Home | History | Annotate | Download | only in include
      1 /*
      2  *  Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
     12 #define WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
     13 
     14 #include <stddef.h>  // size_t
     15 #include <stdio.h>  // FILE
     16 
     17 #include "webrtc/common.h"
     18 #include "webrtc/typedefs.h"
     19 
     20 struct AecCore;
     21 
     22 namespace webrtc {
     23 
     24 class AudioFrame;
     25 class EchoCancellation;
     26 class EchoControlMobile;
     27 class GainControl;
     28 class HighPassFilter;
     29 class LevelEstimator;
     30 class NoiseSuppression;
     31 class VoiceDetection;
     32 
     33 // Use to enable the delay correction feature. This now engages an extended
     34 // filter mode in the AEC, along with robustness measures around the reported
     35 // system delays. It comes with a significant increase in AEC complexity, but is
     36 // much more robust to unreliable reported delays.
     37 //
     38 // Detailed changes to the algorithm:
     39 // - The filter length is changed from 48 to 128 ms. This comes with tuning of
     40 //   several parameters: i) filter adaptation stepsize and error threshold;
     41 //   ii) non-linear processing smoothing and overdrive.
     42 // - Option to ignore the reported delays on platforms which we deem
     43 //   sufficiently unreliable. See WEBRTC_UNTRUSTED_DELAY in echo_cancellation.c.
     44 // - Faster startup times by removing the excessive "startup phase" processing
     45 //   of reported delays.
     46 // - Much more conservative adjustments to the far-end read pointer. We smooth
     47 //   the delay difference more heavily, and back off from the difference more.
     48 //   Adjustments force a readaptation of the filter, so they should be avoided
     49 //   except when really necessary.
     50 struct DelayCorrection {
     51   DelayCorrection() : enabled(false) {}
     52   explicit DelayCorrection(bool enabled) : enabled(enabled) {}
     53   bool enabled;
     54 };
     55 
     56 // Use to disable the reported system delays. By disabling the reported system
     57 // delays the echo cancellation algorithm assumes the process and reverse
     58 // streams to be aligned. This configuration only applies to EchoCancellation
     59 // and not EchoControlMobile and is set with AudioProcessing::SetExtraOptions().
     60 // Note that by disabling reported system delays the EchoCancellation may
     61 // regress in performance.
     62 struct ReportedDelay {
     63   ReportedDelay() : enabled(true) {}
     64   explicit ReportedDelay(bool enabled) : enabled(enabled) {}
     65   bool enabled;
     66 };
     67 
     68 // Must be provided through AudioProcessing::Create(Confg&). It will have no
     69 // impact if used with AudioProcessing::SetExtraOptions().
     70 struct ExperimentalAgc {
     71   ExperimentalAgc() : enabled(true) {}
     72   explicit ExperimentalAgc(bool enabled) : enabled(enabled) {}
     73   bool enabled;
     74 };
     75 
     76 static const int kAudioProcMaxNativeSampleRateHz = 32000;
     77 
     78 // The Audio Processing Module (APM) provides a collection of voice processing
     79 // components designed for real-time communications software.
     80 //
     81 // APM operates on two audio streams on a frame-by-frame basis. Frames of the
     82 // primary stream, on which all processing is applied, are passed to
     83 // |ProcessStream()|. Frames of the reverse direction stream, which are used for
     84 // analysis by some components, are passed to |AnalyzeReverseStream()|. On the
     85 // client-side, this will typically be the near-end (capture) and far-end
     86 // (render) streams, respectively. APM should be placed in the signal chain as
     87 // close to the audio hardware abstraction layer (HAL) as possible.
     88 //
     89 // On the server-side, the reverse stream will normally not be used, with
     90 // processing occurring on each incoming stream.
     91 //
     92 // Component interfaces follow a similar pattern and are accessed through
     93 // corresponding getters in APM. All components are disabled at create-time,
     94 // with default settings that are recommended for most situations. New settings
     95 // can be applied without enabling a component. Enabling a component triggers
     96 // memory allocation and initialization to allow it to start processing the
     97 // streams.
