Home | History | Annotate | Download | only in src
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #include "src/v8.h"
      6 
      7 #include "src/accessors.h"
      8 #include "src/api.h"
      9 #include "src/arguments.h"
     10 #include "src/codegen.h"
     11 #include "src/conversions.h"
     12 #include "src/execution.h"
     13 #include "src/ic-inl.h"
     14 #include "src/runtime.h"
     15 #include "src/stub-cache.h"
     16 
     17 namespace v8 {
     18 namespace internal {
     19 
     20 #ifdef DEBUG
     21 char IC::TransitionMarkFromState(IC::State state) {
     22   switch (state) {
     23     case UNINITIALIZED: return '0';
     24     case PREMONOMORPHIC: return '.';
     25     case MONOMORPHIC: return '1';
     26     case MONOMORPHIC_PROTOTYPE_FAILURE: return '^';
     27     case POLYMORPHIC: return 'P';
     28     case MEGAMORPHIC: return 'N';
     29     case GENERIC: return 'G';
     30 
     31     // We never see the debugger states here, because the state is
     32     // computed from the original code - not the patched code. Let
     33     // these cases fall through to the unreachable code below.
     34     case DEBUG_STUB: break;
     35   }
     36   UNREACHABLE();
     37   return 0;
     38 }
     39 
     40 
     41 const char* GetTransitionMarkModifier(KeyedAccessStoreMode mode) {
     42   if (mode == STORE_NO_TRANSITION_HANDLE_COW) return ".COW";
     43   if (mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS) {
     44     return ".IGNORE_OOB";
     45   }
     46   if (IsGrowStoreMode(mode)) return ".GROW";
     47   return "";
     48 }
     49 
     50 
     51 void IC::TraceIC(const char* type,
     52                  Handle<Object> name) {
     53   if (FLAG_trace_ic) {
     54     Code* new_target = raw_target();
     55     State new_state = new_target->ic_state();
     56     PrintF("[%s%s in ", new_target->is_keyed_stub() ? "Keyed" : "", type);
     57     StackFrameIterator it(isolate());
     58     while (it.frame()->fp() != this->fp()) it.Advance();
     59     StackFrame* raw_frame = it.frame();
     60     if (raw_frame->is_internal()) {
     61       Code* apply_builtin = isolate()->builtins()->builtin(
     62           Builtins::kFunctionApply);
     63       if (raw_frame->unchecked_code() == apply_builtin) {
     64         PrintF("apply from ");
     65         it.Advance();
     66         raw_frame = it.frame();
     67       }
     68     }
     69     JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
     70     ExtraICState extra_state = new_target->extra_ic_state();
     71     const char* modifier = "";
     72     if (new_target->kind() == Code::KEYED_STORE_IC) {
     73       modifier = GetTransitionMarkModifier(
     74           KeyedStoreIC::GetKeyedAccessStoreMode(extra_state));
     75     }
     76     PrintF(" (%c->%c%s)",
     77            TransitionMarkFromState(state()),
     78            TransitionMarkFromState(new_state),
     79            modifier);
     80     name->Print();
     81     PrintF("]\n");
     82   }
     83 }
     84 
     85 #define TRACE_GENERIC_IC(isolate, type, reason)                 \
     86   do {                                                          \
     87     if (FLAG_trace_ic) {                                        \
     88       PrintF("[%s patching generic stub in ", type);            \
     89       JavaScriptFrame::PrintTop(isolate, stdout, false, true);  \
     90       PrintF(" (%s)]\n", reason);                               \
     91     }                                                           \
     92   } while (false)
     93 
     94 #else
     95 #define TRACE_GENERIC_IC(isolate, type, reason)
     96 #endif  // DEBUG
     97 
     98 #define TRACE_IC(type, name)             \
     99   ASSERT((TraceIC(type, name), true))
    100 
    101 IC::IC(FrameDepth depth, Isolate* isolate)
    102     : isolate_(isolate),
    103       target_set_(false),
    104       target_maps_set_(false) {
    105   // To improve the performance of the (much used) IC code, we unfold a few
    106   // levels of the stack frame iteration code. This yields a ~35% speedup when
    107   // running DeltaBlue and a ~25% speedup of gbemu with the '--nouse-ic' flag.
    108   const Address entry =
    109       Isolate::c_entry_fp(isolate->thread_local_top());
    110   Address constant_pool = NULL;
    111   if (FLAG_enable_ool_constant_pool) {
    112     constant_pool = Memory::Address_at(
    113         entry + ExitFrameConstants::kConstantPoolOffset);
    114   }
    115   Address* pc_address =
    116       reinterpret_cast<Address*>(entry + ExitFrameConstants::kCallerPCOffset);
    117   Address fp = Memory::Address_at(entry + ExitFrameConstants::kCallerFPOffset);
    118   // If there's another JavaScript frame on the stack or a
    119   // StubFailureTrampoline, we need to look one frame further down the stack to
    120   // find the frame pointer and the return address stack slot.
    121   if (depth == EXTRA_CALL_FRAME) {
    122     if (FLAG_enable_ool_constant_pool) {
    123       constant_pool = Memory::Address_at(
    124           fp + StandardFrameConstants::kConstantPoolOffset);
    125     }
    126     const int kCallerPCOffset = StandardFrameConstants::kCallerPCOffset;
    127     pc_address = reinterpret_cast<Address*>(fp + kCallerPCOffset);
    128     fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
    129   }
    130 #ifdef DEBUG
    131   StackFrameIterator it(isolate);
    132   for (int i = 0; i < depth + 1; i++) it.Advance();
    133   StackFrame* frame = it.frame();
    134   ASSERT(fp == frame->fp() && pc_address == frame->pc_address());
    135 #endif
    136   fp_ = fp;
    137   if (FLAG_enable_ool_constant_pool) {
    138     raw_constant_pool_ = handle(
    139         ConstantPoolArray::cast(reinterpret_cast<Object*>(constant_pool)),
    140         isolate);
    141   }
    142   pc_address_ = StackFrame::ResolveReturnAddressLocation(pc_address);
    143   target_ = handle(raw_target(), isolate);
    144   state_ = target_->ic_state();
    145   extra_ic_state_ = target_->extra_ic_state();
    146 }
    147 
    148 
    149 SharedFunctionInfo* IC::GetSharedFunctionInfo() const {
    150   // Compute the JavaScript frame for the frame pointer of this IC
    151   // structure. We need this to be able to find the function
    152   // corresponding to the frame.
    153   StackFrameIterator it(isolate());
    154   while (it.frame()->fp() != this->fp()) it.Advance();
    155   JavaScriptFrame* frame = JavaScriptFrame::cast(it.frame());
    156   // Find the function on the stack and both the active code for the
    157   // function and the original code.
    158   JSFunction* function = frame->function();
    159   return function->shared();
    160 }
    161 
    162 
    163 Code* IC::GetCode() const {
    164   HandleScope scope(isolate());
    165   Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate());
    166   Code* code = shared->code();
    167   return code;
    168 }
    169 
    170 
    171 Code* IC::GetOriginalCode() const {
    172   HandleScope scope(isolate());
    173   Handle<SharedFunctionInfo> shared(GetSharedFunctionInfo(), isolate());
    174   ASSERT(Debug::HasDebugInfo(shared));
    175   Code* original_code = Debug::GetDebugInfo(shared)->original_code();
    176   ASSERT(original_code->IsCode());
    177   return original_code;
    178 }
    179 
    180 
    181 static bool HasInterceptorGetter(JSObject* object) {
    182   return !object->GetNamedInterceptor()->getter()->IsUndefined();
    183 }
    184 
    185 
    186 static bool HasInterceptorSetter(JSObject* object) {
    187   return !object->GetNamedInterceptor()->setter()->IsUndefined();
    188 }
    189 
    190 
    191 static void LookupForRead(Handle<Object> object,
    192                           Handle<String> name,
    193                           LookupResult* lookup) {
    194   // Skip all the objects with named interceptors, but
    195   // without actual getter.
    196   while (true) {
    197     object->Lookup(name, lookup);
    198     // Besides normal conditions (property not found or it's not
    199     // an interceptor), bail out if lookup is not cacheable: we won't
    200     // be able to IC it anyway and regular lookup should work fine.
    201     if (!lookup->IsInterceptor() || !lookup->IsCacheable()) {
    202       return;
    203     }
    204 
    205     Handle<JSObject> holder(lookup->holder(), lookup->isolate());
    206     if (HasInterceptorGetter(*holder)) {
    207       return;
    208     }
    209 
    210     holder->LookupOwnRealNamedProperty(name, lookup);
    211     if (lookup->IsFound()) {
    212       ASSERT(!lookup->IsInterceptor());
    213       return;
    214     }
    215 
    216     Handle<Object> proto(holder->GetPrototype(), lookup->isolate());
    217     if (proto->IsNull()) {
    218       ASSERT(!lookup->IsFound());
    219       return;
    220     }
    221 
    222     object = proto;
    223   }
    224 }
    225 
    226 
    227 bool IC::TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver,
    228                                                 Handle<String> name) {
    229   if (!IsNameCompatibleWithMonomorphicPrototypeFailure(name)) return false;
    230 
    231   InlineCacheHolderFlag cache_holder =
    232       Code::ExtractCacheHolderFromFlags(target()->flags());
    233 
    234   switch (cache_holder) {
    235     case OWN_MAP:
    236       // The stub was generated for JSObject but called for non-JSObject.
    237       // IC::GetCodeCacheHolder is not applicable.
    238       if (!receiver->IsJSObject()) return false;
    239       break;
    240     case PROTOTYPE_MAP:
    241       // IC::GetCodeCacheHolder is not applicable.
    242       if (receiver->GetPrototype(isolate())->IsNull()) return false;
    243       break;
    244   }
    245 
    246   Handle<Map> map(
    247       IC::GetCodeCacheHolder(isolate(), *receiver, cache_holder)->map());
    248 
    249   // Decide whether the inline cache failed because of changes to the
    250   // receiver itself or changes to one of its prototypes.
    251   //
    252   // If there are changes to the receiver itself, the map of the
    253   // receiver will have changed and the current target will not be in
    254   // the receiver map's code cache.  Therefore, if the current target
    255   // is in the receiver map's code cache, the inline cache failed due
    256   // to prototype check failure.
    257   int index = map->IndexInCodeCache(*name, *target());
    258   if (index >= 0) {
    259     map->RemoveFromCodeCache(*name, *target(), index);
    260     // Handlers are stored in addition to the ICs on the map. Remove those, too.
    261     TryRemoveInvalidHandlers(map, name);
    262     return true;
    263   }
    264 
    265   // The stub is not in the cache. We've ruled out all other kinds of failure
    266   // except for proptotype chain changes, a deprecated map, a map that's
    267   // different from the one that the stub expects, elements kind changes, or a
    268   // constant global property that will become mutable. Threat all those
    269   // situations as prototype failures (stay monomorphic if possible).
    270 
    271   // If the IC is shared between multiple receivers (slow dictionary mode), then
    272   // the map cannot be deprecated and the stub invalidated.
    273   if (cache_holder == OWN_MAP) {
    274     Map* old_map = FirstTargetMap();
    275     if (old_map == *map) return true;
    276     if (old_map != NULL) {
    277       if (old_map->is_deprecated()) return true;
    278       if (IsMoreGeneralElementsKindTransition(old_map->elements_kind(),
    279                                               map->elements_kind())) {
    280         return true;
    281       }
    282     }
    283   }
    284 
    285   if (receiver->IsGlobalObject()) {
    286     LookupResult lookup(isolate());
    287     GlobalObject* global = GlobalObject::cast(*receiver);
    288     global->LookupOwnRealNamedProperty(name, &lookup);
    289     if (!lookup.IsFound()) return false;
    290     PropertyCell* cell = global->GetPropertyCell(&lookup);
    291     return cell->type()->IsConstant();
    292   }
    293 
    294   return false;
    295 }
    296 
    297 
    298 void IC::TryRemoveInvalidHandlers(Handle<Map> map, Handle<String> name) {
    299   CodeHandleList handlers;
    300   target()->FindHandlers(&handlers);
    301   for (int i = 0; i < handlers.length(); i++) {
    302     Handle<Code> handler = handlers.at(i);
    303     int index = map->IndexInCodeCache(*name, *handler);
    304     if (index >= 0) {
    305       map->RemoveFromCodeCache(*name, *handler, index);
    306       return;
    307     }
    308   }
    309 }
    310 
    311 
    312 bool IC::IsNameCompatibleWithMonomorphicPrototypeFailure(Handle<Object> name) {
    313   if (target()->is_keyed_stub()) {
    314     // Determine whether the failure is due to a name failure.
    315     if (!name->IsName()) return false;
    316     Name* stub_name = target()->FindFirstName();
    317     if (*name != stub_name) return false;
    318   }
    319 
    320   return true;
    321 }
    322 
    323 
    324 void IC::UpdateState(Handle<Object> receiver, Handle<Object> name) {
    325   if (!name->IsString()) return;
    326   if (state() != MONOMORPHIC) {
    327     if (state() == POLYMORPHIC && receiver->IsHeapObject()) {
    328       TryRemoveInvalidHandlers(
    329           handle(Handle<HeapObject>::cast(receiver)->map()),
    330           Handle<String>::cast(name));
    331     }
    332     return;
    333   }
    334   if (receiver->IsUndefined() || receiver->IsNull()) return;
    335 
    336   // Remove the target from the code cache if it became invalid
    337   // because of changes in the prototype chain to avoid hitting it
    338   // again.
    339   if (TryRemoveInvalidPrototypeDependentStub(
    340           receiver, Handle<String>::cast(name)) &&
    341       TryMarkMonomorphicPrototypeFailure(name)) {
    342     return;
    343   }
    344 
    345   // The builtins object is special.  It only changes when JavaScript
    346   // builtins are loaded lazily.  It is important to keep inline
    347   // caches for the builtins object monomorphic.  Therefore, if we get
    348   // an inline cache miss for the builtins object after lazily loading
    349   // JavaScript builtins, we return uninitialized as the state to
    350   // force the inline cache back to monomorphic state.
    351   if (receiver->IsJSBuiltinsObject()) state_ = UNINITIALIZED;
    352 }
    353 
    354 
    355 MaybeHandle<Object> IC::TypeError(const char* type,
    356                                   Handle<Object> object,
    357                                   Handle<Object> key) {
    358   HandleScope scope(isolate());
    359   Handle<Object> args[2] = { key, object };
    360   Handle<Object> error = isolate()->factory()->NewTypeError(
    361       type, HandleVector(args, 2));
    362   return isolate()->Throw<Object>(error);
    363 }
    364 
    365 
    366 MaybeHandle<Object> IC::ReferenceError(const char* type, Handle<String> name) {
    367   HandleScope scope(isolate());
    368   Handle<Object> error = isolate()->factory()->NewReferenceError(
    369       type, HandleVector(&name, 1));
    370   return isolate()->Throw<Object>(error);
    371 }
    372 
    373 
    374 static int ComputeTypeInfoCountDelta(IC::State old_state, IC::State new_state) {
    375   bool was_uninitialized =
    376       old_state == UNINITIALIZED || old_state == PREMONOMORPHIC;
    377   bool is_uninitialized =
    378       new_state == UNINITIALIZED || new_state == PREMONOMORPHIC;
    379   return (was_uninitialized && !is_uninitialized) ?  1 :
    380          (!was_uninitialized && is_uninitialized) ? -1 : 0;
    381 }
    382 
    383 
    384 void IC::PostPatching(Address address, Code* target, Code* old_target) {
    385   Isolate* isolate = target->GetHeap()->isolate();
    386   Code* host = isolate->
    387       inner_pointer_to_code_cache()->GetCacheEntry(address)->code;
    388   if (host->kind() != Code::FUNCTION) return;
    389 
    390   if (FLAG_type_info_threshold > 0 &&
    391       old_target->is_inline_cache_stub() &&
    392       target->is_inline_cache_stub()) {
    393     int delta = ComputeTypeInfoCountDelta(old_target->ic_state(),
    394                                           target->ic_state());
    395     // Call ICs don't have interesting state changes from this point
    396     // of view.
    397     ASSERT(target->kind() != Code::CALL_IC || delta == 0);
    398 
    399     // Not all Code objects have TypeFeedbackInfo.
    400     if (host->type_feedback_info()->IsTypeFeedbackInfo() && delta != 0) {
    401       TypeFeedbackInfo* info =
    402           TypeFeedbackInfo::cast(host->type_feedback_info());
    403       info->change_ic_with_type_info_count(delta);
    404     }
    405   }
    406   if (host->type_feedback_info()->IsTypeFeedbackInfo()) {
    407     TypeFeedbackInfo* info =
    408         TypeFeedbackInfo::cast(host->type_feedback_info());
    409     info->change_own_type_change_checksum();
    410   }
    411   host->set_profiler_ticks(0);
    412   isolate->runtime_profiler()->NotifyICChanged();
    413   // TODO(2029): When an optimized function is patched, it would
    414   // be nice to propagate the corresponding type information to its
    415   // unoptimized version for the benefit of later inlining.
