellingPtr - SpellingStart + ByteNo;
   1639   }
   1640 
   1641   // Skip over the leading quote
   1642   assert(SpellingPtr[0] == '"' && "Should be a string literal!");
   1643   ++SpellingPtr;
   1644 
   1645   // Skip over bytes until we find the offset we're looking for.
   1646   while (ByteNo) {
   1647     assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
   1648 
   1649     // Step over non-escapes simply.
   1650     if (*SpellingPtr != '\\') {
   1651       ++SpellingPtr;
   1652       --ByteNo;
   1653       continue;
   1654     }
   1655 
   1656     // Otherwise, this is an escape character.  Advance over it.
   1657     bool HadError = false;
   1658     if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
   1659       const char *EscapePtr = SpellingPtr;
   1660       unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
   1661                                       1, Features, HadError);
   1662       if (Len > ByteNo) {
   1663         // ByteNo is somewhere within the escape sequence.
   1664         SpellingPtr = EscapePtr;
   1665         break;
   1666       }
   1667       ByteNo -= Len;
   1668     } else {
   1669       ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
   1670                         FullSourceLoc(Tok.getLocation(), SM),
   1671                         CharByteWidth*8, Diags, Features);
   1672       --ByteNo;
   1673     }
   1674     assert(!HadError && "This method isn't valid on erroneous strings");
   1675   }
   1676 
   1677   return SpellingPtr-SpellingStart;
   1678 }
   1679