     98 //
     99 // Thread safety is provided with the following assumptions to reduce locking
    100 // overhead:
    101 //   1. The stream getters and setters are called from the same thread as
    102 //      ProcessStream(). More precisely, stream functions are never called
    103 //      concurrently with ProcessStream().
    104 //   2. Parameter getters are never called concurrently with the corresponding
    105 //      setter.
    106 //
    107 // APM accepts only linear PCM audio data in chunks of 10 ms. The int16
    108 // interfaces use interleaved data, while the float interfaces use deinterleaved
    109 // data.
    110 //
    111 // Usage example, omitting error checking:
    112 // AudioProcessing* apm = AudioProcessing::Create(0);
    113 //
    114 // apm->high_pass_filter()->Enable(true);
    115 //
    116 // apm->echo_cancellation()->enable_drift_compensation(false);
    117 // apm->echo_cancellation()->Enable(true);
    118 //
    119 // apm->noise_reduction()->set_level(kHighSuppression);
    120 // apm->noise_reduction()->Enable(true);
    121 //
    122 // apm->gain_control()->set_analog_level_limits(0, 255);
    123 // apm->gain_control()->set_mode(kAdaptiveAnalog);
    124 // apm->gain_control()->Enable(true);
    125 //
    126 // apm->voice_detection()->Enable(true);
    127 //
    128 // // Start a voice call...
    129 //
    130 // // ... Render frame arrives bound for the audio HAL ...
    131 // apm->AnalyzeReverseStream(render_frame);
    132 //
    133 // // ... Capture frame arrives from the audio HAL ...
    134 // // Call required set_stream_ functions.
    135 // apm->set_stream_delay_ms(delay_ms);
    136 // apm->gain_control()->set_stream_analog_level(analog_level);
    137 //
    138 // apm->ProcessStream(capture_frame);
    139 //
    140 // // Call required stream_ functions.
    141 // analog_level = apm->gain_control()->stream_analog_level();
    142 // has_voice = apm->stream_has_voice();
    143 //
    144 // // Repeate render and capture processing for the duration of the call...
    145 // // Start a new call...
    146 // apm->Initialize();
    147 //
    148 // // Close the application...
    149 // delete apm;
    150 //
    151 class AudioProcessing {
    152  public:
    153   enum ChannelLayout {
    154     kMono,
    155     // Left, right.
    156     kStereo,
    157     // Mono, keyboard mic.
    158     kMonoAndKeyboard,
    159     // Left, right, keyboard mic.
    160     kStereoAndKeyboard
    161   };
    162 
    163   // Creates an APM instance. Use one instance for every primary audio stream
    164   // requiring processing. On the client-side, this would typically be one
    165   // instance for the near-end stream, and additional instances for each far-end
    166   // stream which requires processing. On the server-side, this would typically
    167   // be one instance for every incoming stream.
    168   static AudioProcessing* Create();
    169   // Allows passing in an optional configuration at create-time.
    170   static AudioProcessing* Create(const Config& config);
    171   // TODO(ajm): Deprecated; remove all calls to it.
    172   static AudioProcessing* Create(int id);
    173   virtual ~AudioProcessing() {}
    174 
    175   // Initializes internal states, while retaining all user settings. This
    176   // should be called before beginning to process a new audio stream. However,
    177   // it is not necessary to call before processing the first stream after
    178   // creation.
    179   //
    180   // It is also not necessary to call if the audio parameters (sample
    181   // rate and number of channels) have changed. Passing updated parameters
    182   // directly to |ProcessStream()| and |AnalyzeReverseStream()| is permissible.
    183   // If the parameters are known at init-time though, they may be provided.
    184   virtual int Initialize() = 0;
    185 
    186   // The int16 interfaces require:
    187   //   - only |NativeRate|s be used
    188   //   - that the input, output and reverse rates must match
    189   //   - that |output_layout| matches |input_layout|
    190   //
    191   // The float interfaces accept arbitrary rates and support differing input
    192   // and output layouts, but the output may only remove channels, not add.