    416 }
    417 
    418 
    419 void IC::RegisterWeakMapDependency(Handle<Code> stub) {
    420   if (FLAG_collect_maps && FLAG_weak_embedded_maps_in_ic &&
    421       stub->CanBeWeakStub()) {
    422     ASSERT(!stub->is_weak_stub());
    423     MapHandleList maps;
    424     stub->FindAllMaps(&maps);
    425     if (maps.length() == 1 && stub->IsWeakObjectInIC(*maps.at(0))) {
    426       Map::AddDependentIC(maps.at(0), stub);
    427       stub->mark_as_weak_stub();
    428       if (FLAG_enable_ool_constant_pool) {
    429         stub->constant_pool()->set_weak_object_state(
    430             ConstantPoolArray::WEAK_OBJECTS_IN_IC);
    431       }
    432     }
    433   }
    434 }
    435 
    436 
    437 void IC::InvalidateMaps(Code* stub) {
    438   ASSERT(stub->is_weak_stub());
    439   stub->mark_as_invalidated_weak_stub();
    440   Isolate* isolate = stub->GetIsolate();
    441   Heap* heap = isolate->heap();
    442   Object* undefined = heap->undefined_value();
    443   int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT);
    444   for (RelocIterator it(stub, mode_mask); !it.done(); it.next()) {
    445     RelocInfo::Mode mode = it.rinfo()->rmode();
    446     if (mode == RelocInfo::EMBEDDED_OBJECT &&
    447         it.rinfo()->target_object()->IsMap()) {
    448       it.rinfo()->set_target_object(undefined, SKIP_WRITE_BARRIER);
    449     }
    450   }
    451   CPU::FlushICache(stub->instruction_start(), stub->instruction_size());
    452 }
    453 
    454 
    455 void IC::Clear(Isolate* isolate, Address address,
    456     ConstantPoolArray* constant_pool) {
    457   Code* target = GetTargetAtAddress(address, constant_pool);
    458 
    459   // Don't clear debug break inline cache as it will remove the break point.
    460   if (target->is_debug_stub()) return;
    461 
    462   switch (target->kind()) {
    463     case Code::LOAD_IC:
    464       return LoadIC::Clear(isolate, address, target, constant_pool);
    465     case Code::KEYED_LOAD_IC:
    466       return KeyedLoadIC::Clear(isolate, address, target, constant_pool);
    467     case Code::STORE_IC:
    468       return StoreIC::Clear(isolate, address, target, constant_pool);
    469     case Code::KEYED_STORE_IC:
    470       return KeyedStoreIC::Clear(isolate, address, target, constant_pool);
    471     case Code::CALL_IC:
    472       return CallIC::Clear(isolate, address, target, constant_pool);
    473     case Code::COMPARE_IC:
    474       return CompareIC::Clear(isolate, address, target, constant_pool);
    475     case Code::COMPARE_NIL_IC:
    476       return CompareNilIC::Clear(address, target, constant_pool);
    477     case Code::BINARY_OP_IC:
    478     case Code::TO_BOOLEAN_IC:
    479       // Clearing these is tricky and does not
    480       // make any performance difference.
    481       return;
    482     default: UNREACHABLE();
    483   }
    484 }
    485 
    486 
    487 void KeyedLoadIC::Clear(Isolate* isolate,
    488                         Address address,
    489                         Code* target,
    490                         ConstantPoolArray* constant_pool) {
    491   if (IsCleared(target)) return;
    492   // Make sure to also clear the map used in inline fast cases.  If we
    493   // do not clear these maps, cached code can keep objects alive
    494   // through the embedded maps.
    495   SetTargetAtAddress(address, *pre_monomorphic_stub(isolate), constant_pool);
    496 }
    497 
    498 
    499 void CallIC::Clear(Isolate* isolate,
    500                    Address address,
    501                    Code* target,
    502                    ConstantPoolArray* constant_pool) {
    503   // Currently, CallIC doesn't have state changes.
    504 }
    505 
    506 
    507 void LoadIC::Clear(Isolate* isolate,
    508                    Address address,
    509                    Code* target,
    510                    ConstantPoolArray* constant_pool) {
    511   if (IsCleared(target)) return;
    512   Code* code = target->GetIsolate()->stub_cache()->FindPreMonomorphicIC(
    513       Code::LOAD_IC, target->extra_ic_state());
    514   SetTargetAtAddress(address, code, constant_pool);
    515 }
    516 
    517 
    518 void StoreIC::Clear(Isolate* isolate,
    519                     Address address,
    520                     Code* target,
    521                     ConstantPoolArray* constant_pool) {
    522   if (IsCleared(target)) return;
    523   Code* code = target->GetIsolate()->stub_cache()->FindPreMonomorphicIC(
    524       Code::STORE_IC, target->extra_ic_state());
    525   SetTargetAtAddress(address, code, constant_pool);
    526 }
    527 
    528 
    529 void KeyedStoreIC::Clear(Isolate* isolate,
    530                          Address address,
    531                          Code* target,
    532                          ConstantPoolArray* constant_pool) {
    533   if (IsCleared(target)) return;
    534   SetTargetAtAddress(address,
    535       *pre_monomorphic_stub(
    536           isolate, StoreIC::GetStrictMode(target->extra_ic_state())),
    537       constant_pool);
    538 }
    539 
    540 
    541 void CompareIC::Clear(Isolate* isolate,
    542                       Address address,
    543                       Code* target,
    544                       ConstantPoolArray* constant_pool) {
    545   ASSERT(target->major_key() == CodeStub::CompareIC);
    546   CompareIC::State handler_state;
    547   Token::Value op;
    548   ICCompareStub::DecodeMinorKey(target->stub_info(), NULL, NULL,
    549                                 &handler_state, &op);
    550   // Only clear CompareICs that can retain objects.
    551   if (handler_state != KNOWN_OBJECT) return;
    552   SetTargetAtAddress(address, GetRawUninitialized(isolate, op), constant_pool);
    553   PatchInlinedSmiCode(address, DISABLE_INLINED_SMI_CHECK);
    554 }
    555 
    556 
    557 Handle<Code> KeyedLoadIC::megamorphic_stub() {
    558   if (FLAG_compiled_keyed_generic_loads) {
    559     return KeyedLoadGenericElementStub(isolate()).GetCode();
    560   } else {
    561     return isolate()->builtins()->KeyedLoadIC_Generic();
    562   }
    563 }
    564 
    565 Handle<Code> KeyedLoadIC::generic_stub() const {
    566   if (FLAG_compiled_keyed_generic_loads) {
    567     return KeyedLoadGenericElementStub(isolate()).GetCode();
    568   } else {
    569     return isolate()->builtins()->KeyedLoadIC_Generic();
    570   }
    571 }
    572 
    573 
    574 static bool MigrateDeprecated(Handle<Object> object) {
    575   if (!object->IsJSObject()) return false;
    576   Handle<JSObject> receiver = Handle<JSObject>::cast(object);
    577   if (!receiver->map()->is_deprecated()) return false;
    578   JSObject::MigrateInstance(Handle<JSObject>::cast(object));
    579   return true;
    580 }
    581 
    582 
    583 MaybeHandle<Object> LoadIC::Load(Handle<Object> object, Handle<String> name) {
    584   // If the object is undefined or null it's illegal to try to get any
    585   // of its properties; throw a TypeError in that case.
    586   if (object->IsUndefined() || object->IsNull()) {
    587     return TypeError("non_object_property_load", object, name);
    588   }
    589 
    590   if (FLAG_use_ic) {
    591     // Use specialized code for getting prototype of functions.
    592     if (object->IsJSFunction() &&
    593         String::Equals(isolate()->factory()->prototype_string(), name) &&
    594         Handle<JSFunction>::cast(object)->should_have_prototype()) {
    595       Handle<Code> stub;
    596       if (state() == UNINITIALIZED) {
    597         stub = pre_monomorphic_stub();
    598       } else if (state() == PREMONOMORPHIC) {
    599         FunctionPrototypeStub function_prototype_stub(isolate(), kind());
    600         stub = function_prototype_stub.GetCode();
    601       } else if (state() != MEGAMORPHIC) {
    602         ASSERT(state() != GENERIC);
    603         stub = megamorphic_stub();
    604       }
    605       if (!stub.is_null()) {
    606         set_target(*stub);
    607         if (FLAG_trace_ic) PrintF("[LoadIC : +#prototype /function]\n");
    608       }
    609       return Accessors::FunctionGetPrototype(Handle<JSFunction>::cast(object));
    610     }
    611   }
    612 
    613   // Check if the name is trivially convertible to an index and get
    614   // the element or char if so.
    615   uint32_t index;
    616   if (kind() == Code::KEYED_LOAD_IC && name->AsArrayIndex(&index)) {
    617     // Rewrite to the generic keyed load stub.
    618     if (FLAG_use_ic) set_target(*generic_stub());
    619     Handle<Object> result;
    620     ASSIGN_RETURN_ON_EXCEPTION(
    621         isolate(),
    622         result,
    623         Runtime::GetElementOrCharAt(isolate(), object, index),
    624         Object);
    625     return result;
    626   }
    627 
    628   bool use_ic = MigrateDeprecated(object) ? false : FLAG_use_ic;
    629 
    630   // Named lookup in the object.
    631   LookupResult lookup(isolate());
    632   LookupForRead(object, name, &lookup);
    633 
    634   // If we did not find a property, check if we need to throw an exception.
    635   if (!lookup.IsFound()) {
    636     if (IsUndeclaredGlobal(object)) {
    637       return ReferenceError("not_defined", name);
    638     }
    639     LOG(isolate(), SuspectReadEvent(*name, *object));
    640   }
    641 
    642   // Update inline cache and stub cache.
    643   if (use_ic) UpdateCaches(&lookup, object, name);
    644 
    645   // Get the property.
    646   LookupIterator it(object, name);
    647   Handle<Object> result;
    648   ASSIGN_RETURN_ON_EXCEPTION(
    649       isolate(), result, Object::GetProperty(&it), Object);
    650   // If the property is not present, check if we need to throw an exception.
    651   if ((lookup.IsInterceptor() || lookup.IsHandler()) &&
    652       !it.IsFound() && IsUndeclaredGlobal(object)) {
    653     return ReferenceError("not_defined", name);
    654   }
    655 
    656   return result;
    657 }
    658 
    659 
    660 static bool AddOneReceiverMapIfMissing(MapHandleList* receiver_maps,
    661                                        Handle<Map> new_receiver_map) {
    662   ASSERT(!new_receiver_map.is_null());
    663   for (int current = 0; current < receiver_maps->length(); ++current) {
    664     if (!receiver_maps->at(current).is_null() &&
    665         receiver_maps->at(current).is_identical_to(new_receiver_map)) {
    666       return false;
    667     }
    668   }
    669   receiver_maps->Add(new_receiver_map);
    670   return true;
    671 }
    672 
    673 
    674 bool IC::UpdatePolymorphicIC(Handle<HeapType> type,
    675                              Handle<String> name,
    676                              Handle<Code> code) {
    677   if (!code->is_handler()) return false;
    678   TypeHandleList types;
    679   CodeHandleList handlers;
    680 
    681   TargetTypes(&types);
    682   int number_of_types = types.length();
    683   int deprecated_types = 0;
    684   int handler_to_overwrite = -1;
    685 
    686   for (int i = 0; i < number_of_types; i++) {
    687     Handle<HeapType> current_type = types.at(i);
    688     if (current_type->IsClass() &&
    689         current_type->AsClass()->Map()->is_deprecated()) {
    690       // Filter out deprecated maps to ensure their instances get migrated.
    691       ++deprecated_types;
    692     } else if (type->NowIs(current_type)) {
    693       // If the receiver type is already in the polymorphic IC, this indicates
    694       // there was a prototoype chain failure. In that case, just overwrite the
    695       // handler.
    696       handler_to_overwrite = i;
    697     } else if (handler_to_overwrite == -1 &&
    698                current_type->IsClass() &&
    699                type->IsClass() &&
    700                IsTransitionOfMonomorphicTarget(*current_type->AsClass()->Map(),
    701                                                *type->AsClass()->Map())) {
    702       handler_to_overwrite = i;
    703     }
    704   }
    705 
    706   int number_of_valid_types =
    707     number_of_types - deprecated_types - (handler_to_overwrite != -1);
    708 
    709   if (number_of_valid_types >= 4) return false;
    710   if (number_of_types == 0) return false;
    711   if (!target()->FindHandlers(&handlers, types.length())) return false;
    712 
    713   number_of_valid_types++;
    714   if (handler_to_overwrite >= 0) {
    715     handlers.Set(handler_to_overwrite, code);
    716     if (!type->NowIs(types.at(handler_to_overwrite))) {
    717       types.Set(handler_to_overwrite, type);
    718     }
    719   } else {
    720     types.Add(type);
    721     handlers.Add(code);
    722   }
    723 
    724   Handle<Code> ic = isolate()->stub_cache()->ComputePolymorphicIC(
    725       kind(), &types, &handlers, number_of_valid_types, name, extra_ic_state());
    726   set_target(*ic);
    727   return true;
    728 }
    729 
    730 
    731 Handle<HeapType> IC::CurrentTypeOf(Handle<Object> object, Isolate* isolate) {
    732   return object->IsJSGlobalObject()
    733       ? HeapType::Constant(Handle<JSGlobalObject>::cast(object), isolate)
    734       : HeapType::NowOf(object, isolate);
    735 }
    736 
    737 
    738 Handle<Map> IC::TypeToMap(HeapType* type, Isolate* isolate) {
    739   if (type->Is(HeapType::Number()))
    740     return isolate->factory()->heap_number_map();
    741   if (type->Is(HeapType::Boolean())) return isolate->factory()->boolean_map();
    742   if (type->IsConstant()) {
    743     return handle(
    744         Handle<JSGlobalObject>::cast(type->AsConstant()->Value())->map());
    745   }
    746   ASSERT(type->IsClass());
    747   return type->AsClass()->Map();
    748 }
    749 
    750 
    751 template <class T>
    752 typename T::TypeHandle IC::MapToType(Handle<Map> map,
    753                                      typename T::Region* region) {
    754   if (map->instance_type() == HEAP_NUMBER_TYPE) {
    755     return T::Number(region);
    756   } else if (map->instance_type() == ODDBALL_TYPE) {
    757     // The only oddballs that can be recorded in ICs are booleans.
    758     return T::Boolean(region);
    759   } else {
    760     return T::Class(map, region);
    761   }
    762 }
    763 
    764 
    765 template
    766 Type* IC::MapToType<Type>(Handle<Map> map, Zone* zone);
    767 
    768 
    769 template
    770 Handle<HeapType> IC::MapToType<HeapType>(Handle<Map> map, Isolate* region);
    771 
    772 
    773 void IC::UpdateMonomorphicIC(Handle<HeapType> type,
    774                              Handle<Code> handler,
    775                              Handle<String> name) {
    776   if (!handler->is_handler()) return set_target(*handler);
    777   Handle<Code> ic = isolate()->stub_cache()->ComputeMonomorphicIC(
    778       kind(), name, type, handler, extra_ic_state());
    779   set_target(*ic);
    780 }
    781 
    782 
    783 void IC::CopyICToMegamorphicCache(Handle<String> name) {
    784   TypeHandleList types;
    785   CodeHandleList handlers;
    786   TargetTypes(&types);
    787   if (!target()->FindHandlers(&handlers, types.length())) return;
    788   for (int i = 0; i < types.length(); i++) {
    789     UpdateMegamorphicCache(*types.at(i), *name, *handlers.at(i));
    790   }
    791 }
    792 
    793 
    794 bool IC::IsTransitionOfMonomorphicTarget(Map* source_map, Map* target_map) {
    795   if (source_map == NULL) return true;
    796   if (target_map == NULL) return false;
    797   ElementsKind target_elements_kind = target_map->elements_kind();
    798   bool more_general_transition =
    799       IsMoreGeneralElementsKindTransition(
    800         source_map->elements_kind(), target_elements_kind);
    801   Map* transitioned_map = more_general_transition
    802       ? source_map->LookupElementsTransitionMap(target_elements_kind)
    803       : NULL;
    804 
    805   return transitioned_map == target_map;
    806 }
    807 
    808 
    809 void IC::PatchCache(Handle<HeapType> type,
    810                     Handle<String> name,
    811                     Handle<Code> code) {
    812   switch (state()) {
    813     case UNINITIALIZED:
    814     case PREMONOMORPHIC:
    815     case MONOMORPHIC_PROTOTYPE_FAILURE:
    816       UpdateMonomorphicIC(type, code, name);
    817       break;
    818     case MONOMORPHIC:  // Fall through.
    819     case POLYMORPHIC:
    820       if (!target()->is_keyed_stub()) {
    821         if (UpdatePolymorphicIC(type, name, code)) break;
    822         CopyICToMegamorphicCache(name);
    823       }
    824       set_target(*megamorphic_stub());
    825       // Fall through.
    826     case MEGAMORPHIC:
    827       UpdateMegamorphicCache(*type, *name, *code);
    828       break;
    829     case DEBUG_STUB:
    830       break;
    831     case GENERIC:
    832       UNREACHABLE();
    833       break;
    834   }
    835 }
    836 
    837 
    838 Handle<Code> LoadIC::initialize_stub(Isolate* isolate,
    839                                      ExtraICState extra_state) {
    840   return isolate->stub_cache()->ComputeLoad(UNINITIALIZED, extra_state);
    841 }
    842 
    843 
    844 Handle<Code> LoadIC::pre_monomorphic_stub(Isolate* isolate,
    845                                           ExtraICState extra_state) {
    846   return isolate->stub_cache()->ComputeLoad(PREMONOMORPHIC, extra_state);
    847 }
    848 
    849 
    850 Handle<Code> LoadIC::megamorphic_stub() {
    851   return isolate()->stub_cache()->ComputeLoad(MEGAMORPHIC, extra_ic_state());
    852 }
    853 
    854 
    855 Handle<Code> LoadIC::SimpleFieldLoad(FieldIndex index) {
    856   if (kind() == Code::LOAD_IC) {
    857     LoadFieldStub stub(isolate(), index);
    858     return stub.GetCode();
    859   } else {
    860     KeyedLoadFieldStub stub(isolate(), index);
    861     return stub.GetCode();
    862   }
    863 }
    864 
    865 
    866 void LoadIC::UpdateCaches(LookupResult* lookup,
    867                           Handle<Object> object,
    868                           Handle<String> name) {
    869   if (state() == UNINITIALIZED) {
    870     // This is the first time we execute this inline cache.
    871     // Set the target to the pre monomorphic stub to delay
    872     // setting the monomorphic state.
    873     set_target(*pre_monomorphic_stub());
    874     TRACE_IC("LoadIC", name);
    875     return;
    876   }
    877 
    878   Handle<HeapType> type = CurrentTypeOf(object, isolate());
    879   Handle<Code> code;
    880   if (!lookup->IsCacheable()) {
    881     // Bail out if the result is not cacheable.