    193   virtual int Initialize(int input_sample_rate_hz,
    194                          int output_sample_rate_hz,
    195                          int reverse_sample_rate_hz,
    196                          ChannelLayout input_layout,
    197                          ChannelLayout output_layout,
    198                          ChannelLayout reverse_layout) = 0;
    199 
    200   // Pass down additional options which don't have explicit setters. This
    201   // ensures the options are applied immediately.
    202   virtual void SetExtraOptions(const Config& config) = 0;
    203 
    204   virtual int EnableExperimentalNs(bool enable) = 0;
    205   virtual bool experimental_ns_enabled() const = 0;
    206 
    207   // DEPRECATED.
    208   // TODO(ajm): Remove after Chromium has upgraded to using Initialize().
    209   virtual int set_sample_rate_hz(int rate) = 0;
    210   // TODO(ajm): Remove after voice engine no longer requires it to resample
    211   // the reverse stream to the forward rate.
    212   virtual int input_sample_rate_hz() const = 0;
    213   // TODO(ajm): Remove after Chromium no longer depends on it.
    214   virtual int sample_rate_hz() const = 0;
    215 
    216   // TODO(ajm): Only intended for internal use. Make private and friend the
    217   // necessary classes?
    218   virtual int proc_sample_rate_hz() const = 0;
    219   virtual int proc_split_sample_rate_hz() const = 0;
    220   virtual int num_input_channels() const = 0;
    221   virtual int num_output_channels() const = 0;
    222   virtual int num_reverse_channels() const = 0;
    223 
    224   // Set to true when the output of AudioProcessing will be muted or in some
    225   // other way not used. Ideally, the captured audio would still be processed,
    226   // but some components may change behavior based on this information.
    227   // Default false.
    228   virtual void set_output_will_be_muted(bool muted) = 0;
    229   virtual bool output_will_be_muted() const = 0;
    230 
    231   // Processes a 10 ms |frame| of the primary audio stream. On the client-side,
    232   // this is the near-end (or captured) audio.
    233   //
    234   // If needed for enabled functionality, any function with the set_stream_ tag
    235   // must be called prior to processing the current frame. Any getter function
    236   // with the stream_ tag which is needed should be called after processing.
    237   //
    238   // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_|
    239   // members of |frame| must be valid. If changed from the previous call to this
    240   // method, it will trigger an initialization.
    241   virtual int ProcessStream(AudioFrame* frame) = 0;
    242 
    243   // Accepts deinterleaved float audio with the range [-1, 1]. Each element
    244   // of |src| points to a channel buffer, arranged according to
    245   // |input_layout|. At output, the channels will be arranged according to
    246   // |output_layout| at |output_sample_rate_hz| in |dest|.
    247   //
    248   // The output layout may only remove channels, not add. |src| and |dest|
    249   // may use the same memory, if desired.
    250   virtual int ProcessStream(const float* const* src,
    251                             int samples_per_channel,
    252                             int input_sample_rate_hz,
    253                             ChannelLayout input_layout,
    254                             int output_sample_rate_hz,
    255                             ChannelLayout output_layout,
    256                             float* const* dest) = 0;
    257 
    258   // Analyzes a 10 ms |frame| of the reverse direction audio stream. The frame
    259   // will not be modified. On the client-side, this is the far-end (or to be
    260   // rendered) audio.
    261   //
    262   // It is only necessary to provide this if echo processing is enabled, as the
    263   // reverse stream forms the echo reference signal. It is recommended, but not
    264   // necessary, to provide if gain control is enabled. On the server-side this
    265   // typically will not be used. If you're not sure what to pass in here,
    266   // chances are you don't need to use it.
    267   //
    268   // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_|
    269   // members of |frame| must be valid. |sample_rate_hz_| must correspond to
    270   // |input_sample_rate_hz()|
    271   //
    272   // TODO(ajm): add const to input; requires an implementation fix.
    273   virtual int AnalyzeReverseStream(AudioFrame* frame) = 0;
    274 
    275   // Accepts deinterleaved float audio with the range [-1, 1]. Each element
    276   // of |data| points to a channel buffer, arranged according to |layout|.
    277   virtual int AnalyzeReverseStream(const float* const* data,
    278                                    int samples_per_channel,
    279                                    int sample_rate_hz,
    280                                    ChannelLayout layout) = 0;
    281 
    282   // This must be called if and only if echo processing is enabled.
    283   //
    284   // Sets the |delay| in ms between AnalyzeReverseStream() receiving a far-end
    285   // frame and ProcessStream() receiving a near-end frame containing the
    286   // corresponding echo. On the client-side this can be expressed as
    287   //   delay = (t_render - t_analyze) + (t_process - t_capture)
    288   // where,
    289   //   - t_analyze is the time a frame is passed to AnalyzeReverseStream() and
    290   //     t_render is the time the first sample of the same frame is rendered by
    291   //     the audio hardware.
    292   //   - t_capture is the time the first sample of a frame is captured by the
    293   //     audio hardware and t_pull is the time the same frame is passed to
    294   //     ProcessStream().
    295   virtual int set_stream_delay_ms(int delay) = 0;
    296   virtual int stream_delay_ms() const = 0;
    297   virtual bool was_stream_delay_set() const = 0;
    298 
    299   // Call to signal that a key press occurred (true) or did not occur (false)
    300   // with this chunk of audio.
    301   virtual void set_stream_key_pressed(bool key_pressed) = 0;
    302   virtual bool stream_key_pressed() const = 0;
    303 
    304   // Sets a delay |offset| in ms to add to the values passed in through
    305   // set_stream_delay_ms(). May be positive or negative.
    306   //
    307   // Note that this could cause an otherwise valid value passed to
    308   // set_stream_delay_ms() to return an error.
    309   virtual void set_delay_offset_ms(int offset) = 0;
    310   virtual int delay_offset_ms() const = 0;
    311 
    312   // Starts recording debugging information to a file specified by |filename|,
    313   // a NULL-terminated string. If there is an ongoing recording, the old file
    314   // will be closed, and recording will continue in the newly specified file.
    315   // An already existing file will be overwritten without warning.
    316   static const size_t kMaxFilenameSize = 1024;
    317   virtual int StartDebugRecording(const char filename[kMaxFilenameSize]) = 0;
    318 
    319   // Same as above but uses an existing file handle. Takes ownership
    320   // of |handle| and closes it at StopDebugRecording().
    321   virtual int StartDebugRecording(FILE* handle) = 0;
    322 
    323   // Stops recording debugging information, and closes the file. Recording
    324   // cannot be resumed in the same file (without overwriting it).
    325   virtual int StopDebugRecording() = 0;
    326 
    327   // These provide access to the component interfaces and should never return
    328   // NULL. The pointers will be valid for the lifetime of the APM instance.
    329   // The memory for these objects is entirely managed internally.
    330   virtual EchoCancellation* echo_cancellation() const = 0;
    331   virtual EchoControlMobile* echo_control_mobile() const = 0;
    332   virtual GainControl* gain_control() const = 0;
    333   virtual HighPassFilter* high_pass_filter() const = 0;
    334   virtual LevelEstimator* level_estimator() const = 0;
    335   virtual NoiseSuppression* noise_suppression() const = 0;
    336   virtual VoiceDetection* voice_detection() const = 0;
    337 
    338   struct Statistic {
    339     int instant;  // Instantaneous value.
    340     int average;  // Long-term average.
    341     int maximum;  // Long-term maximum.
    342     int minimum;  // Long-term minimum.
    343   };
    344 
    345   enum Error {
    346     // Fatal errors.
    347     kNoError = 0,
    348     kUnspecifiedError = -1,
    349     kCreationFailedError = -2,
    350     kUnsupportedComponentError = -3,
    351     kUnsupportedFunctionError = -4,
    352     kNullPointerError = -5,
    353     kBadParameterError = -6,
    354     kBadSampleRateError = -7,
    355     kBadDataLengthError = -8,
    356     kBadNumberChannelsError = -9,
    357     kFileError = -10,
    358     kStreamParameterNotSetError = -11,
    359     kNotEnabledError = -12,
    360 
    361     // Warnings are non-fatal.