    882     code = slow_stub();
    883   } else if (!lookup->IsProperty()) {
    884     if (kind() == Code::LOAD_IC) {
    885       code = isolate()->stub_cache()->ComputeLoadNonexistent(name, type);
    886     } else {
    887       code = slow_stub();
    888     }
    889   } else {
    890     code = ComputeHandler(lookup, object, name);
    891   }
    892 
    893   PatchCache(type, name, code);
    894   TRACE_IC("LoadIC", name);
    895 }
    896 
    897 
    898 void IC::UpdateMegamorphicCache(HeapType* type, Name* name, Code* code) {
    899   // Cache code holding map should be consistent with
    900   // GenerateMonomorphicCacheProbe.
    901   Map* map = *TypeToMap(type, isolate());
    902   isolate()->stub_cache()->Set(name, map, code);
    903 }
    904 
    905 
    906 Handle<Code> IC::ComputeHandler(LookupResult* lookup,
    907                                 Handle<Object> object,
    908                                 Handle<String> name,
    909                                 Handle<Object> value) {
    910   InlineCacheHolderFlag cache_holder = GetCodeCacheForObject(*object);
    911   Handle<HeapObject> stub_holder(GetCodeCacheHolder(
    912       isolate(), *object, cache_holder));
    913 
    914   Handle<Code> code = isolate()->stub_cache()->FindHandler(
    915       name, handle(stub_holder->map()), kind(), cache_holder,
    916       lookup->holder()->HasFastProperties() ? Code::FAST : Code::NORMAL);
    917   if (!code.is_null()) {
    918     return code;
    919   }
    920 
    921   code = CompileHandler(lookup, object, name, value, cache_holder);
    922   ASSERT(code->is_handler());
    923 
    924   if (code->type() != Code::NORMAL) {
    925     HeapObject::UpdateMapCodeCache(stub_holder, name, code);
    926   }
    927 
    928   return code;
    929 }
    930 
    931 
    932 Handle<Code> LoadIC::CompileHandler(LookupResult* lookup,
    933                                     Handle<Object> object,
    934                                     Handle<String> name,
    935                                     Handle<Object> unused,
    936                                     InlineCacheHolderFlag cache_holder) {
    937   if (object->IsString() &&
    938       String::Equals(isolate()->factory()->length_string(), name)) {
    939     FieldIndex index = FieldIndex::ForInObjectOffset(String::kLengthOffset);
    940     return SimpleFieldLoad(index);
    941   }
    942 
    943   if (object->IsStringWrapper() &&
    944       String::Equals(isolate()->factory()->length_string(), name)) {
    945     if (kind() == Code::LOAD_IC) {
    946       StringLengthStub string_length_stub(isolate());
    947       return string_length_stub.GetCode();
    948     } else {
    949       KeyedStringLengthStub string_length_stub(isolate());
    950       return string_length_stub.GetCode();
    951     }
    952   }
    953 
    954   Handle<HeapType> type = CurrentTypeOf(object, isolate());
    955   Handle<JSObject> holder(lookup->holder());
    956   LoadStubCompiler compiler(isolate(), kNoExtraICState, cache_holder, kind());
    957 
    958   switch (lookup->type()) {
    959     case FIELD: {
    960       FieldIndex field = lookup->GetFieldIndex();
    961       if (object.is_identical_to(holder)) {
    962         return SimpleFieldLoad(field);
    963       }
    964       return compiler.CompileLoadField(
    965           type, holder, name, field, lookup->representation());
    966     }
    967     case CONSTANT: {
    968       Handle<Object> constant(lookup->GetConstant(), isolate());
    969       // TODO(2803): Don't compute a stub for cons strings because they cannot
    970       // be embedded into code.
    971       if (constant->IsConsString()) break;
    972       return compiler.CompileLoadConstant(type, holder, name, constant);
    973     }
    974     case NORMAL:
    975       if (kind() != Code::LOAD_IC) break;
    976       if (holder->IsGlobalObject()) {
    977         Handle<GlobalObject> global = Handle<GlobalObject>::cast(holder);
    978         Handle<PropertyCell> cell(
    979             global->GetPropertyCell(lookup), isolate());
    980         Handle<Code> code = compiler.CompileLoadGlobal(
    981             type, global, cell, name, lookup->IsDontDelete());
    982         // TODO(verwaest): Move caching of these NORMAL stubs outside as well.
    983         Handle<HeapObject> stub_holder(GetCodeCacheHolder(
    984             isolate(), *object, cache_holder));
    985         HeapObject::UpdateMapCodeCache(stub_holder, name, code);
    986         return code;
    987       }
    988       // There is only one shared stub for loading normalized
    989       // properties. It does not traverse the prototype chain, so the
    990       // property must be found in the object for the stub to be
    991       // applicable.
    992       if (!object.is_identical_to(holder)) break;
    993       return isolate()->builtins()->LoadIC_Normal();
    994     case CALLBACKS: {
    995       // Use simple field loads for some well-known callback properties.
    996       if (object->IsJSObject()) {
    997         Handle<JSObject> receiver = Handle<JSObject>::cast(object);
    998         Handle<Map> map(receiver->map());
    999         Handle<HeapType> type = IC::MapToType<HeapType>(
   1000             handle(receiver->map()), isolate());
   1001         int object_offset;
   1002         if (Accessors::IsJSObjectFieldAccessor<HeapType>(
   1003                 type, name, &object_offset)) {
   1004           FieldIndex index = FieldIndex::ForInObjectOffset(
   1005               object_offset, receiver->map());
   1006           return SimpleFieldLoad(index);
   1007         }
   1008       }
   1009 
   1010       Handle<Object> callback(lookup->GetCallbackObject(), isolate());
   1011       if (callback->IsExecutableAccessorInfo()) {
   1012         Handle<ExecutableAccessorInfo> info =
   1013             Handle<ExecutableAccessorInfo>::cast(callback);
   1014         if (v8::ToCData<Address>(info->getter()) == 0) break;
   1015         if (!info->IsCompatibleReceiver(*object)) break;
   1016         return compiler.CompileLoadCallback(type, holder, name, info);
   1017       } else if (callback->IsAccessorPair()) {
   1018         Handle<Object> getter(Handle<AccessorPair>::cast(callback)->getter(),
   1019                               isolate());
   1020         if (!getter->IsJSFunction()) break;
   1021         if (holder->IsGlobalObject()) break;
   1022         if (!holder->HasFastProperties()) break;
   1023         Handle<JSFunction> function = Handle<JSFunction>::cast(getter);
   1024         if (!object->IsJSObject() &&
   1025             !function->IsBuiltin() &&
   1026             function->shared()->strict_mode() == SLOPPY) {
   1027           // Calling sloppy non-builtins with a value as the receiver
   1028           // requires boxing.
   1029           break;
   1030         }
   1031         CallOptimization call_optimization(function);
   1032         if (call_optimization.is_simple_api_call() &&
   1033             call_optimization.IsCompatibleReceiver(object, holder)) {
   1034           return compiler.CompileLoadCallback(
   1035               type, holder, name, call_optimization);
   1036         }
   1037         return compiler.CompileLoadViaGetter(type, holder, name, function);
   1038       }
   1039       // TODO(dcarney): Handle correctly.
   1040       ASSERT(callback->IsDeclaredAccessorInfo());
   1041       break;
   1042     }
   1043     case INTERCEPTOR:
   1044       ASSERT(HasInterceptorGetter(*holder));
   1045       return compiler.CompileLoadInterceptor(type, holder, name);
   1046     default:
   1047       break;
   1048   }
   1049 
   1050   return slow_stub();
   1051 }
   1052 
   1053 
   1054 static Handle<Object> TryConvertKey(Handle<Object> key, Isolate* isolate) {
   1055   // This helper implements a few common fast cases for converting
   1056   // non-smi keys of keyed loads/stores to a smi or a string.
   1057   if (key->IsHeapNumber()) {
   1058     double value = Handle<HeapNumber>::cast(key)->value();
   1059     if (std::isnan(value)) {
   1060       key = isolate->factory()->nan_string();
   1061     } else {
   1062       int int_value = FastD2I(value);
   1063       if (value == int_value && Smi::IsValid(int_value)) {
   1064         key = Handle<Smi>(Smi::FromInt(int_value), isolate);
   1065       }
   1066     }
   1067   } else if (key->IsUndefined()) {
   1068     key = isolate->factory()->undefined_string();
   1069   }
   1070   return key;
   1071 }
   1072 
   1073 
   1074 Handle<Code> KeyedLoadIC::LoadElementStub(Handle<JSObject> receiver) {
   1075   // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
   1076   // via megamorphic stubs, since they don't have a map in their relocation info
   1077   // and so the stubs can't be harvested for the object needed for a map check.
   1078   if (target()->type() != Code::NORMAL) {
   1079     TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
   1080     return generic_stub();
   1081   }
   1082 
   1083   Handle<Map> receiver_map(receiver->map(), isolate());
   1084   MapHandleList target_receiver_maps;
   1085   if (target().is_identical_to(string_stub())) {
   1086     target_receiver_maps.Add(isolate()->factory()->string_map());
   1087   } else {
   1088     TargetMaps(&target_receiver_maps);
   1089   }
   1090   if (target_receiver_maps.length() == 0) {
   1091     return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
   1092   }
   1093 
   1094   // The first time a receiver is seen that is a transitioned version of the
   1095   // previous monomorphic receiver type, assume the new ElementsKind is the
   1096   // monomorphic type. This benefits global arrays that only transition
   1097   // once, and all call sites accessing them are faster if they remain
   1098   // monomorphic. If this optimistic assumption is not true, the IC will
   1099   // miss again and it will become polymorphic and support both the
   1100   // untransitioned and transitioned maps.
   1101   if (state() == MONOMORPHIC &&
   1102       IsMoreGeneralElementsKindTransition(
   1103           target_receiver_maps.at(0)->elements_kind(),
   1104           receiver->GetElementsKind())) {
   1105     return isolate()->stub_cache()->ComputeKeyedLoadElement(receiver_map);
   1106   }
   1107 
   1108   ASSERT(state() != GENERIC);
   1109 
   1110   // Determine the list of receiver maps that this call site has seen,
   1111   // adding the map that was just encountered.
   1112   if (!AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map)) {
   1113     // If the miss wasn't due to an unseen map, a polymorphic stub
   1114     // won't help, use the generic stub.
   1115     TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
   1116     return generic_stub();
   1117   }
   1118 
   1119   // If the maximum number of receiver maps has been exceeded, use the generic
   1120   // version of the IC.
   1121   if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
   1122     TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
   1123     return generic_stub();
   1124   }
   1125 
   1126   return isolate()->stub_cache()->ComputeLoadElementPolymorphic(
   1127       &target_receiver_maps);
   1128 }
   1129 
   1130 
   1131 MaybeHandle<Object> KeyedLoadIC::Load(Handle<Object> object,
   1132                                       Handle<Object> key) {
   1133   if (MigrateDeprecated(object)) {
   1134     Handle<Object> result;
   1135     ASSIGN_RETURN_ON_EXCEPTION(
   1136         isolate(),
   1137         result,
   1138         Runtime::GetObjectProperty(isolate(), object, key),
   1139         Object);
   1140     return result;
   1141   }
   1142 
   1143   Handle<Object> load_handle;
   1144   Handle<Code> stub = generic_stub();
   1145 
   1146   // Check for non-string values that can be converted into an
   1147   // internalized string directly or is representable as a smi.
   1148   key = TryConvertKey(key, isolate());
   1149 
   1150   if (key->IsInternalizedString()) {
   1151     ASSIGN_RETURN_ON_EXCEPTION(
   1152         isolate(),
   1153         load_handle,
   1154         LoadIC::Load(object, Handle<String>::cast(key)),
   1155         Object);
   1156   } else if (FLAG_use_ic && !object->IsAccessCheckNeeded()) {
   1157     if (object->IsString() && key->IsNumber()) {
   1158       if (state() == UNINITIALIZED) stub = string_stub();
   1159     } else if (object->IsJSObject()) {
   1160       Handle<JSObject> receiver = Handle<JSObject>::cast(object);
   1161       if (receiver->elements()->map() ==
   1162           isolate()->heap()->sloppy_arguments_elements_map()) {
   1163         stub = sloppy_arguments_stub();
   1164       } else if (receiver->HasIndexedInterceptor()) {
   1165         stub = indexed_interceptor_stub();
   1166       } else if (!Object::ToSmi(isolate(), key).is_null() &&
   1167                  (!target().is_identical_to(sloppy_arguments_stub()))) {
   1168         stub = LoadElementStub(receiver);
   1169       }
   1170     }
   1171   }
   1172 
   1173   if (!is_target_set()) {
   1174     Code* generic = *generic_stub();
   1175     if (*stub == generic) {
   1176       TRACE_GENERIC_IC(isolate(), "KeyedLoadIC", "set generic");
   1177     }
   1178     set_target(*stub);
   1179     TRACE_IC("LoadIC", key);
   1180   }
   1181 
   1182   if (!load_handle.is_null()) return load_handle;
   1183   Handle<Object> result;
   1184   ASSIGN_RETURN_ON_EXCEPTION(
   1185       isolate(),
   1186       result,
   1187       Runtime::GetObjectProperty(isolate(), object, key),
   1188       Object);
   1189   return result;
   1190 }
   1191 
   1192 
   1193 static bool LookupForWrite(Handle<JSObject> receiver,
   1194                            Handle<String> name,
   1195                            Handle<Object> value,
   1196                            LookupResult* lookup,
   1197                            IC* ic) {
   1198   Handle<JSObject> holder = receiver;
   1199   receiver->Lookup(name, lookup);
   1200   if (lookup->IsFound()) {
   1201     if (lookup->IsInterceptor() && !HasInterceptorSetter(lookup->holder())) {
   1202       receiver->LookupOwnRealNamedProperty(name, lookup);
   1203       if (!lookup->IsFound()) return false;
   1204     }
   1205 
   1206     if (lookup->IsReadOnly() || !lookup->IsCacheable()) return false;
   1207     if (lookup->holder() == *receiver) return lookup->CanHoldValue(value);
   1208     if (lookup->IsPropertyCallbacks()) return true;
   1209     // JSGlobalProxy either stores on the global object in the prototype, or
   1210     // goes into the runtime if access checks are needed, so this is always
   1211     // safe.
   1212     if (receiver->IsJSGlobalProxy()) {
   1213       return lookup->holder() == receiver->GetPrototype();
   1214     }
   1215     // Currently normal holders in the prototype chain are not supported. They
   1216     // would require a runtime positive lookup and verification that the details
   1217     // have not changed.
   1218     if (lookup->IsInterceptor() || lookup->IsNormal()) return false;
   1219     holder = Handle<JSObject>(lookup->holder(), lookup->isolate());
   1220   }
   1221 
   1222   // While normally LookupTransition gets passed the receiver, in this case we
   1223   // pass the holder of the property that we overwrite. This keeps the holder in
   1224   // the LookupResult intact so we can later use it to generate a prototype
   1225   // chain check. This avoids a double lookup, but requires us to pass in the
   1226   // receiver when trying to fetch extra information from the transition.
   1227   receiver->map()->LookupTransition(*holder, *name, lookup);
   1228   if (!lookup->IsTransition() || lookup->IsReadOnly()) return false;
   1229 
   1230   // If the value that's being stored does not fit in the field that the
   1231   // instance would transition to, create a new transition that fits the value.
   1232   // This has to be done before generating the IC, since that IC will embed the
   1233   // transition target.
   1234   // Ensure the instance and its map were migrated before trying to update the
   1235   // transition target.
   1236   ASSERT(!receiver->map()->is_deprecated());
   1237   if (!lookup->CanHoldValue(value)) {
   1238     Handle<Map> target(lookup->GetTransitionTarget());
   1239     Representation field_representation = value->OptimalRepresentation();
   1240     Handle<HeapType> field_type = value->OptimalType(
   1241         lookup->isolate(), field_representation);
   1242     Map::GeneralizeRepresentation(
   1243         target, target->LastAdded(),
   1244         field_representation, field_type, FORCE_FIELD);
   1245     // Lookup the transition again since the transition tree may have changed
   1246     // entirely by the migration above.
   1247     receiver->map()->LookupTransition(*holder, *name, lookup);
   1248     if (!lookup->IsTransition()) return false;
   1249     return ic->TryMarkMonomorphicPrototypeFailure(name);
   1250   }
   1251 
   1252   return true;
   1253 }
   1254 
   1255 
   1256 MaybeHandle<Object> StoreIC::Store(Handle<Object> object,
   1257                                    Handle<String> name,
   1258                                    Handle<Object> value,
   1259                                    JSReceiver::StoreFromKeyed store_mode) {
   1260   if (MigrateDeprecated(object) || object->IsJSProxy()) {
   1261     Handle<JSReceiver> receiver = Handle<JSReceiver>::cast(object);
   1262     Handle<Object> result;
   1263     ASSIGN_RETURN_ON_EXCEPTION(
   1264         isolate(),
   1265         result,
   1266         JSReceiver::SetProperty(receiver, name, value, NONE, strict_mode()),
   1267         Object);
   1268     return result;
   1269   }
   1270 
   1271   // If the object is undefined or null it's illegal to try to set any
   1272   // properties on it; throw a TypeError in that case.
   1273   if (object->IsUndefined() || object->IsNull()) {
   1274     return TypeError("non_object_property_store", object, name);
   1275   }
   1276 
   1277   // The length property of string values is read-only. Throw in strict mode.
   1278   if (strict_mode() == STRICT && object->IsString() &&
   1279       String::Equals(isolate()->factory()->length_string(), name)) {
   1280     return TypeError("strict_read_only_property", object, name);
   1281   }
   1282 
   1283   // Ignore other stores where the receiver is not a JSObject.