    362     // This results when a set_stream_ parameter is out of range. Processing
    363     // will continue, but the parameter may have been truncated.
    364     kBadStreamParameterWarning = -13
    365   };
    366 
    367   enum NativeRate {
    368     kSampleRate8kHz = 8000,
    369     kSampleRate16kHz = 16000,
    370     kSampleRate32kHz = 32000
    371   };
    372 
    373   static const int kChunkSizeMs = 10;
    374 };
    375 
    376 // The acoustic echo cancellation (AEC) component provides better performance
    377 // than AECM but also requires more processing power and is dependent on delay
    378 // stability and reporting accuracy. As such it is well-suited and recommended
    379 // for PC and IP phone applications.
    380 //
    381 // Not recommended to be enabled on the server-side.
    382 class EchoCancellation {
    383  public:
    384   // EchoCancellation and EchoControlMobile may not be enabled simultaneously.
    385   // Enabling one will disable the other.
    386   virtual int Enable(bool enable) = 0;
    387   virtual bool is_enabled() const = 0;
    388 
    389   // Differences in clock speed on the primary and reverse streams can impact
    390   // the AEC performance. On the client-side, this could be seen when different
    391   // render and capture devices are used, particularly with webcams.
    392   //
    393   // This enables a compensation mechanism, and requires that
    394   // set_stream_drift_samples() be called.
    395   virtual int enable_drift_compensation(bool enable) = 0;
    396   virtual bool is_drift_compensation_enabled() const = 0;
    397 
    398   // Sets the difference between the number of samples rendered and captured by
    399   // the audio devices since the last call to |ProcessStream()|. Must be called
    400   // if drift compensation is enabled, prior to |ProcessStream()|.
    401   virtual void set_stream_drift_samples(int drift) = 0;
    402   virtual int stream_drift_samples() const = 0;
    403 
    404   enum SuppressionLevel {
    405     kLowSuppression,
    406     kModerateSuppression,
    407     kHighSuppression
    408   };
    409 
    410   // Sets the aggressiveness of the suppressor. A higher level trades off
    411   // double-talk performance for increased echo suppression.
    412   virtual int set_suppression_level(SuppressionLevel level) = 0;
    413   virtual SuppressionLevel suppression_level() const = 0;
    414 
    415   // Returns false if the current frame almost certainly contains no echo
    416   // and true if it _might_ contain echo.
    417   virtual bool stream_has_echo() const = 0;
    418 
    419   // Enables the computation of various echo metrics. These are obtained
    420   // through |GetMetrics()|.
    421   virtual int enable_metrics(bool enable) = 0;
    422   virtual bool are_metrics_enabled() const = 0;
    423 
    424   // Each statistic is reported in dB.
    425   // P_far:  Far-end (render) signal power.
    426   // P_echo: Near-end (capture) echo signal power.
    427   // P_out:  Signal power at the output of the AEC.
    428   // P_a:    Internal signal power at the point before the AEC's non-linear
    429   //         processor.
    430   struct Metrics {
    431     // RERL = ERL + ERLE
    432     AudioProcessing::Statistic residual_echo_return_loss;
    433 
    434     // ERL = 10log_10(P_far / P_echo)
    435     AudioProcessing::Statistic echo_return_loss;
    436 
    437     // ERLE = 10log_10(P_echo / P_out)
    438     AudioProcessing::Statistic echo_return_loss_enhancement;
    439 
    440     // (Pre non-linear processing suppression) A_NLP = 10log_10(P_echo / P_a)
    441     AudioProcessing::Statistic a_nlp;
    442   };
    443 
    444   // TODO(ajm): discuss the metrics update period.
    445   virtual int GetMetrics(Metrics* metrics) = 0;
    446 
    447   // Enables computation and logging of delay values. Statistics are obtained
    448   // through |GetDelayMetrics()|.
    449   virtual int enable_delay_logging(bool enable) = 0;
    450   virtual bool is_delay_logging_enabled() const = 0;
    451 
    452   // The delay metrics consists of the delay |median| and the delay standard
    453   // deviation |std|. The values are averaged over the time period since the
    454   // last call to |GetDelayMetrics()|.
    455   virtual int GetDelayMetrics(int* median, int* std) = 0;
    456 
    457   // Returns a pointer to the low level AEC component.  In case of multiple
    458   // channels, the pointer to the first one is returned.  A NULL pointer is
    459   // returned when the AEC component is disabled or has not been initialized
    460   // successfully.
    461   virtual struct AecCore* aec_core() const = 0;
    462 
    463  protected:
    464   virtual ~EchoCancellation() {}
    465 };
    466 
    467 // The acoustic echo control for mobile (AECM) component is a low complexity
    468 // robust option intended for use on mobile devices.
    469 //
    470 // Not recommended to be enabled on the server-side.
    471 class EchoControlMobile {
    472  public:
    473   // EchoCancellation and EchoControlMobile may not be enabled simultaneously.
    474   // Enabling one will disable the other.
    475   virtual int Enable(bool enable) = 0;
    476   virtual bool is_enabled() const = 0;
    477 
    478   // Recommended settings for particular audio routes. In general, the louder
    479   // the echo is expected to be, the higher this value should be set. The
    480   // preferred setting may vary from device to device.
    481   enum RoutingMode {
    482     kQuietEarpieceOrHeadset,
    483     kEarpiece,
    484     kLoudEarpiece,
    485     kSpeakerphone,
    486     kLoudSpeakerphone
    487   };
    488 
    489   // Sets echo control appropriate for the audio routing |mode| on the device.
    490   // It can and should be updated during a call if the audio routing changes.
    491   virtual int set_routing_mode(RoutingMode mode) = 0;
    492   virtual RoutingMode routing_mode() const = 0;
    493 
    494   // Comfort noise replaces suppressed background noise to maintain a
    495   // consistent signal level.
    496   virtual int enable_comfort_noise(bool enable) = 0;
    497   virtual bool is_comfort_noise_enabled() const = 0;
    498 
    499   // A typical use case is to initialize the component with an echo path from a
    500   // previous call. The echo path is retrieved using |GetEchoPath()|, typically
    501   // at the end of a call. The data can then be stored for later use as an
    502   // initializer before the next call, using |SetEchoPath()|.
    503   //
    504   // Controlling the echo path this way requires the data |size_bytes| to match
    505   // the internal echo path size. This size can be acquired using
    506   // |echo_path_size_bytes()|. |SetEchoPath()| causes an entire reset, worth
    507   // noting if it is to be called during an ongoing call.
    508   //
    509   // It is possible that version incompatibilities may result in a stored echo
    510   // path of the incorrect size. In this case, the stored path should be
    511   // discarded.
    512   virtual int SetEchoPath(const void* echo_path, size_t size_bytes) = 0;
    513   virtual int GetEchoPath(void* echo_path, size_t size_bytes) const = 0;
    514 
    515   // The returned path size is guaranteed not to change for the lifetime of
    516   // the application.
    517   static size_t echo_path_size_bytes();
    518 
    519  protected:
    520   virtual ~EchoControlMobile() {}
    521 };
    522 
    523 // The automatic gain control (AGC) component brings the signal to an
    524 // appropriate range. This is done by applying a digital gain directly and, in
    525 // the analog mode, prescribing an analog gain to be applied at the audio HAL.
    526 //
    527 // Recommended to be enabled on the client-side.
    528 class GainControl {
    529  public:
    530   virtual int Enable(bool enable) = 0;
    531   virtual bool is_enabled() const = 0;
    532 
    533   // When an analog mode is set, this must be called prior to |ProcessStream()|
    534   // to pass the current analog level from the audio HAL. Must be within the
    535   // range provided to |set_analog_level_limits()|.
    536   virtual int set_stream_analog_level(int level) = 0;
    537 
    538   // When an analog mode is set, this should be called after |ProcessStream()|
    539   // to obtain the recommended new analog level for the audio HAL. It is the
    540   // users responsibility to apply this level.