   1284   // TODO(1475): Must check prototype chains of object wrappers.
   1285   if (!object->IsJSObject()) return value;
   1286 
   1287   Handle<JSObject> receiver = Handle<JSObject>::cast(object);
   1288 
   1289   // Check if the given name is an array index.
   1290   uint32_t index;
   1291   if (name->AsArrayIndex(&index)) {
   1292     Handle<Object> result;
   1293     ASSIGN_RETURN_ON_EXCEPTION(
   1294         isolate(),
   1295         result,
   1296         JSObject::SetElement(receiver, index, value, NONE, strict_mode()),
   1297         Object);
   1298     return value;
   1299   }
   1300 
   1301   // Observed objects are always modified through the runtime.
   1302   if (receiver->map()->is_observed()) {
   1303     Handle<Object> result;
   1304     ASSIGN_RETURN_ON_EXCEPTION(
   1305         isolate(),
   1306         result,
   1307         JSReceiver::SetProperty(
   1308             receiver, name, value, NONE, strict_mode(), store_mode),
   1309         Object);
   1310     return result;
   1311   }
   1312 
   1313   LookupResult lookup(isolate());
   1314   bool can_store = LookupForWrite(receiver, name, value, &lookup, this);
   1315   if (!can_store &&
   1316       strict_mode() == STRICT &&
   1317       !(lookup.IsProperty() && lookup.IsReadOnly()) &&
   1318       object->IsGlobalObject()) {
   1319     // Strict mode doesn't allow setting non-existent global property.
   1320     return ReferenceError("not_defined", name);
   1321   }
   1322   if (FLAG_use_ic) {
   1323     if (state() == UNINITIALIZED) {
   1324       Handle<Code> stub = pre_monomorphic_stub();
   1325       set_target(*stub);
   1326       TRACE_IC("StoreIC", name);
   1327     } else if (can_store) {
   1328       UpdateCaches(&lookup, receiver, name, value);
   1329     } else if (lookup.IsNormal() ||
   1330                (lookup.IsField() && lookup.CanHoldValue(value))) {
   1331       Handle<Code> stub = generic_stub();
   1332       set_target(*stub);
   1333     }
   1334   }
   1335 
   1336   // Set the property.
   1337   Handle<Object> result;
   1338   ASSIGN_RETURN_ON_EXCEPTION(
   1339       isolate(),
   1340       result,
   1341       JSReceiver::SetProperty(
   1342           receiver, name, value, NONE, strict_mode(), store_mode),
   1343       Object);
   1344   return result;
   1345 }
   1346 
   1347 
   1348 void CallIC::State::Print(StringStream* stream) const {
   1349   stream->Add("(args(%d), ",
   1350               argc_);
   1351   stream->Add("%s, ",
   1352               call_type_ == CallIC::METHOD ? "METHOD" : "FUNCTION");
   1353 }
   1354 
   1355 
   1356 Handle<Code> CallIC::initialize_stub(Isolate* isolate,
   1357                                      int argc,
   1358                                      CallType call_type) {
   1359   CallICStub stub(isolate, State(argc, call_type));
   1360   Handle<Code> code = stub.GetCode();
   1361   return code;
   1362 }
   1363 
   1364 
   1365 Handle<Code> StoreIC::initialize_stub(Isolate* isolate,
   1366                                       StrictMode strict_mode) {
   1367   ExtraICState extra_state = ComputeExtraICState(strict_mode);
   1368   Handle<Code> ic = isolate->stub_cache()->ComputeStore(
   1369       UNINITIALIZED, extra_state);
   1370   return ic;
   1371 }
   1372 
   1373 
   1374 Handle<Code> StoreIC::megamorphic_stub() {
   1375   return isolate()->stub_cache()->ComputeStore(MEGAMORPHIC, extra_ic_state());
   1376 }
   1377 
   1378 
   1379 Handle<Code> StoreIC::generic_stub() const {
   1380   return isolate()->stub_cache()->ComputeStore(GENERIC, extra_ic_state());
   1381 }
   1382 
   1383 
   1384 Handle<Code> StoreIC::pre_monomorphic_stub(Isolate* isolate,
   1385                                            StrictMode strict_mode) {
   1386   ExtraICState state = ComputeExtraICState(strict_mode);
   1387   return isolate->stub_cache()->ComputeStore(PREMONOMORPHIC, state);
   1388 }
   1389 
   1390 
   1391 void StoreIC::UpdateCaches(LookupResult* lookup,
   1392                            Handle<JSObject> receiver,
   1393                            Handle<String> name,
   1394                            Handle<Object> value) {
   1395   ASSERT(lookup->IsFound());
   1396 
   1397   // These are not cacheable, so we never see such LookupResults here.
   1398   ASSERT(!lookup->IsHandler());
   1399 
   1400   Handle<Code> code = ComputeHandler(lookup, receiver, name, value);
   1401 
   1402   PatchCache(CurrentTypeOf(receiver, isolate()), name, code);
   1403   TRACE_IC("StoreIC", name);
   1404 }
   1405 
   1406 
   1407 Handle<Code> StoreIC::CompileHandler(LookupResult* lookup,
   1408                                      Handle<Object> object,
   1409                                      Handle<String> name,
   1410                                      Handle<Object> value,
   1411                                      InlineCacheHolderFlag cache_holder) {
   1412   if (object->IsAccessCheckNeeded()) return slow_stub();
   1413   ASSERT(cache_holder == OWN_MAP);
   1414   // This is currently guaranteed by checks in StoreIC::Store.
   1415   Handle<JSObject> receiver = Handle<JSObject>::cast(object);
   1416 
   1417   Handle<JSObject> holder(lookup->holder());
   1418   // Handlers do not use strict mode.
   1419   StoreStubCompiler compiler(isolate(), SLOPPY, kind());
   1420   if (lookup->IsTransition()) {
   1421     // Explicitly pass in the receiver map since LookupForWrite may have
   1422     // stored something else than the receiver in the holder.
   1423     Handle<Map> transition(lookup->GetTransitionTarget());
   1424     PropertyDetails details = lookup->GetPropertyDetails();
   1425 
   1426     if (details.type() != CALLBACKS && details.attributes() == NONE) {
   1427       return compiler.CompileStoreTransition(
   1428           receiver, lookup, transition, name);
   1429     }
   1430   } else {
   1431     switch (lookup->type()) {
   1432       case FIELD:
   1433         return compiler.CompileStoreField(receiver, lookup, name);
   1434       case NORMAL:
   1435         if (kind() == Code::KEYED_STORE_IC) break;
   1436         if (receiver->IsJSGlobalProxy() || receiver->IsGlobalObject()) {
   1437           // The stub generated for the global object picks the value directly
   1438           // from the property cell. So the property must be directly on the
   1439           // global object.
   1440           Handle<GlobalObject> global = receiver->IsJSGlobalProxy()
   1441               ? handle(GlobalObject::cast(receiver->GetPrototype()))
   1442               : Handle<GlobalObject>::cast(receiver);
   1443           Handle<PropertyCell> cell(global->GetPropertyCell(lookup), isolate());
   1444           Handle<HeapType> union_type = PropertyCell::UpdatedType(cell, value);
   1445           StoreGlobalStub stub(
   1446               isolate(), union_type->IsConstant(), receiver->IsJSGlobalProxy());
   1447           Handle<Code> code = stub.GetCodeCopyFromTemplate(global, cell);
   1448           // TODO(verwaest): Move caching of these NORMAL stubs outside as well.
   1449           HeapObject::UpdateMapCodeCache(receiver, name, code);
   1450           return code;
   1451         }
   1452         ASSERT(holder.is_identical_to(receiver));
   1453         return isolate()->builtins()->StoreIC_Normal();
   1454       case CALLBACKS: {
   1455         Handle<Object> callback(lookup->GetCallbackObject(), isolate());
   1456         if (callback->IsExecutableAccessorInfo()) {
   1457           Handle<ExecutableAccessorInfo> info =
   1458               Handle<ExecutableAccessorInfo>::cast(callback);
   1459           if (v8::ToCData<Address>(info->setter()) == 0) break;
   1460           if (!holder->HasFastProperties()) break;
   1461           if (!info->IsCompatibleReceiver(*receiver)) break;
   1462           return compiler.CompileStoreCallback(receiver, holder, name, info);
   1463         } else if (callback->IsAccessorPair()) {
   1464           Handle<Object> setter(
   1465               Handle<AccessorPair>::cast(callback)->setter(), isolate());
   1466           if (!setter->IsJSFunction()) break;
   1467           if (holder->IsGlobalObject()) break;
   1468           if (!holder->HasFastProperties()) break;
   1469           Handle<JSFunction> function = Handle<JSFunction>::cast(setter);
   1470           CallOptimization call_optimization(function);
   1471           if (call_optimization.is_simple_api_call() &&
   1472               call_optimization.IsCompatibleReceiver(receiver, holder)) {
   1473             return compiler.CompileStoreCallback(
   1474                 receiver, holder, name, call_optimization);
   1475           }
   1476           return compiler.CompileStoreViaSetter(
   1477               receiver, holder, name, Handle<JSFunction>::cast(setter));
   1478         }
   1479         // TODO(dcarney): Handle correctly.
   1480         ASSERT(callback->IsDeclaredAccessorInfo());
   1481         break;
   1482       }
   1483       case INTERCEPTOR:
   1484         if (kind() == Code::KEYED_STORE_IC) break;
   1485         ASSERT(HasInterceptorSetter(*holder));
   1486         return compiler.CompileStoreInterceptor(receiver, name);
   1487       case CONSTANT:
   1488         break;
   1489       case NONEXISTENT:
   1490       case HANDLER:
   1491         UNREACHABLE();
   1492         break;
   1493     }
   1494   }
   1495   return slow_stub();
   1496 }
   1497 
   1498 
   1499 Handle<Code> KeyedStoreIC::StoreElementStub(Handle<JSObject> receiver,
   1500                                             KeyedAccessStoreMode store_mode) {
   1501   // Don't handle megamorphic property accesses for INTERCEPTORS or CALLBACKS
   1502   // via megamorphic stubs, since they don't have a map in their relocation info
   1503   // and so the stubs can't be harvested for the object needed for a map check.
   1504   if (target()->type() != Code::NORMAL) {
   1505     TRACE_GENERIC_IC(isolate(), "KeyedIC", "non-NORMAL target type");
   1506     return generic_stub();
   1507   }
   1508 
   1509   Handle<Map> receiver_map(receiver->map(), isolate());
   1510   MapHandleList target_receiver_maps;
   1511   TargetMaps(&target_receiver_maps);
   1512   if (target_receiver_maps.length() == 0) {
   1513     Handle<Map> monomorphic_map =
   1514         ComputeTransitionedMap(receiver_map, store_mode);
   1515     store_mode = GetNonTransitioningStoreMode(store_mode);
   1516     return isolate()->stub_cache()->ComputeKeyedStoreElement(
   1517         monomorphic_map, strict_mode(), store_mode);
   1518   }
   1519 
   1520   // There are several special cases where an IC that is MONOMORPHIC can still
   1521   // transition to a different GetNonTransitioningStoreMode IC that handles a
   1522   // superset of the original IC. Handle those here if the receiver map hasn't
   1523   // changed or it has transitioned to a more general kind.
   1524   KeyedAccessStoreMode old_store_mode =
   1525       KeyedStoreIC::GetKeyedAccessStoreMode(target()->extra_ic_state());
   1526   Handle<Map> previous_receiver_map = target_receiver_maps.at(0);
   1527   if (state() == MONOMORPHIC) {
   1528     Handle<Map> transitioned_receiver_map = receiver_map;
   1529     if (IsTransitionStoreMode(store_mode)) {
   1530       transitioned_receiver_map =
   1531           ComputeTransitionedMap(receiver_map, store_mode);
   1532     }
   1533     if ((receiver_map.is_identical_to(previous_receiver_map) &&
   1534          IsTransitionStoreMode(store_mode)) ||
   1535         IsTransitionOfMonomorphicTarget(*previous_receiver_map,
   1536                                         *transitioned_receiver_map)) {
   1537       // If the "old" and "new" maps are in the same elements map family, or
   1538       // if they at least come from the same origin for a transitioning store,
   1539       // stay MONOMORPHIC and use the map for the most generic ElementsKind.
   1540       store_mode = GetNonTransitioningStoreMode(store_mode);
   1541       return isolate()->stub_cache()->ComputeKeyedStoreElement(
   1542           transitioned_receiver_map, strict_mode(), store_mode);
   1543     } else if (*previous_receiver_map == receiver->map() &&
   1544                old_store_mode == STANDARD_STORE &&
   1545                (store_mode == STORE_AND_GROW_NO_TRANSITION ||
   1546                 store_mode == STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS ||
   1547                 store_mode == STORE_NO_TRANSITION_HANDLE_COW)) {
   1548       // A "normal" IC that handles stores can switch to a version that can
   1549       // grow at the end of the array, handle OOB accesses or copy COW arrays
   1550       // and still stay MONOMORPHIC.
   1551       return isolate()->stub_cache()->ComputeKeyedStoreElement(
   1552           receiver_map, strict_mode(), store_mode);
   1553     }
   1554   }
   1555 
   1556   ASSERT(state() != GENERIC);
   1557 
   1558   bool map_added =
   1559       AddOneReceiverMapIfMissing(&target_receiver_maps, receiver_map);
   1560 
   1561   if (IsTransitionStoreMode(store_mode)) {
   1562     Handle<Map> transitioned_receiver_map =
   1563         ComputeTransitionedMap(receiver_map, store_mode);
   1564     map_added |= AddOneReceiverMapIfMissing(&target_receiver_maps,
   1565                                             transitioned_receiver_map);
   1566   }
   1567 
   1568   if (!map_added) {
   1569     // If the miss wasn't due to an unseen map, a polymorphic stub
   1570     // won't help, use the generic stub.
   1571     TRACE_GENERIC_IC(isolate(), "KeyedIC", "same map added twice");
   1572     return generic_stub();
   1573   }
   1574 
   1575   // If the maximum number of receiver maps has been exceeded, use the generic
   1576   // version of the IC.
   1577   if (target_receiver_maps.length() > kMaxKeyedPolymorphism) {
   1578     TRACE_GENERIC_IC(isolate(), "KeyedIC", "max polymorph exceeded");
   1579     return generic_stub();
   1580   }
   1581 
   1582   // Make sure all polymorphic handlers have the same store mode, otherwise the
   1583   // generic stub must be used.
   1584   store_mode = GetNonTransitioningStoreMode(store_mode);
   1585   if (old_store_mode != STANDARD_STORE) {
   1586     if (store_mode == STANDARD_STORE) {
   1587       store_mode = old_store_mode;
   1588     } else if (store_mode != old_store_mode) {
   1589       TRACE_GENERIC_IC(isolate(), "KeyedIC", "store mode mismatch");
   1590       return generic_stub();
   1591     }
   1592   }
   1593 
   1594   // If the store mode isn't the standard mode, make sure that all polymorphic
   1595   // receivers are either external arrays, or all "normal" arrays. Otherwise,
   1596   // use the generic stub.
   1597   if (store_mode != STANDARD_STORE) {
   1598     int external_arrays = 0;
   1599     for (int i = 0; i < target_receiver_maps.length(); ++i) {
   1600       if (target_receiver_maps[i]->has_external_array_elements() ||
   1601           target_receiver_maps[i]->has_fixed_typed_array_elements()) {
   1602         external_arrays++;
   1603       }
   1604     }
   1605     if (external_arrays != 0 &&
   1606         external_arrays != target_receiver_maps.length()) {
   1607       TRACE_GENERIC_IC(isolate(), "KeyedIC",
   1608           "unsupported combination of external and normal arrays");
   1609       return generic_stub();
   1610     }
   1611   }
   1612 
   1613   return isolate()->stub_cache()->ComputeStoreElementPolymorphic(
   1614       &target_receiver_maps, store_mode, strict_mode());
   1615 }
   1616 
   1617 
   1618 Handle<Map> KeyedStoreIC::ComputeTransitionedMap(
   1619     Handle<Map> map,
   1620     KeyedAccessStoreMode store_mode) {
   1621   switch (store_mode) {
   1622     case STORE_TRANSITION_SMI_TO_OBJECT:
   1623     case STORE_TRANSITION_DOUBLE_TO_OBJECT:
   1624     case STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT:
   1625     case STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT:
   1626       return Map::TransitionElementsTo(map, FAST_ELEMENTS);
   1627     case STORE_TRANSITION_SMI_TO_DOUBLE:
   1628     case STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE:
   1629       return Map::TransitionElementsTo(map, FAST_DOUBLE_ELEMENTS);
   1630     case STORE_TRANSITION_HOLEY_SMI_TO_OBJECT:
   1631     case STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
   1632     case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT:
   1633     case STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT:
   1634       return Map::TransitionElementsTo(map, FAST_HOLEY_ELEMENTS);
   1635     case STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE:
   1636     case STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE:
   1637       return Map::TransitionElementsTo(map, FAST_HOLEY_DOUBLE_ELEMENTS);
   1638     case STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS:
   1639       ASSERT(map->has_external_array_elements());
   1640       // Fall through
   1641     case STORE_NO_TRANSITION_HANDLE_COW:
   1642     case STANDARD_STORE:
   1643     case STORE_AND_GROW_NO_TRANSITION:
   1644       return map;
   1645   }
   1646   UNREACHABLE();
   1647   return MaybeHandle<Map>().ToHandleChecked();
   1648 }
   1649 
   1650 
   1651 bool IsOutOfBoundsAccess(Handle<JSObject> receiver,
   1652                          int index) {
   1653   if (receiver->IsJSArray()) {
   1654     return JSArray::cast(*receiver)->length()->IsSmi() &&
   1655         index >= Smi::cast(JSArray::cast(*receiver)->length())->value();
   1656   }
   1657   return index >= receiver->elements()->length();
   1658 }
   1659 
   1660 
   1661 KeyedAccessStoreMode KeyedStoreIC::GetStoreMode(Handle<JSObject> receiver,
   1662                                                 Handle<Object> key,
   1663                                                 Handle<Object> value) {
   1664   Handle<Smi> smi_key = Object::ToSmi(isolate(), key).ToHandleChecked();
   1665   int index = smi_key->value();
   1666   bool oob_access = IsOutOfBoundsAccess(receiver, index);
   1667   // Don't consider this a growing store if the store would send the receiver to
   1668   // dictionary mode.
   1669   bool allow_growth = receiver->IsJSArray() && oob_access &&
   1670       !receiver->WouldConvertToSlowElements(key);
   1671   if (allow_growth) {
   1672     // Handle growing array in stub if necessary.
   1673     if (receiver->HasFastSmiElements()) {
   1674       if (value->IsHeapNumber()) {
   1675         if (receiver->HasFastHoleyElements()) {
   1676           return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_DOUBLE;
   1677         } else {
   1678           return STORE_AND_GROW_TRANSITION_SMI_TO_DOUBLE;
   1679         }
   1680       }
   1681       if (value->IsHeapObject()) {
   1682         if (receiver->HasFastHoleyElements()) {
   1683           return STORE_AND_GROW_TRANSITION_HOLEY_SMI_TO_OBJECT;
   1684         } else {
   1685           return STORE_AND_GROW_TRANSITION_SMI_TO_OBJECT;
   1686         }
   1687       }
   1688     } else if (receiver->HasFastDoubleElements()) {
   1689       if (!value->IsSmi() && !value->IsHeapNumber()) {
   1690         if (receiver->HasFastHoleyElements()) {
   1691           return STORE_AND_GROW_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
   1692         } else {
   1693           return STORE_AND_GROW_TRANSITION_DOUBLE_TO_OBJECT;
   1694         }
   1695       }
   1696     }
   1697     return STORE_AND_GROW_NO_TRANSITION;
   1698   } else {
   1699     // Handle only in-bounds elements accesses.
   1700     if (receiver->HasFastSmiElements()) {
   1701       if (value->IsHeapNumber()) {
   1702         if (receiver->HasFastHoleyElements()) {
   1703           return STORE_TRANSITION_HOLEY_SMI_TO_DOUBLE;
   1704         } else {
   1705           return STORE_TRANSITION_SMI_TO_DOUBLE;
   1706         }
   1707       } else if (value->IsHeapObject()) {
   1708         if (receiver->HasFastHoleyElements()) {
   1709           return STORE_TRANSITION_HOLEY_SMI_TO_OBJECT;
   1710         } else {
   1711           return STORE_TRANSITION_SMI_TO_OBJECT;
   1712         }
   1713       }
   1714     } else if (receiver->HasFastDoubleElements()) {
   1715       if (!value->IsSmi() && !value->IsHeapNumber()) {
   1716         if (receiver->HasFastHoleyElements()) {
   1717           return STORE_TRANSITION_HOLEY_DOUBLE_TO_OBJECT;
   1718         } else {
   1719           return STORE_TRANSITION_DOUBLE_TO_OBJECT;
   1720         }
   1721       }
   1722     }
   1723     if (!FLAG_trace_external_array_abuse &&
   1724         receiver->map()->has_external_array_elements() && oob_access) {
   1725       return STORE_NO_TRANSITION_IGNORE_OUT_OF_BOUNDS;
   1726     }
   1727     Heap* heap = receiver->GetHeap();
   1728     if (receiver->elements()->map() == heap->fixed_cow_array_map()) {
   1729       return STORE_NO_TRANSITION_HANDLE_COW;
   1730     } else {
   1731       return STANDARD_STORE;
   1732     }
   1733   }
   1734 }
   1735 
   1736 
   1737 MaybeHandle<Object> KeyedStoreIC::Store(Handle<Object> object,
   1738                                         Handle<Object> key,
   1739                                         Handle<Object> value) {
   1740   if (MigrateDeprecated(object)) {
   1741     Handle<Object> result;
   1742     ASSIGN_RETURN_ON_EXCEPTION(
   1743         isolate(),
   1744         result,
   1745         Runtime::SetObjectProperty(
   1746             isolate(), object, key, value, NONE, strict_mode()),
   1747         Object);
   1748     return result;
   1749   }
   1750 
   1751   // Check for non-string values that can be converted into an
   1752   // internalized string directly or is representable as a smi.
   1753   key = TryConvertKey(key, isolate());
   1754 
   1755   Handle<Object> store_handle;
   1756   Handle<Code> stub = generic_stub();
   1757 
   1758   if (key->IsInternalizedString()) {
   1759     ASSIGN_RETURN_ON_EXCEPTION(
   1760         isolate(),
   1761         store_handle,
   1762         StoreIC::Store(object,
   1763                        Handle<String>::cast(key),
   1764                        value,
   1765                        JSReceiver::MAY_BE_STORE_FROM_KEYED),
   1766         Object);
   1767   } else {
   1768     bool use_ic = FLAG_use_ic &&
   1769         !object->IsStringWrapper() &&
   1770         !object->IsAccessCheckNeeded() &&
   1771         !object->IsJSGlobalProxy() &&
   1772         !(object->IsJSObject() &&
   1773           JSObject::cast(*object)->map()->is_observed());
   1774     if (use_ic && !object->IsSmi()) {
   1775       // Don't use ICs for maps of the objects in Array's prototype chain. We
   1776       // expect to be able to trap element sets to objects with those maps in
   1777       // the runtime to enable optimization of element hole access.
   1778       Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
   1779       if (heap_object->map()->IsMapInArrayPrototypeChain()) use_ic = false;
   1780     }
   1781 
   1782     if (use_ic) {
   1783       ASSERT(!object->IsAccessCheckNeeded());
   1784 
   1785       if (object->IsJSObject()) {
   1786         Handle<JSObject> receiver = Handle<JSObject>::cast(object);
   1787         bool key_is_smi_like = !Object::ToSmi(isolate(), key).is_null();
   1788         if (receiver->elements()->map() ==
   1789             isolate()->heap()->sloppy_arguments_elements_map()) {
   1790           if (strict_mode() == SLOPPY) {
   1791             stub = sloppy_arguments_stub();
   1792           }
   1793         } else if (key_is_smi_like &&
   1794                    !(target().is_identical_to(sloppy_arguments_stub()))) {
   1795           // We should go generic if receiver isn't a dictionary, but our
   1796           // prototype chain does have dictionary elements. This ensures that
   1797           // other non-dictionary receivers in the polymorphic case benefit
   1798           // from fast path keyed stores.
   1799           if (!(receiver->map()->DictionaryElementsInPrototypeChainOnly())) {
   1800             KeyedAccessStoreMode store_mode =
   1801                 GetStoreMode(receiver, key, value);
   1802             stub = StoreElementStub(receiver, store_mode);
   1803           }
   1804         }
   1805       }
   1806     }
   1807   }
   1808 
   1809   if (store_handle.is_null()) {
   1810     ASSIGN_RETURN_ON_EXCEPTION(
   1811         isolate(),
   1812         store_handle,
   1813         Runtime::SetObjectProperty(
   1814             isolate(), object, key, value, NONE, strict_mode()),
   1815         Object);
   1816   }
   1817 
   1818   if (!is_target_set()) {
   1819     Code* generic = *generic_stub();
   1820     if (*stub == generic) {
   1821       TRACE_GENERIC_IC(isolate(), "KeyedStoreIC", "set generic");
   1822     }
   1823     ASSERT(!stub.is_null());
   1824     set_target(*stub);
   1825     TRACE_IC("StoreIC", key);
   1826   }
   1827 
   1828   return store_handle;
   1829 }
   1830 
   1831 
   1832 CallIC::State::State(ExtraICState extra_ic_state)
   1833     : argc_(ArgcBits::decode(extra_ic_state)),
   1834       call_type_(CallTypeBits::decode(extra_ic_state)) {
   1835 }
   1836 
   1837 
   1838 ExtraICState CallIC::State::GetExtraICState() const {
   1839   ExtraICState extra_ic_state =
   1840       ArgcBits::encode(argc_) |
   1841       CallTypeBits::encode(call_type_);
   1842   return extra_ic_state;
   1843 }
   1844 
   1845 
   1846 bool CallIC::DoCustomHandler(Handle<Object> receiver,
   1847                              Handle<Object> function,
   1848                              Handle<FixedArray> vector,
   1849                              Handle<Smi> slot,
   1850                              const State& state) {
   1851   ASSERT(FLAG_use_ic && function->IsJSFunction());
   1852 
   1853   // Are we the array function?
   1854   Handle<JSFunction> array_function = Handle<JSFunction>(
   1855       isolate()->context()->native_context()->array_function(), isolate());
   1856   if (array_function.is_identical_to(Handle<JSFunction>::cast(function))) {
   1857     // Alter the slot.
   1858     Object* feedback = vector->get(slot->value());
   1859     if (!feedback->IsAllocationSite()) {
   1860       Handle<AllocationSite> new_site =
   1861           isolate()->factory()->NewAllocationSite();
   1862       vector->set(slot->value(), *new_site);
   1863     }
   1864 
   1865     CallIC_ArrayStub stub(isolate(), state);
   1866     set_target(*stub.GetCode());
   1867     Handle<String> name;
   1868     if (array_function->shared()->name()->IsString()) {
   1869       name = Handle<String>(String::cast(array_function->shared()->name()),
   1870                             isolate());
   1871     }
   1872 
   1873     TRACE_IC("CallIC (Array call)", name);
   1874     return true;
   1875   }
   1876   return false;
   1877 }
   1878 
   1879 
   1880 void CallIC::PatchMegamorphic(Handle<FixedArray> vector,
   1881                               Handle<Smi> slot) {
   1882   State state(target()->extra_ic_state());
   1883 
   1884   // We are going generic.
   1885   vector->set(slot->value(),
   1886               *TypeFeedbackInfo::MegamorphicSentinel(isolate()),
   1887               SKIP_WRITE_BARRIER);
   1888 
   1889   CallICStub stub(isolate(), state);
   1890   Handle<Code> code = stub.GetCode();
   1891   set_target(*code);
   1892 
   1893   TRACE_GENERIC_IC(isolate(), "CallIC", "megamorphic");
   1894 }
   1895 
   1896 
   1897 void CallIC::HandleMiss(Handle<Object> receiver,
   1898                         Handle<Object> function,
   1899                         Handle<FixedArray> vector,
   1900                         Handle<Smi> slot) {
   1901   State state(target()->extra_ic_state());
   1902   Object* feedback = vector->get(slot->value());
   1903 
   1904   // Hand-coded MISS handling is easier if CallIC slots don't contain smis.
   1905   ASSERT(!feedback->IsSmi());
   1906 
   1907   if (feedback->IsJSFunction() || !function->IsJSFunction()) {
   1908     // We are going generic.
   1909     vector->set(slot->value(),
   1910                 *TypeFeedbackInfo::MegamorphicSentinel(isolate()),
   1911                 SKIP_WRITE_BARRIER);
   1912 
   1913     TRACE_GENERIC_IC(isolate(), "CallIC", "megamorphic");
   1914   } else {
   1915     // The feedback is either uninitialized or an allocation site.
   1916     // It might be an allocation site because if we re-compile the full code
   1917     // to add deoptimization support, we call with the default call-ic, and
   1918     // merely need to patch the target to match the feedback.
   1919     // TODO(mvstanton): the better approach is to dispense with patching
   1920     // altogether, which is in progress.
   1921     ASSERT(feedback == *TypeFeedbackInfo::UninitializedSentinel(isolate()) ||
   1922            feedback->IsAllocationSite());
   1923 
   1924     // Do we want to install a custom handler?
   1925     if (FLAG_use_ic &&
   1926         DoCustomHandler(receiver, function, vector, slot, state)) {
   1927       return;
   1928     }
   1929 
   1930     Handle<JSFunction> js_function = Handle<JSFunction>::cast(function);
   1931     Handle<Object> name(js_function->shared()->name(), isolate());
   1932     TRACE_IC("CallIC", name);
   1933     vector->set(slot->value(), *function);
   1934   }
   1935 }
   1936 
   1937 
   1938 #undef TRACE_IC
   1939 
   1940 
   1941 // ----------------------------------------------------------------------------
   1942 // Static IC stub generators.
   1943 //
   1944 
   1945 // Used from ic-<arch>.cc.
   1946 RUNTIME_FUNCTION(CallIC_Miss) {
   1947   Logger::TimerEventScope timer(
   1948       isolate, Logger::TimerEventScope::v8_ic_miss);
   1949   HandleScope scope(isolate);
   1950   ASSERT(args.length() == 4);
   1951   CallIC ic(isolate);
   1952   Handle<Object> receiver = args.at<Object>(0);
   1953   Handle<Object> function = args.at<Object>(1);
   1954   Handle<FixedArray> vector = args.at<FixedArray>(2);
   1955   Handle<Smi> slot = args.at<Smi>(3);
   1956   ic.HandleMiss(receiver, function, vector, slot);
   1957   return *function;
   1958 }
   1959 
   1960 
   1961 RUNTIME_FUNCTION(CallIC_Customization_Miss) {
   1962   Logger::TimerEventScope timer(
   1963       isolate, Logger::TimerEventScope::v8_ic_miss);
   1964   HandleScope scope(isolate);
   1965   ASSERT(args.length() == 4);
   1966   // A miss on a custom call ic always results in going megamorphic.
   1967   CallIC ic(isolate);
   1968   Handle<Object> function = args.at<Object>(1);
   1969   Handle<FixedArray> vector = args.at<FixedArray>(2);
   1970   Handle<Smi> slot = args.at<Smi>(3);
   1971   ic.PatchMegamorphic(vector, slot);
   1972   return *function;
   1973 }
   1974 
   1975 
   1976 // Used from ic-<arch>.cc.
   1977 RUNTIME_FUNCTION(LoadIC_Miss) {
   1978   Logger::TimerEventScope timer(
   1979       isolate, Logger::TimerEventScope::v8_ic_miss);
   1980   HandleScope scope(isolate);
   1981   ASSERT(args.length() == 2);
   1982   LoadIC ic(IC::NO_EXTRA_FRAME, isolate);
   1983   Handle<Object> receiver = args.at<Object>(0);
   1984   Handle<String> key = args.at<String>(1);
   1985   ic.UpdateState(receiver, key);
   1986   Handle<Object> result;
   1987   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key));
   1988   return *result;
   1989 }
   1990 
   1991 
   1992 // Used from ic-<arch>.cc
   1993 RUNTIME_FUNCTION(KeyedLoadIC_Miss) {
   1994   Logger::TimerEventScope timer(
   1995       isolate, Logger::TimerEventScope::v8_ic_miss);
   1996   HandleScope scope(isolate);
   1997   ASSERT(args.length() == 2);
   1998   KeyedLoadIC ic(IC::NO_EXTRA_FRAME, isolate);
   1999   Handle<Object> receiver = args.at<Object>(0);
   2000   Handle<Object> key = args.at<Object>(1);
   2001   ic.UpdateState(receiver, key);
   2002   Handle<Object> result;
   2003   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key));
   2004   return *result;
   2005 }
   2006 
   2007 
   2008 RUNTIME_FUNCTION(KeyedLoadIC_MissFromStubFailure) {
   2009   Logger::TimerEventScope timer(
   2010       isolate, Logger::TimerEventScope::v8_ic_miss);
   2011   HandleScope scope(isolate);
   2012   ASSERT(args.length() == 2);
   2013   KeyedLoadIC ic(IC::EXTRA_CALL_FRAME, isolate);
   2014   Handle<Object> receiver = args.at<Object>(0);
   2015   Handle<Object> key = args.at<Object>(1);
   2016   ic.UpdateState(receiver, key);
   2017   Handle<Object> result;
   2018   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, ic.Load(receiver, key));
   2019   return *result;
   2020 }
   2021 
   2022 
   2023 // Used from ic-<arch>.cc.
   2024 RUNTIME_FUNCTION(StoreIC_Miss) {
   2025   Logger::TimerEventScope timer(
   2026       isolate, Logger::TimerEventScope::v8_ic_miss);
   2027   HandleScope scope(isolate);
   2028   ASSERT(args.length() == 3);
   2029   StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
   2030   Handle<Object> receiver = args.at<Object>(0);
   2031   Handle<String> key = args.at<String>(1);
   2032   ic.UpdateState(receiver, key);
   2033   Handle<Object> result;
   2034   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
   2035       isolate,
   2036       result,
   2037       ic.Store(receiver, key, args.at<Object>(2)));
   2038   return *result;
   2039 }
   2040 
   2041 
   2042 RUNTIME_FUNCTION(StoreIC_MissFromStubFailure) {
   2043   Logger::TimerEventScope timer(
   2044       isolate, Logger::TimerEventScope::v8_ic_miss);
   2045   HandleScope scope(isolate);
   2046   ASSERT(args.length() == 3);
   2047   StoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
   2048   Handle<Object> receiver = args.at<Object>(0);
   2049   Handle<String> key = args.at<String>(1);
   2050   ic.UpdateState(receiver, key);
   2051   Handle<Object> result;
   2052   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
   2053       isolate,
   2054       result,
   2055       ic.Store(receiver, key, args.at<Object>(2)));
   2056   return *result;
   2057 }
   2058 
   2059 
   2060 RUNTIME_FUNCTION(StoreIC_ArrayLength) {
   2061   Logger::TimerEventScope timer(
   2062       isolate, Logger::TimerEventScope::v8_ic_miss);
   2063   HandleScope scope(isolate);
   2064 
   2065   ASSERT(args.length() == 2);
   2066   Handle<JSArray> receiver = args.at<JSArray>(0);
   2067   Handle<Object> len = args.at<Object>(1);
   2068 
   2069   // The generated code should filter out non-Smis before we get here.
   2070   ASSERT(len->IsSmi());
   2071 
   2072 #ifdef DEBUG
   2073   // The length property has to be a writable callback property.