    541   virtual int stream_analog_level() = 0;
    542 
    543   enum Mode {
    544     // Adaptive mode intended for use if an analog volume control is available
    545     // on the capture device. It will require the user to provide coupling
    546     // between the OS mixer controls and AGC through the |stream_analog_level()|
    547     // functions.
    548     //
    549     // It consists of an analog gain prescription for the audio device and a
    550     // digital compression stage.
    551     kAdaptiveAnalog,
    552 
    553     // Adaptive mode intended for situations in which an analog volume control
    554     // is unavailable. It operates in a similar fashion to the adaptive analog
    555     // mode, but with scaling instead applied in the digital domain. As with
    556     // the analog mode, it additionally uses a digital compression stage.
    557     kAdaptiveDigital,
    558 
    559     // Fixed mode which enables only the digital compression stage also used by
    560     // the two adaptive modes.
    561     //
    562     // It is distinguished from the adaptive modes by considering only a
    563     // short time-window of the input signal. It applies a fixed gain through
    564     // most of the input level range, and compresses (gradually reduces gain
    565     // with increasing level) the input signal at higher levels. This mode is
    566     // preferred on embedded devices where the capture signal level is
    567     // predictable, so that a known gain can be applied.
    568     kFixedDigital
    569   };
    570 
    571   virtual int set_mode(Mode mode) = 0;
    572   virtual Mode mode() const = 0;
    573 
    574   // Sets the target peak |level| (or envelope) of the AGC in dBFs (decibels
    575   // from digital full-scale). The convention is to use positive values. For
    576   // instance, passing in a value of 3 corresponds to -3 dBFs, or a target
    577   // level 3 dB below full-scale. Limited to [0, 31].
    578   //
    579   // TODO(ajm): use a negative value here instead, if/when VoE will similarly
    580   //            update its interface.
    581   virtual int set_target_level_dbfs(int level) = 0;
    582   virtual int target_level_dbfs() const = 0;
    583 
    584   // Sets the maximum |gain| the digital compression stage may apply, in dB. A
    585   // higher number corresponds to greater compression, while a value of 0 will
    586   // leave the signal uncompressed. Limited to [0, 90].
    587   virtual int set_compression_gain_db(int gain) = 0;
    588   virtual int compression_gain_db() const = 0;
    589 
    590   // When enabled, the compression stage will hard limit the signal to the
    591   // target level. Otherwise, the signal will be compressed but not limited
    592   // above the target level.
    593   virtual int enable_limiter(bool enable) = 0;
    594   virtual bool is_limiter_enabled() const = 0;
    595 
    596   // Sets the |minimum| and |maximum| analog levels of the audio capture device.
    597   // Must be set if and only if an analog mode is used. Limited to [0, 65535].
    598   virtual int set_analog_level_limits(int minimum,
    599                                       int maximum) = 0;
    600   virtual int analog_level_minimum() const = 0;
    601   virtual int analog_level_maximum() const = 0;
    602 
    603   // Returns true if the AGC has detected a saturation event (period where the
    604   // signal reaches digital full-scale) in the current frame and the analog
    605   // level cannot be reduced.
    606   //
    607   // This could be used as an indicator to reduce or disable analog mic gain at
    608   // the audio HAL.
    609   virtual bool stream_is_saturated() const = 0;
    610 
    611  protected:
    612   virtual ~GainControl() {}
    613 };
    614 
    615 // A filtering component which removes DC offset and low-frequency noise.
    616 // Recommended to be enabled on the client-side.
    617 class HighPassFilter {
    618  public:
    619   virtual int Enable(bool enable) = 0;
    620   virtual bool is_enabled() const = 0;
    621 
    622  protected:
    623   virtual ~HighPassFilter() {}
    624 };
    625 
    626 // An estimation component used to retrieve level metrics.