   2074   LookupResult debug_lookup(isolate);
   2075   receiver->LookupOwn(isolate->factory()->length_string(), &debug_lookup);
   2076   ASSERT(debug_lookup.IsPropertyCallbacks() && !debug_lookup.IsReadOnly());
   2077 #endif
   2078 
   2079   RETURN_FAILURE_ON_EXCEPTION(
   2080       isolate, JSArray::SetElementsLength(receiver, len));
   2081   return *len;
   2082 }
   2083 
   2084 
   2085 // Extend storage is called in a store inline cache when
   2086 // it is necessary to extend the properties array of a
   2087 // JSObject.
   2088 RUNTIME_FUNCTION(SharedStoreIC_ExtendStorage) {
   2089   Logger::TimerEventScope timer(
   2090       isolate, Logger::TimerEventScope::v8_ic_miss);
   2091   HandleScope shs(isolate);
   2092   ASSERT(args.length() == 3);
   2093 
   2094   // Convert the parameters
   2095   Handle<JSObject> object = args.at<JSObject>(0);
   2096   Handle<Map> transition = args.at<Map>(1);
   2097   Handle<Object> value = args.at<Object>(2);
   2098 
   2099   // Check the object has run out out property space.
   2100   ASSERT(object->HasFastProperties());
   2101   ASSERT(object->map()->unused_property_fields() == 0);
   2102 
   2103   // Expand the properties array.
   2104   Handle<FixedArray> old_storage = handle(object->properties(), isolate);
   2105   int new_unused = transition->unused_property_fields();
   2106   int new_size = old_storage->length() + new_unused + 1;
   2107 
   2108   Handle<FixedArray> new_storage = FixedArray::CopySize(old_storage, new_size);
   2109 
   2110   Handle<Object> to_store = value;
   2111 
   2112   PropertyDetails details = transition->instance_descriptors()->GetDetails(
   2113       transition->LastAdded());
   2114   if (details.representation().IsDouble()) {
   2115     to_store = isolate->factory()->NewHeapNumber(value->Number());
   2116   }
   2117 
   2118   new_storage->set(old_storage->length(), *to_store);
   2119 
   2120   // Set the new property value and do the map transition.
   2121   object->set_properties(*new_storage);
   2122   object->set_map(*transition);
   2123 
   2124   // Return the stored value.
   2125   return *value;
   2126 }
   2127 
   2128 
   2129 // Used from ic-<arch>.cc.
   2130 RUNTIME_FUNCTION(KeyedStoreIC_Miss) {
   2131   Logger::TimerEventScope timer(
   2132       isolate, Logger::TimerEventScope::v8_ic_miss);
   2133   HandleScope scope(isolate);
   2134   ASSERT(args.length() == 3);
   2135   KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
   2136   Handle<Object> receiver = args.at<Object>(0);
   2137   Handle<Object> key = args.at<Object>(1);
   2138   ic.UpdateState(receiver, key);
   2139   Handle<Object> result;
   2140   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
   2141       isolate,
   2142       result,
   2143       ic.Store(receiver, key, args.at<Object>(2)));
   2144   return *result;
   2145 }
   2146 
   2147 
   2148 RUNTIME_FUNCTION(KeyedStoreIC_MissFromStubFailure) {
   2149   Logger::TimerEventScope timer(
   2150       isolate, Logger::TimerEventScope::v8_ic_miss);
   2151   HandleScope scope(isolate);
   2152   ASSERT(args.length() == 3);
   2153   KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
   2154   Handle<Object> receiver = args.at<Object>(0);
   2155   Handle<Object> key = args.at<Object>(1);
   2156   ic.UpdateState(receiver, key);
   2157   Handle<Object> result;
   2158   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
   2159       isolate,
   2160       result,
   2161       ic.Store(receiver, key, args.at<Object>(2)));
   2162   return *result;
   2163 }
   2164 
   2165 
   2166 RUNTIME_FUNCTION(StoreIC_Slow) {
   2167   HandleScope scope(isolate);
   2168   ASSERT(args.length() == 3);
   2169   StoreIC ic(IC::NO_EXTRA_FRAME, isolate);
   2170   Handle<Object> object = args.at<Object>(0);
   2171   Handle<Object> key = args.at<Object>(1);
   2172   Handle<Object> value = args.at<Object>(2);
   2173   StrictMode strict_mode = ic.strict_mode();
   2174   Handle<Object> result;
   2175   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
   2176       isolate, result,
   2177       Runtime::SetObjectProperty(
   2178           isolate, object, key, value, NONE, strict_mode));
   2179   return *result;
   2180 }
   2181 
   2182 
   2183 RUNTIME_FUNCTION(KeyedStoreIC_Slow) {
   2184   HandleScope scope(isolate);
   2185   ASSERT(args.length() == 3);
   2186   KeyedStoreIC ic(IC::NO_EXTRA_FRAME, isolate);
   2187   Handle<Object> object = args.at<Object>(0);
   2188   Handle<Object> key = args.at<Object>(1);
   2189   Handle<Object> value = args.at<Object>(2);
   2190   StrictMode strict_mode = ic.strict_mode();
   2191   Handle<Object> result;
   2192   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
   2193       isolate, result,
   2194       Runtime::SetObjectProperty(
   2195           isolate, object, key, value, NONE, strict_mode));
   2196   return *result;
   2197 }
   2198 
   2199 
   2200 RUNTIME_FUNCTION(ElementsTransitionAndStoreIC_Miss) {
   2201   Logger::TimerEventScope timer(
   2202       isolate, Logger::TimerEventScope::v8_ic_miss);
   2203   HandleScope scope(isolate);
   2204   ASSERT(args.length() == 4);
   2205   KeyedStoreIC ic(IC::EXTRA_CALL_FRAME, isolate);
   2206   Handle<Object> value = args.at<Object>(0);
   2207   Handle<Map> map = args.at<Map>(1);
   2208   Handle<Object> key = args.at<Object>(2);
   2209   Handle<Object> object = args.at<Object>(3);
   2210   StrictMode strict_mode = ic.strict_mode();
   2211   if (object->IsJSObject()) {
   2212     JSObject::TransitionElementsKind(Handle<JSObject>::cast(object),
   2213                                      map->elements_kind());
   2214   }
   2215   Handle<Object> result;
   2216   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
   2217       isolate, result,
   2218       Runtime::SetObjectProperty(
   2219           isolate, object, key, value, NONE, strict_mode));
   2220   return *result;
   2221 }
   2222 
   2223 
   2224 BinaryOpIC::State::State(Isolate* isolate, ExtraICState extra_ic_state)
   2225     : isolate_(isolate) {
   2226   op_ = static_cast<Token::Value>(
   2227       FIRST_TOKEN + OpField::decode(extra_ic_state));
   2228   mode_ = OverwriteModeField::decode(extra_ic_state);
   2229   fixed_right_arg_ = Maybe<int>(
   2230       HasFixedRightArgField::decode(extra_ic_state),
   2231       1 << FixedRightArgValueField::decode(extra_ic_state));
   2232   left_kind_ = LeftKindField::decode(extra_ic_state);
   2233   if (fixed_right_arg_.has_value) {
   2234     right_kind_ = Smi::IsValid(fixed_right_arg_.value) ? SMI : INT32;
   2235   } else {
   2236     right_kind_ = RightKindField::decode(extra_ic_state);
   2237   }
   2238   result_kind_ = ResultKindField::decode(extra_ic_state);
   2239   ASSERT_LE(FIRST_TOKEN, op_);
   2240   ASSERT_LE(op_, LAST_TOKEN);
   2241 }
   2242 
   2243 
   2244 ExtraICState BinaryOpIC::State::GetExtraICState() const {
   2245   ExtraICState extra_ic_state =
   2246       OpField::encode(op_ - FIRST_TOKEN) |
   2247       OverwriteModeField::encode(mode_) |
   2248       LeftKindField::encode(left_kind_) |
   2249       ResultKindField::encode(result_kind_) |
   2250       HasFixedRightArgField::encode(fixed_right_arg_.has_value);
   2251   if (fixed_right_arg_.has_value) {
   2252     extra_ic_state = FixedRightArgValueField::update(
   2253         extra_ic_state, WhichPowerOf2(fixed_right_arg_.value));
   2254   } else {
   2255     extra_ic_state = RightKindField::update(extra_ic_state, right_kind_);
   2256   }
   2257   return extra_ic_state;
   2258 }
   2259 
   2260 
   2261 // static
   2262 void BinaryOpIC::State::GenerateAheadOfTime(
   2263     Isolate* isolate, void (*Generate)(Isolate*, const State&)) {
   2264   // TODO(olivf) We should investigate why adding stubs to the snapshot is so
   2265   // expensive at runtime. When solved we should be able to add most binops to
   2266   // the snapshot instead of hand-picking them.
   2267   // Generated list of commonly used stubs
   2268 #define GENERATE(op, left_kind, right_kind, result_kind, mode)  \
   2269   do {                                                          \
   2270     State state(isolate, op, mode);                             \
   2271     state.left_kind_ = left_kind;                               \
   2272     state.fixed_right_arg_.has_value = false;                   \
   2273     state.right_kind_ = right_kind;                             \
   2274     state.result_kind_ = result_kind;                           \
   2275     Generate(isolate, state);                                   \
   2276   } while (false)
   2277   GENERATE(Token::ADD, INT32, INT32, INT32, NO_OVERWRITE);
   2278   GENERATE(Token::ADD, INT32, INT32, INT32, OVERWRITE_LEFT);
   2279   GENERATE(Token::ADD, INT32, INT32, NUMBER, NO_OVERWRITE);
   2280   GENERATE(Token::ADD, INT32, INT32, NUMBER, OVERWRITE_LEFT);
   2281   GENERATE(Token::ADD, INT32, NUMBER, NUMBER, NO_OVERWRITE);
   2282   GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
   2283   GENERATE(Token::ADD, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
   2284   GENERATE(Token::ADD, INT32, SMI, INT32, NO_OVERWRITE);
   2285   GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_LEFT);
   2286   GENERATE(Token::ADD, INT32, SMI, INT32, OVERWRITE_RIGHT);
   2287   GENERATE(Token::ADD, NUMBER, INT32, NUMBER, NO_OVERWRITE);
   2288   GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
   2289   GENERATE(Token::ADD, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
   2290   GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
   2291   GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
   2292   GENERATE(Token::ADD, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
   2293   GENERATE(Token::ADD, NUMBER, SMI, NUMBER, NO_OVERWRITE);
   2294   GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
   2295   GENERATE(Token::ADD, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
   2296   GENERATE(Token::ADD, SMI, INT32, INT32, NO_OVERWRITE);
   2297   GENERATE(Token::ADD, SMI, INT32, INT32, OVERWRITE_LEFT);
   2298   GENERATE(Token::ADD, SMI, INT32, NUMBER, NO_OVERWRITE);
   2299   GENERATE(Token::ADD, SMI, NUMBER, NUMBER, NO_OVERWRITE);
   2300   GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
   2301   GENERATE(Token::ADD, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
   2302   GENERATE(Token::ADD, SMI, SMI, INT32, OVERWRITE_LEFT);
   2303   GENERATE(Token::ADD, SMI, SMI, SMI, OVERWRITE_RIGHT);
   2304   GENERATE(Token::BIT_AND, INT32, INT32, INT32, NO_OVERWRITE);
   2305   GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_LEFT);
   2306   GENERATE(Token::BIT_AND, INT32, INT32, INT32, OVERWRITE_RIGHT);
   2307   GENERATE(Token::BIT_AND, INT32, INT32, SMI, NO_OVERWRITE);
   2308   GENERATE(Token::BIT_AND, INT32, INT32, SMI, OVERWRITE_RIGHT);
   2309   GENERATE(Token::BIT_AND, INT32, SMI, INT32, NO_OVERWRITE);
   2310   GENERATE(Token::BIT_AND, INT32, SMI, INT32, OVERWRITE_RIGHT);
   2311   GENERATE(Token::BIT_AND, INT32, SMI, SMI, NO_OVERWRITE);
   2312   GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_LEFT);
   2313   GENERATE(Token::BIT_AND, INT32, SMI, SMI, OVERWRITE_RIGHT);
   2314   GENERATE(Token::BIT_AND, NUMBER, INT32, INT32, OVERWRITE_RIGHT);
   2315   GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, NO_OVERWRITE);
   2316   GENERATE(Token::BIT_AND, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
   2317   GENERATE(Token::BIT_AND, SMI, INT32, INT32, NO_OVERWRITE);
   2318   GENERATE(Token::BIT_AND, SMI, INT32, SMI, OVERWRITE_RIGHT);
   2319   GENERATE(Token::BIT_AND, SMI, NUMBER, SMI, OVERWRITE_RIGHT);
   2320   GENERATE(Token::BIT_AND, SMI, SMI, SMI, NO_OVERWRITE);
   2321   GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_LEFT);
   2322   GENERATE(Token::BIT_AND, SMI, SMI, SMI, OVERWRITE_RIGHT);
   2323   GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_LEFT);
   2324   GENERATE(Token::BIT_OR, INT32, INT32, INT32, OVERWRITE_RIGHT);
   2325   GENERATE(Token::BIT_OR, INT32, INT32, SMI, OVERWRITE_LEFT);
   2326   GENERATE(Token::BIT_OR, INT32, SMI, INT32, NO_OVERWRITE);
   2327   GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_LEFT);
   2328   GENERATE(Token::BIT_OR, INT32, SMI, INT32, OVERWRITE_RIGHT);
   2329   GENERATE(Token::BIT_OR, INT32, SMI, SMI, NO_OVERWRITE);
   2330   GENERATE(Token::BIT_OR, INT32, SMI, SMI, OVERWRITE_RIGHT);
   2331   GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, NO_OVERWRITE);
   2332   GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_LEFT);
   2333   GENERATE(Token::BIT_OR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
   2334   GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, NO_OVERWRITE);
   2335   GENERATE(Token::BIT_OR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
   2336   GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_LEFT);
   2337   GENERATE(Token::BIT_OR, SMI, INT32, INT32, OVERWRITE_RIGHT);
   2338   GENERATE(Token::BIT_OR, SMI, INT32, SMI, OVERWRITE_RIGHT);
   2339   GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_LEFT);
   2340   GENERATE(Token::BIT_OR, SMI, SMI, SMI, OVERWRITE_RIGHT);
   2341   GENERATE(Token::BIT_XOR, INT32, INT32, INT32, NO_OVERWRITE);
   2342   GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_LEFT);
   2343   GENERATE(Token::BIT_XOR, INT32, INT32, INT32, OVERWRITE_RIGHT);
   2344   GENERATE(Token::BIT_XOR, INT32, INT32, SMI, NO_OVERWRITE);
   2345   GENERATE(Token::BIT_XOR, INT32, INT32, SMI, OVERWRITE_LEFT);
   2346   GENERATE(Token::BIT_XOR, INT32, NUMBER, SMI, NO_OVERWRITE);
   2347   GENERATE(Token::BIT_XOR, INT32, SMI, INT32, NO_OVERWRITE);
   2348   GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_LEFT);
   2349   GENERATE(Token::BIT_XOR, INT32, SMI, INT32, OVERWRITE_RIGHT);
   2350   GENERATE(Token::BIT_XOR, NUMBER, INT32, INT32, NO_OVERWRITE);
   2351   GENERATE(Token::BIT_XOR, NUMBER, SMI, INT32, NO_OVERWRITE);
   2352   GENERATE(Token::BIT_XOR, NUMBER, SMI, SMI, NO_OVERWRITE);
   2353   GENERATE(Token::BIT_XOR, SMI, INT32, INT32, NO_OVERWRITE);
   2354   GENERATE(Token::BIT_XOR, SMI, INT32, INT32, OVERWRITE_LEFT);
   2355   GENERATE(Token::BIT_XOR, SMI, INT32, SMI, OVERWRITE_LEFT);
   2356   GENERATE(Token::BIT_XOR, SMI, SMI, SMI, NO_OVERWRITE);
   2357   GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_LEFT);
   2358   GENERATE(Token::BIT_XOR, SMI, SMI, SMI, OVERWRITE_RIGHT);
   2359   GENERATE(Token::DIV, INT32, INT32, INT32, NO_OVERWRITE);
   2360   GENERATE(Token::DIV, INT32, INT32, NUMBER, NO_OVERWRITE);
   2361   GENERATE(Token::DIV, INT32, NUMBER, NUMBER, NO_OVERWRITE);
   2362   GENERATE(Token::DIV, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
   2363   GENERATE(Token::DIV, INT32, SMI, INT32, NO_OVERWRITE);
   2364   GENERATE(Token::DIV, INT32, SMI, NUMBER, NO_OVERWRITE);
   2365   GENERATE(Token::DIV, NUMBER, INT32, NUMBER, NO_OVERWRITE);
   2366   GENERATE(Token::DIV, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
   2367   GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
   2368   GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
   2369   GENERATE(Token::DIV, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
   2370   GENERATE(Token::DIV, NUMBER, SMI, NUMBER, NO_OVERWRITE);
   2371   GENERATE(Token::DIV, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
   2372   GENERATE(Token::DIV, SMI, INT32, INT32, NO_OVERWRITE);
   2373   GENERATE(Token::DIV, SMI, INT32, NUMBER, NO_OVERWRITE);
   2374   GENERATE(Token::DIV, SMI, INT32, NUMBER, OVERWRITE_LEFT);
   2375   GENERATE(Token::DIV, SMI, NUMBER, NUMBER, NO_OVERWRITE);
   2376   GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
   2377   GENERATE(Token::DIV, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
   2378   GENERATE(Token::DIV, SMI, SMI, NUMBER, NO_OVERWRITE);
   2379   GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_LEFT);
   2380   GENERATE(Token::DIV, SMI, SMI, NUMBER, OVERWRITE_RIGHT);
   2381   GENERATE(Token::DIV, SMI, SMI, SMI, NO_OVERWRITE);
   2382   GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_LEFT);
   2383   GENERATE(Token::DIV, SMI, SMI, SMI, OVERWRITE_RIGHT);
   2384   GENERATE(Token::MOD, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
   2385   GENERATE(Token::MOD, SMI, SMI, SMI, NO_OVERWRITE);
   2386   GENERATE(Token::MOD, SMI, SMI, SMI, OVERWRITE_LEFT);
   2387   GENERATE(Token::MUL, INT32, INT32, INT32, NO_OVERWRITE);
   2388   GENERATE(Token::MUL, INT32, INT32, NUMBER, NO_OVERWRITE);
   2389   GENERATE(Token::MUL, INT32, NUMBER, NUMBER, NO_OVERWRITE);
   2390   GENERATE(Token::MUL, INT32, NUMBER, NUMBER, OVERWRITE_LEFT);
   2391   GENERATE(Token::MUL, INT32, SMI, INT32, NO_OVERWRITE);
   2392   GENERATE(Token::MUL, INT32, SMI, INT32, OVERWRITE_LEFT);
   2393   GENERATE(Token::MUL, INT32, SMI, NUMBER, NO_OVERWRITE);
   2394   GENERATE(Token::MUL, NUMBER, INT32, NUMBER, NO_OVERWRITE);
   2395   GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
   2396   GENERATE(Token::MUL, NUMBER, INT32, NUMBER, OVERWRITE_RIGHT);
   2397   GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
   2398   GENERATE(Token::MUL, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
   2399   GENERATE(Token::MUL, NUMBER, SMI, NUMBER, NO_OVERWRITE);
   2400   GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
   2401   GENERATE(Token::MUL, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
   2402   GENERATE(Token::MUL, SMI, INT32, INT32, NO_OVERWRITE);
   2403   GENERATE(Token::MUL, SMI, INT32, INT32, OVERWRITE_LEFT);
   2404   GENERATE(Token::MUL, SMI, INT32, NUMBER, NO_OVERWRITE);
   2405   GENERATE(Token::MUL, SMI, NUMBER, NUMBER, NO_OVERWRITE);
   2406   GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
   2407   GENERATE(Token::MUL, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
   2408   GENERATE(Token::MUL, SMI, SMI, INT32, NO_OVERWRITE);
   2409   GENERATE(Token::MUL, SMI, SMI, NUMBER, NO_OVERWRITE);
   2410   GENERATE(Token::MUL, SMI, SMI, NUMBER, OVERWRITE_LEFT);
   2411   GENERATE(Token::MUL, SMI, SMI, SMI, NO_OVERWRITE);
   2412   GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_LEFT);
   2413   GENERATE(Token::MUL, SMI, SMI, SMI, OVERWRITE_RIGHT);
   2414   GENERATE(Token::SAR, INT32, SMI, INT32, OVERWRITE_RIGHT);
   2415   GENERATE(Token::SAR, INT32, SMI, SMI, NO_OVERWRITE);
   2416   GENERATE(Token::SAR, INT32, SMI, SMI, OVERWRITE_RIGHT);
   2417   GENERATE(Token::SAR, NUMBER, SMI, SMI, NO_OVERWRITE);
   2418   GENERATE(Token::SAR, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
   2419   GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_LEFT);
   2420   GENERATE(Token::SAR, SMI, SMI, SMI, OVERWRITE_RIGHT);
   2421   GENERATE(Token::SHL, INT32, SMI, INT32, NO_OVERWRITE);
   2422   GENERATE(Token::SHL, INT32, SMI, INT32, OVERWRITE_RIGHT);
   2423   GENERATE(Token::SHL, INT32, SMI, SMI, NO_OVERWRITE);
   2424   GENERATE(Token::SHL, INT32, SMI, SMI, OVERWRITE_RIGHT);
   2425   GENERATE(Token::SHL, NUMBER, SMI, SMI, OVERWRITE_RIGHT);
   2426   GENERATE(Token::SHL, SMI, SMI, INT32, NO_OVERWRITE);
   2427   GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_LEFT);
   2428   GENERATE(Token::SHL, SMI, SMI, INT32, OVERWRITE_RIGHT);
   2429   GENERATE(Token::SHL, SMI, SMI, SMI, NO_OVERWRITE);
   2430   GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_LEFT);
   2431   GENERATE(Token::SHL, SMI, SMI, SMI, OVERWRITE_RIGHT);
   2432   GENERATE(Token::SHR, INT32, SMI, SMI, NO_OVERWRITE);
   2433   GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_LEFT);
   2434   GENERATE(Token::SHR, INT32, SMI, SMI, OVERWRITE_RIGHT);
   2435   GENERATE(Token::SHR, NUMBER, SMI, SMI, NO_OVERWRITE);
   2436   GENERATE(Token::SHR, NUMBER, SMI, SMI, OVERWRITE_LEFT);
   2437   GENERATE(Token::SHR, NUMBER, SMI, INT32, OVERWRITE_RIGHT);
   2438   GENERATE(Token::SHR, SMI, SMI, SMI, NO_OVERWRITE);
   2439   GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_LEFT);
   2440   GENERATE(Token::SHR, SMI, SMI, SMI, OVERWRITE_RIGHT);
   2441   GENERATE(Token::SUB, INT32, INT32, INT32, NO_OVERWRITE);
   2442   GENERATE(Token::SUB, INT32, INT32, INT32, OVERWRITE_LEFT);
   2443   GENERATE(Token::SUB, INT32, NUMBER, NUMBER, NO_OVERWRITE);
   2444   GENERATE(Token::SUB, INT32, NUMBER, NUMBER, OVERWRITE_RIGHT);
   2445   GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_LEFT);
   2446   GENERATE(Token::SUB, INT32, SMI, INT32, OVERWRITE_RIGHT);
   2447   GENERATE(Token::SUB, NUMBER, INT32, NUMBER, NO_OVERWRITE);
   2448   GENERATE(Token::SUB, NUMBER, INT32, NUMBER, OVERWRITE_LEFT);
   2449   GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, NO_OVERWRITE);
   2450   GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_LEFT);
   2451   GENERATE(Token::SUB, NUMBER, NUMBER, NUMBER, OVERWRITE_RIGHT);
   2452   GENERATE(Token::SUB, NUMBER, SMI, NUMBER, NO_OVERWRITE);
   2453   GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_LEFT);
   2454   GENERATE(Token::SUB, NUMBER, SMI, NUMBER, OVERWRITE_RIGHT);
   2455   GENERATE(Token::SUB, SMI, INT32, INT32, NO_OVERWRITE);
   2456   GENERATE(Token::SUB, SMI, NUMBER, NUMBER, NO_OVERWRITE);
   2457   GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_LEFT);
   2458   GENERATE(Token::SUB, SMI, NUMBER, NUMBER, OVERWRITE_RIGHT);
   2459   GENERATE(Token::SUB, SMI, SMI, SMI, NO_OVERWRITE);
   2460   GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_LEFT);
   2461   GENERATE(Token::SUB, SMI, SMI, SMI, OVERWRITE_RIGHT);
   2462 #undef GENERATE
   2463 #define GENERATE(op, left_kind, fixed_right_arg_value, result_kind, mode) \
   2464   do {                                                                    \
   2465     State state(isolate, op, mode);                                       \
   2466     state.left_kind_ = left_kind;                                         \
   2467     state.fixed_right_arg_.has_value = true;                              \
   2468     state.fixed_right_arg_.value = fixed_right_arg_value;                 \
   2469     state.right_kind_ = SMI;                                              \
   2470     state.result_kind_ = result_kind;                                     \
   2471     Generate(isolate, state);                                             \
   2472   } while (false)
   2473   GENERATE(Token::MOD, SMI, 2, SMI, NO_OVERWRITE);
   2474   GENERATE(Token::MOD, SMI, 4, SMI, NO_OVERWRITE);
   2475   GENERATE(Token::MOD, SMI, 4, SMI, OVERWRITE_LEFT);
   2476   GENERATE(Token::MOD, SMI, 8, SMI, NO_OVERWRITE);
   2477   GENERATE(Token::MOD, SMI, 16, SMI, OVERWRITE_LEFT);
   2478   GENERATE(Token::MOD, SMI, 32, SMI, NO_OVERWRITE);
   2479   GENERATE(Token::MOD, SMI, 2048, SMI, NO_OVERWRITE);
   2480 #undef GENERATE
   2481 }
   2482 
   2483 
   2484 Type* BinaryOpIC::State::GetResultType(Zone* zone) const {
   2485   Kind result_kind = result_kind_;
   2486   if (HasSideEffects()) {
   2487     result_kind = NONE;
   2488   } else if (result_kind == GENERIC && op_ == Token::ADD) {
   2489     return Type::Union(Type::Number(zone), Type::String(zone), zone);
   2490   } else if (result_kind == NUMBER && op_ == Token::SHR) {
   2491     return Type::Unsigned32(zone);
   2492   }
   2493   ASSERT_NE(GENERIC, result_kind);
   2494   return KindToType(result_kind, zone);
   2495 }
   2496 
   2497 
   2498 void BinaryOpIC::State::Print(StringStream* stream) const {
   2499   stream->Add("(%s", Token::Name(op_));
   2500   if (mode_ == OVERWRITE_LEFT) stream->Add("_ReuseLeft");
   2501   else if (mode_ == OVERWRITE_RIGHT) stream->Add("_ReuseRight");
   2502   if (CouldCreateAllocationMementos()) stream->Add("_CreateAllocationMementos");
   2503   stream->Add(":%s*", KindToString(left_kind_));
   2504   if (fixed_right_arg_.has_value) {
   2505     stream->Add("%d", fixed_right_arg_.value);
   2506   } else {
   2507     stream->Add("%s", KindToString(right_kind_));
   2508   }
   2509   stream->Add("->%s)", KindToString(result_kind_));
   2510 }
   2511 
   2512 
   2513 void BinaryOpIC::State::Update(Handle<Object> left,
   2514                                Handle<Object> right,
   2515                                Handle<Object> result) {
   2516   ExtraICState old_extra_ic_state = GetExtraICState();
   2517 
   2518   left_kind_ = UpdateKind(left, left_kind_);
   2519   right_kind_ = UpdateKind(right, right_kind_);
   2520 
   2521   int32_t fixed_right_arg_value = 0;
   2522   bool has_fixed_right_arg =
   2523       op_ == Token::MOD &&
   2524       right->ToInt32(&fixed_right_arg_value) &&
   2525       fixed_right_arg_value > 0 &&
   2526       IsPowerOf2(fixed_right_arg_value) &&
   2527       FixedRightArgValueField::is_valid(WhichPowerOf2(fixed_right_arg_value)) &&
   2528       (left_kind_ == SMI || left_kind_ == INT32) &&
   2529       (result_kind_ == NONE || !fixed_right_arg_.has_value);
   2530   fixed_right_arg_ = Maybe<int32_t>(has_fixed_right_arg,
   2531                                     fixed_right_arg_value);
   2532 
   2533   result_kind_ = UpdateKind(result, result_kind_);
   2534 
   2535   if (!Token::IsTruncatingBinaryOp(op_)) {
   2536     Kind input_kind = Max(left_kind_, right_kind_);
   2537     if (result_kind_ < input_kind && input_kind <= NUMBER) {
   2538       result_kind_ = input_kind;
   2539     }
   2540   }
   2541 
   2542   // We don't want to distinguish INT32 and NUMBER for string add (because
   2543   // NumberToString can't make use of this anyway).
   2544   if (left_kind_ == STRING && right_kind_ == INT32) {
   2545     ASSERT_EQ(STRING, result_kind_);
   2546     ASSERT_EQ(Token::ADD, op_);
   2547     right_kind_ = NUMBER;
   2548   } else if (right_kind_ == STRING && left_kind_ == INT32) {
   2549     ASSERT_EQ(STRING, result_kind_);
   2550     ASSERT_EQ(Token::ADD, op_);
   2551     left_kind_ = NUMBER;
   2552   }
   2553 
   2554   // Reset overwrite mode unless we can actually make use of it, or may be able
   2555   // to make use of it at some point in the future.
   2556   if ((mode_ == OVERWRITE_LEFT && left_kind_ > NUMBER) ||
   2557       (mode_ == OVERWRITE_RIGHT && right_kind_ > NUMBER) ||
   2558       result_kind_ > NUMBER) {
   2559     mode_ = NO_OVERWRITE;
   2560   }
   2561 
   2562   if (old_extra_ic_state == GetExtraICState()) {
   2563     // Tagged operations can lead to non-truncating HChanges
   2564     if (left->IsUndefined() || left->IsBoolean()) {
   2565       left_kind_ = GENERIC;
   2566     } else {
   2567       ASSERT(right->IsUndefined() || right->IsBoolean());
   2568       right_kind_ = GENERIC;
   2569     }
   2570   }
   2571 }
   2572 
   2573 
   2574 BinaryOpIC::State::Kind BinaryOpIC::State::UpdateKind(Handle<Object> object,
   2575                                                       Kind kind) const {
   2576   Kind new_kind = GENERIC;
   2577   bool is_truncating = Token::IsTruncatingBinaryOp(op());
   2578   if (object->IsBoolean() && is_truncating) {
   2579     // Booleans will be automatically truncated by HChange.
   2580     new_kind = INT32;
   2581   } else if (object->IsUndefined()) {
   2582     // Undefined will be automatically truncated by HChange.
   2583     new_kind = is_truncating ? INT32 : NUMBER;
   2584   } else if (object->IsSmi()) {
   2585     new_kind = SMI;
   2586   } else if (object->IsHeapNumber()) {
   2587     double value = Handle<HeapNumber>::cast(object)->value();
   2588     new_kind = IsInt32Double(value) ? INT32 : NUMBER;
   2589   } else if (object->IsString() && op() == Token::ADD) {
   2590     new_kind = STRING;
   2591   }
   2592   if (new_kind == INT32 && SmiValuesAre32Bits()) {
   2593     new_kind = NUMBER;
   2594   }
   2595   if (kind != NONE &&
   2596       ((new_kind <= NUMBER && kind > NUMBER) ||
   2597        (new_kind > NUMBER && kind <= NUMBER))) {
   2598     new_kind = GENERIC;
   2599   }
   2600   return Max(kind, new_kind);
   2601 }
   2602 
   2603 
   2604 // static
   2605 const char* BinaryOpIC::State::KindToString(Kind kind) {
   2606   switch (kind) {
   2607     case NONE: return "None";
   2608     case SMI: return "Smi";
   2609     case INT32: return "Int32";
   2610     case NUMBER: return "Number";
   2611     case STRING: return "String";
   2612     case GENERIC: return "Generic";
   2613   }
   2614   UNREACHABLE();
   2615   return NULL;
   2616 }
   2617 
   2618 
   2619 // static
   2620 Type* BinaryOpIC::State::KindToType(Kind kind, Zone* zone) {
   2621   switch (kind) {
   2622     case NONE: return Type::None(zone);
   2623     case SMI: return Type::SignedSmall(zone);
   2624     case INT32: return Type::Signed32(zone);
   2625     case NUMBER: return Type::Number(zone);
   2626     case STRING: return Type::String(zone);
   2627     case GENERIC: return Type::Any(zone);
   2628   }
   2629   UNREACHABLE();
   2630   return NULL;
   2631 }
   2632 
   2633 
   2634 MaybeHandle<Object> BinaryOpIC::Transition(
   2635     Handle<AllocationSite> allocation_site,
   2636     Handle<Object> left,
   2637     Handle<Object> right) {
   2638   State state(isolate(), target()->extra_ic_state());
   2639 
   2640   // Compute the actual result using the builtin for the binary operation.
   2641   Object* builtin = isolate()->js_builtins_object()->javascript_builtin(
   2642       TokenToJSBuiltin(state.op()));
   2643   Handle<JSFunction> function = handle(JSFunction::cast(builtin), isolate());
   2644   Handle<Object> result;
   2645   ASSIGN_RETURN_ON_EXCEPTION(
   2646       isolate(),
   2647       result,
   2648       Execution::Call(isolate(), function, left, 1, &right),
   2649       Object);
   2650 
   2651   // Execution::Call can execute arbitrary JavaScript, hence potentially
   2652   // update the state of this very IC, so we must update the stored state.
   2653   UpdateTarget();
   2654   // Compute the new state.
   2655   State old_state(isolate(), target()->extra_ic_state());
   2656   state.Update(left, right, result);
   2657 
   2658   // Check if we have a string operation here.
   2659   Handle<Code> target;
   2660   if (!allocation_site.is_null() || state.ShouldCreateAllocationMementos()) {
   2661     // Setup the allocation site on-demand.
   2662     if (allocation_site.is_null()) {
   2663       allocation_site = isolate()->factory()->NewAllocationSite();
   2664     }
   2665 
   2666     // Install the stub with an allocation site.
   2667     BinaryOpICWithAllocationSiteStub stub(isolate(), state);
   2668     target = stub.GetCodeCopyFromTemplate(allocation_site);
   2669 
   2670     // Sanity check the trampoline stub.
   2671     ASSERT_EQ(*allocation_site, target->FindFirstAllocationSite());
   2672   } else {
   2673     // Install the generic stub.
   2674     BinaryOpICStub stub(isolate(), state);
   2675     target = stub.GetCode();
   2676 
   2677     // Sanity check the generic stub.
   2678     ASSERT_EQ(NULL, target->FindFirstAllocationSite());
   2679   }
   2680   set_target(*target);
   2681 
   2682   if (FLAG_trace_ic) {
   2683     char buffer[150];
   2684     NoAllocationStringAllocator allocator(
   2685         buffer, static_cast<unsigned>(sizeof(buffer)));
   2686     StringStream stream(&allocator);
   2687     stream.Add("[BinaryOpIC");
   2688     old_state.Print(&stream);
   2689     stream.Add(" => ");
   2690     state.Print(&stream);
   2691     stream.Add(" @ %p <- ", static_cast<void*>(*target));
   2692     stream.OutputToStdOut();
   2693     JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
   2694     if (!allocation_site.is_null()) {
   2695       PrintF(" using allocation site %p", static_cast<void*>(*allocation_site));
   2696     }
   2697     PrintF("]\n");
   2698   }
   2699 
   2700   // Patch the inlined smi code as necessary.