    627 class LevelEstimator {
    628  public:
    629   virtual int Enable(bool enable) = 0;
    630   virtual bool is_enabled() const = 0;
    631 
    632   // Returns the root mean square (RMS) level in dBFs (decibels from digital
    633   // full-scale), or alternately dBov. It is computed over all primary stream
    634   // frames since the last call to RMS(). The returned value is positive but
    635   // should be interpreted as negative. It is constrained to [0, 127].
    636   //
    637   // The computation follows: https://tools.ietf.org/html/rfc6465
    638   // with the intent that it can provide the RTP audio level indication.
    639   //
    640   // Frames passed to ProcessStream() with an |_energy| of zero are considered
    641   // to have been muted. The RMS of the frame will be interpreted as -127.
    642   virtual int RMS() = 0;
    643 
    644  protected:
    645   virtual ~LevelEstimator() {}
    646 };
    647 
    648 // The noise suppression (NS) component attempts to remove noise while
    649 // retaining speech. Recommended to be enabled on the client-side.
    650 //
    651 // Recommended to be enabled on the client-side.
    652 class NoiseSuppression {
    653  public:
    654   virtual int Enable(bool enable) = 0;
    655   virtual bool is_enabled() const = 0;
    656 
    657   // Determines the aggressiveness of the suppression. Increasing the level
    658   // will reduce the noise level at the expense of a higher speech distortion.
    659   enum Level {
    660     kLow,
    661     kModerate,
    662     kHigh,
    663     kVeryHigh
    664   };
    665 
    666   virtual int set_level(Level level) = 0;
    667   virtual Level level() const = 0;
    668 
    669   // Returns the internally computed prior speech probability of current frame
    670   // averaged over output channels. This is not supported in fixed point, for
    671   // which |kUnsupportedFunctionError| is returned.
    672   virtual float speech_probability() const = 0;
    673 
    674  protected:
    675   virtual ~NoiseSuppression() {}
    676 };
    677 
    678 // The voice activity detection (VAD) component analyzes the stream to
    679 // determine if voice is present. A facility is also provided to pass in an
    680 // external VAD decision.
    681 //
    682 // In addition to |stream_has_voice()| the VAD decision is provided through the
    683 // |AudioFrame| passed to |ProcessStream()|. The |vad_activity_| member will be
    684 // modified to reflect the current decision.
    685 class VoiceDetection {
    686  public:
    687   virtual int Enable(bool enable) = 0;
    688   virtual bool is_enabled() const = 0;
    689 
    690   // Returns true if voice is detected in the current frame. Should be called
    691   // after |ProcessStream()|.
    692   virtual bool stream_has_voice() const = 0;
    693 
    694   // Some of the APM functionality requires a VAD decision. In the case that
    695   // a decision is externally available for the current frame, it can be passed
    696   // in here, before |ProcessStream()| is called.
    697   //
    698   // VoiceDetection does _not_ need to be enabled to use this. If it happens to
    699   // be enabled, detection will be skipped for any frame in which an external
    700   // VAD decision is provided.
    701   virtual int set_stream_has_voice(bool has_voice) = 0;
    702 
    703   // Specifies the likelihood that a frame will be declared to contain voice.
    704   // A higher value makes it more likely that speech will not be clipped, at
    705   // the expense of more noise being detected as voice.
    706   enum Likelihood {
    707     kVeryLowLikelihood,
    708     kLowLikelihood,
    709     kModerateLikelihood,
    710     kHighLikelihood
    711   };
    712 
    713   virtual int set_likelihood(Likelihood likelihood) = 0;
    714   virtual Likelihood likelihood() const = 0;
    715 
    716   // Sets the |size| of the frames in ms on which the VAD will operate. Larger
    717   // frames will improve detection accuracy, but reduce the frequency of
    718   // updates.
    719   //
    720   // This does not impact the size of frames passed to |ProcessStream()|.
    721   virtual int set_frame_size_ms(int size) = 0;
    722   virtual int frame_size_ms() const = 0;
    723 
    724  protected:
    725   virtual ~VoiceDetection() {}
    726 };
    727 }  // namespace webrtc
    728 
    729 #endif  // WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_
    730