   2701   if (!old_state.UseInlinedSmiCode() && state.UseInlinedSmiCode()) {
   2702     PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
   2703   } else if (old_state.UseInlinedSmiCode() && !state.UseInlinedSmiCode()) {
   2704     PatchInlinedSmiCode(address(), DISABLE_INLINED_SMI_CHECK);
   2705   }
   2706 
   2707   return result;
   2708 }
   2709 
   2710 
   2711 RUNTIME_FUNCTION(BinaryOpIC_Miss) {
   2712   Logger::TimerEventScope timer(
   2713       isolate, Logger::TimerEventScope::v8_ic_miss);
   2714   HandleScope scope(isolate);
   2715   ASSERT_EQ(2, args.length());
   2716   Handle<Object> left = args.at<Object>(BinaryOpICStub::kLeft);
   2717   Handle<Object> right = args.at<Object>(BinaryOpICStub::kRight);
   2718   BinaryOpIC ic(isolate);
   2719   Handle<Object> result;
   2720   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
   2721       isolate,
   2722       result,
   2723       ic.Transition(Handle<AllocationSite>::null(), left, right));
   2724   return *result;
   2725 }
   2726 
   2727 
   2728 RUNTIME_FUNCTION(BinaryOpIC_MissWithAllocationSite) {
   2729   Logger::TimerEventScope timer(
   2730       isolate, Logger::TimerEventScope::v8_ic_miss);
   2731   HandleScope scope(isolate);
   2732   ASSERT_EQ(3, args.length());
   2733   Handle<AllocationSite> allocation_site = args.at<AllocationSite>(
   2734       BinaryOpWithAllocationSiteStub::kAllocationSite);
   2735   Handle<Object> left = args.at<Object>(
   2736       BinaryOpWithAllocationSiteStub::kLeft);
   2737   Handle<Object> right = args.at<Object>(
   2738       BinaryOpWithAllocationSiteStub::kRight);
   2739   BinaryOpIC ic(isolate);
   2740   Handle<Object> result;
   2741   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
   2742       isolate,
   2743       result,
   2744       ic.Transition(allocation_site, left, right));
   2745   return *result;
   2746 }
   2747 
   2748 
   2749 Code* CompareIC::GetRawUninitialized(Isolate* isolate, Token::Value op) {
   2750   ICCompareStub stub(isolate, op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
   2751   Code* code = NULL;
   2752   CHECK(stub.FindCodeInCache(&code));
   2753   return code;
   2754 }
   2755 
   2756 
   2757 Handle<Code> CompareIC::GetUninitialized(Isolate* isolate, Token::Value op) {
   2758   ICCompareStub stub(isolate, op, UNINITIALIZED, UNINITIALIZED, UNINITIALIZED);
   2759   return stub.GetCode();
   2760 }
   2761 
   2762 
   2763 const char* CompareIC::GetStateName(State state) {
   2764   switch (state) {
   2765     case UNINITIALIZED: return "UNINITIALIZED";
   2766     case SMI: return "SMI";
   2767     case NUMBER: return "NUMBER";
   2768     case INTERNALIZED_STRING: return "INTERNALIZED_STRING";
   2769     case STRING: return "STRING";
   2770     case UNIQUE_NAME: return "UNIQUE_NAME";
   2771     case OBJECT: return "OBJECT";
   2772     case KNOWN_OBJECT: return "KNOWN_OBJECT";
   2773     case GENERIC: return "GENERIC";
   2774   }
   2775   UNREACHABLE();
   2776   return NULL;
   2777 }
   2778 
   2779 
   2780 Type* CompareIC::StateToType(
   2781     Zone* zone,
   2782     CompareIC::State state,
   2783     Handle<Map> map) {
   2784   switch (state) {
   2785     case CompareIC::UNINITIALIZED: return Type::None(zone);
   2786     case CompareIC::SMI: return Type::SignedSmall(zone);
   2787     case CompareIC::NUMBER: return Type::Number(zone);
   2788     case CompareIC::STRING: return Type::String(zone);
   2789     case CompareIC::INTERNALIZED_STRING: return Type::InternalizedString(zone);
   2790     case CompareIC::UNIQUE_NAME: return Type::UniqueName(zone);
   2791     case CompareIC::OBJECT: return Type::Receiver(zone);
   2792     case CompareIC::KNOWN_OBJECT:
   2793       return map.is_null() ? Type::Receiver(zone) : Type::Class(map, zone);
   2794     case CompareIC::GENERIC: return Type::Any(zone);
   2795   }
   2796   UNREACHABLE();
   2797   return NULL;
   2798 }
   2799 
   2800 
   2801 void CompareIC::StubInfoToType(int stub_minor_key,
   2802                                Type** left_type,
   2803                                Type** right_type,
   2804                                Type** overall_type,
   2805                                Handle<Map> map,
   2806                                Zone* zone) {
   2807   State left_state, right_state, handler_state;
   2808   ICCompareStub::DecodeMinorKey(stub_minor_key, &left_state, &right_state,
   2809                                 &handler_state, NULL);
   2810   *left_type = StateToType(zone, left_state);
   2811   *right_type = StateToType(zone, right_state);
   2812   *overall_type = StateToType(zone, handler_state, map);
   2813 }
   2814 
   2815 
   2816 CompareIC::State CompareIC::NewInputState(State old_state,
   2817                                           Handle<Object> value) {
   2818   switch (old_state) {
   2819     case UNINITIALIZED:
   2820       if (value->IsSmi()) return SMI;
   2821       if (value->IsHeapNumber()) return NUMBER;
   2822       if (value->IsInternalizedString()) return INTERNALIZED_STRING;
   2823       if (value->IsString()) return STRING;
   2824       if (value->IsSymbol()) return UNIQUE_NAME;
   2825       if (value->IsJSObject()) return OBJECT;
   2826       break;
   2827     case SMI:
   2828       if (value->IsSmi()) return SMI;
   2829       if (value->IsHeapNumber()) return NUMBER;
   2830       break;
   2831     case NUMBER:
   2832       if (value->IsNumber()) return NUMBER;
   2833       break;
   2834     case INTERNALIZED_STRING:
   2835       if (value->IsInternalizedString()) return INTERNALIZED_STRING;
   2836       if (value->IsString()) return STRING;
   2837       if (value->IsSymbol()) return UNIQUE_NAME;
   2838       break;
   2839     case STRING:
   2840       if (value->IsString()) return STRING;
   2841       break;
   2842     case UNIQUE_NAME:
   2843       if (value->IsUniqueName()) return UNIQUE_NAME;
   2844       break;
   2845     case OBJECT:
   2846       if (value->IsJSObject()) return OBJECT;
   2847       break;
   2848     case GENERIC:
   2849       break;
   2850     case KNOWN_OBJECT:
   2851       UNREACHABLE();
   2852       break;
   2853   }
   2854   return GENERIC;
   2855 }
   2856 
   2857 
   2858 CompareIC::State CompareIC::TargetState(State old_state,
   2859                                         State old_left,
   2860                                         State old_right,
   2861                                         bool has_inlined_smi_code,
   2862                                         Handle<Object> x,
   2863                                         Handle<Object> y) {
   2864   switch (old_state) {
   2865     case UNINITIALIZED:
   2866       if (x->IsSmi() && y->IsSmi()) return SMI;
   2867       if (x->IsNumber() && y->IsNumber()) return NUMBER;
   2868       if (Token::IsOrderedRelationalCompareOp(op_)) {
   2869         // Ordered comparisons treat undefined as NaN, so the
   2870         // NUMBER stub will do the right thing.
   2871         if ((x->IsNumber() && y->IsUndefined()) ||
   2872             (y->IsNumber() && x->IsUndefined())) {
   2873           return NUMBER;
   2874         }
   2875       }
   2876       if (x->IsInternalizedString() && y->IsInternalizedString()) {
   2877         // We compare internalized strings as plain ones if we need to determine
   2878         // the order in a non-equality compare.
   2879         return Token::IsEqualityOp(op_) ? INTERNALIZED_STRING : STRING;
   2880       }
   2881       if (x->IsString() && y->IsString()) return STRING;
   2882       if (!Token::IsEqualityOp(op_)) return GENERIC;
   2883       if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
   2884       if (x->IsJSObject() && y->IsJSObject()) {
   2885         if (Handle<JSObject>::cast(x)->map() ==
   2886             Handle<JSObject>::cast(y)->map()) {
   2887           return KNOWN_OBJECT;
   2888         } else {
   2889           return OBJECT;
   2890         }
   2891       }
   2892       return GENERIC;
   2893     case SMI:
   2894       return x->IsNumber() && y->IsNumber() ? NUMBER : GENERIC;
   2895     case INTERNALIZED_STRING:
   2896       ASSERT(Token::IsEqualityOp(op_));
   2897       if (x->IsString() && y->IsString()) return STRING;
   2898       if (x->IsUniqueName() && y->IsUniqueName()) return UNIQUE_NAME;
   2899       return GENERIC;
   2900     case NUMBER:
   2901       // If the failure was due to one side changing from smi to heap number,
   2902       // then keep the state (if other changed at the same time, we will get
   2903       // a second miss and then go to generic).
   2904       if (old_left == SMI && x->IsHeapNumber()) return NUMBER;
   2905       if (old_right == SMI && y->IsHeapNumber()) return NUMBER;
   2906       return GENERIC;
   2907     case KNOWN_OBJECT:
   2908       ASSERT(Token::IsEqualityOp(op_));
   2909       if (x->IsJSObject() && y->IsJSObject()) return OBJECT;
   2910       return GENERIC;
   2911     case STRING:
   2912     case UNIQUE_NAME:
   2913     case OBJECT:
   2914     case GENERIC:
   2915       return GENERIC;
   2916   }
   2917   UNREACHABLE();
   2918   return GENERIC;  // Make the compiler happy.
   2919 }
   2920 
   2921 
   2922 Code* CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) {
   2923   HandleScope scope(isolate());
   2924   State previous_left, previous_right, previous_state;
   2925   ICCompareStub::DecodeMinorKey(target()->stub_info(), &previous_left,
   2926                                 &previous_right, &previous_state, NULL);
   2927   State new_left = NewInputState(previous_left, x);
   2928   State new_right = NewInputState(previous_right, y);
   2929   State state = TargetState(previous_state, previous_left, previous_right,
   2930                             HasInlinedSmiCode(address()), x, y);
   2931   ICCompareStub stub(isolate(), op_, new_left, new_right, state);
   2932   if (state == KNOWN_OBJECT) {
   2933     stub.set_known_map(
   2934         Handle<Map>(Handle<JSObject>::cast(x)->map(), isolate()));
   2935   }
   2936   Handle<Code> new_target = stub.GetCode();
   2937   set_target(*new_target);
   2938 
   2939   if (FLAG_trace_ic) {
   2940     PrintF("[CompareIC in ");
   2941     JavaScriptFrame::PrintTop(isolate(), stdout, false, true);
   2942     PrintF(" ((%s+%s=%s)->(%s+%s=%s))#%s @ %p]\n",
   2943            GetStateName(previous_left),
   2944            GetStateName(previous_right),
   2945            GetStateName(previous_state),
   2946            GetStateName(new_left),
   2947            GetStateName(new_right),
   2948            GetStateName(state),
   2949            Token::Name(op_),
   2950            static_cast<void*>(*stub.GetCode()));
   2951   }
   2952 
   2953   // Activate inlined smi code.
   2954   if (previous_state == UNINITIALIZED) {
   2955     PatchInlinedSmiCode(address(), ENABLE_INLINED_SMI_CHECK);
   2956   }
   2957 
   2958   return *new_target;
   2959 }
   2960 
   2961 
   2962 // Used from ICCompareStub::GenerateMiss in code-stubs-<arch>.cc.
   2963 RUNTIME_FUNCTION(CompareIC_Miss) {
   2964   Logger::TimerEventScope timer(
   2965       isolate, Logger::TimerEventScope::v8_ic_miss);
   2966   HandleScope scope(isolate);
   2967   ASSERT(args.length() == 3);
   2968   CompareIC ic(isolate, static_cast<Token::Value>(args.smi_at(2)));
   2969   return ic.UpdateCaches(args.at<Object>(0), args.at<Object>(1));
   2970 }
   2971 
   2972 
   2973 void CompareNilIC::Clear(Address address,
   2974                          Code* target,
   2975                          ConstantPoolArray* constant_pool) {
   2976   if (IsCleared(target)) return;
   2977   ExtraICState state = target->extra_ic_state();
   2978 
   2979   CompareNilICStub stub(target->GetIsolate(),
   2980                         state,
   2981                         HydrogenCodeStub::UNINITIALIZED);
   2982   stub.ClearState();
   2983 
   2984   Code* code = NULL;
   2985   CHECK(stub.FindCodeInCache(&code));
   2986 
   2987   SetTargetAtAddress(address, code, constant_pool);
   2988 }
   2989 
   2990 
   2991 Handle<Object> CompareNilIC::DoCompareNilSlow(Isolate* isolate,
   2992                                               NilValue nil,
   2993                                               Handle<Object> object) {
   2994   if (object->IsNull() || object->IsUndefined()) {
   2995     return handle(Smi::FromInt(true), isolate);
   2996   }
   2997   return handle(Smi::FromInt(object->IsUndetectableObject()), isolate);
   2998 }
   2999 
   3000 
   3001 Handle<Object> CompareNilIC::CompareNil(Handle<Object> object) {
   3002   ExtraICState extra_ic_state = target()->extra_ic_state();
   3003 
   3004   CompareNilICStub stub(isolate(), extra_ic_state);
   3005 
   3006   // Extract the current supported types from the patched IC and calculate what
   3007   // types must be supported as a result of the miss.
   3008   bool already_monomorphic = stub.IsMonomorphic();
   3009 
   3010   stub.UpdateStatus(object);
   3011 
   3012   NilValue nil = stub.GetNilValue();
   3013 
   3014   // Find or create the specialized stub to support the new set of types.
   3015   Handle<Code> code;
   3016   if (stub.IsMonomorphic()) {
   3017     Handle<Map> monomorphic_map(already_monomorphic && FirstTargetMap() != NULL
   3018                                 ? FirstTargetMap()
   3019                                 : HeapObject::cast(*object)->map());
   3020     code = isolate()->stub_cache()->ComputeCompareNil(monomorphic_map, &stub);
   3021   } else {
   3022     code = stub.GetCode();
   3023   }
   3024   set_target(*code);
   3025   return DoCompareNilSlow(isolate(), nil, object);
   3026 }
   3027 
   3028 
   3029 RUNTIME_FUNCTION(CompareNilIC_Miss) {
   3030   Logger::TimerEventScope timer(
   3031       isolate, Logger::TimerEventScope::v8_ic_miss);
   3032   HandleScope scope(isolate);
   3033   Handle<Object> object = args.at<Object>(0);
   3034   CompareNilIC ic(isolate);
   3035   return *ic.CompareNil(object);
   3036 }
   3037 
   3038 
   3039 RUNTIME_FUNCTION(Unreachable) {
   3040   UNREACHABLE();
   3041   CHECK(false);
   3042   return isolate->heap()->undefined_value();
   3043 }
   3044 
   3045 
   3046 Builtins::JavaScript BinaryOpIC::TokenToJSBuiltin(Token::Value op) {
   3047   switch (op) {
   3048     default:
   3049       UNREACHABLE();
   3050     case Token::ADD:
   3051       return Builtins::ADD;
   3052       break;
   3053     case Token::SUB:
   3054       return Builtins::SUB;
   3055       break;
   3056     case Token::MUL:
   3057       return Builtins::MUL;
   3058       break;
   3059     case Token::DIV:
   3060       return Builtins::DIV;
   3061       break;
   3062     case Token::MOD:
   3063       return Builtins::MOD;
   3064       break;
   3065     case Token::BIT_OR:
   3066       return Builtins::BIT_OR;
   3067       break;
   3068     case Token::BIT_AND:
   3069       return Builtins::BIT_AND;
   3070       break;
   3071     case Token::BIT_XOR:
   3072       return Builtins::BIT_XOR;
   3073       break;
   3074     case Token::SAR:
   3075       return Builtins::SAR;
   3076       break;
   3077     case Token::SHR:
   3078       return Builtins::SHR;
   3079       break;
   3080     case Token::SHL:
   3081       return Builtins::SHL;
   3082       break;
   3083   }
   3084 }
   3085 
   3086 
   3087 Handle<Object> ToBooleanIC::ToBoolean(Handle<Object> object) {
   3088   ToBooleanStub stub(isolate(), target()->extra_ic_state());
   3089   bool to_boolean_value = stub.UpdateStatus(object);
   3090   Handle<Code> code = stub.GetCode();
   3091   set_target(*code);
   3092   return handle(Smi::FromInt(to_boolean_value ? 1 : 0), isolate());
   3093 }
   3094 
   3095 
   3096 RUNTIME_FUNCTION(ToBooleanIC_Miss) {
   3097   Logger::TimerEventScope timer(
   3098       isolate, Logger::TimerEventScope::v8_ic_miss);
   3099   ASSERT(args.length() == 1);
   3100   HandleScope scope(isolate);
   3101   Handle<Object> object = args.at<Object>(0);
   3102   ToBooleanIC ic(isolate);
   3103   return *ic.ToBoolean(object);
   3104 }
   3105 
   3106 
   3107 static const Address IC_utilities[] = {
   3108 #define ADDR(name) FUNCTION_ADDR(name),
   3109     IC_UTIL_LIST(ADDR)
   3110     NULL
   3111 #undef ADDR
   3112 };
   3113 
   3114 
   3115 Address IC::AddressFromUtilityId(IC::UtilityId id) {
   3116   return IC_utilities[id];
   3117 }
   3118 
   3119 
   3120 } }  // namespace v8::internal
   3121