Home | History | Annotate | Download | only in Support
      1 //===--- YAMLParser.cpp - Simple YAML parser ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements a YAML parser.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Support/YAMLParser.h"
     15 #include "llvm/ADT/SmallVector.h"
     16 #include "llvm/ADT/StringExtras.h"
     17 #include "llvm/ADT/Twine.h"
     18 #include "llvm/ADT/ilist.h"
     19 #include "llvm/ADT/ilist_node.h"
     20 #include "llvm/Support/ErrorHandling.h"
     21 #include "llvm/Support/MemoryBuffer.h"
     22 #include "llvm/Support/SourceMgr.h"
     23 #include "llvm/Support/raw_ostream.h"
     24 
     25 using namespace llvm;
     26 using namespace yaml;
     27 
     28 enum UnicodeEncodingForm {
     29   UEF_UTF32_LE, ///< UTF-32 Little Endian
     30   UEF_UTF32_BE, ///< UTF-32 Big Endian
     31   UEF_UTF16_LE, ///< UTF-16 Little Endian
     32   UEF_UTF16_BE, ///< UTF-16 Big Endian
     33   UEF_UTF8,     ///< UTF-8 or ascii.
     34   UEF_Unknown   ///< Not a valid Unicode encoding.
     35 };
     36 
     37 /// EncodingInfo - Holds the encoding type and length of the byte order mark if
     38 ///                it exists. Length is in {0, 2, 3, 4}.
     39 typedef std::pair<UnicodeEncodingForm, unsigned> EncodingInfo;
     40 
     41 /// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode
     42 ///                      encoding form of \a Input.
     43 ///
     44 /// @param Input A string of length 0 or more.
     45 /// @returns An EncodingInfo indicating the Unicode encoding form of the input
     46 ///          and how long the byte order mark is if one exists.
     47 static EncodingInfo getUnicodeEncoding(StringRef Input) {
     48   if (Input.size() == 0)
     49     return std::make_pair(UEF_Unknown, 0);
     50 
     51   switch (uint8_t(Input[0])) {
     52   case 0x00:
     53     if (Input.size() >= 4) {
     54       if (  Input[1] == 0
     55          && uint8_t(Input[2]) == 0xFE
     56          && uint8_t(Input[3]) == 0xFF)
     57         return std::make_pair(UEF_UTF32_BE, 4);
     58       if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0)
     59         return std::make_pair(UEF_UTF32_BE, 0);
     60     }
     61 
     62     if (Input.size() >= 2 && Input[1] != 0)
     63       return std::make_pair(UEF_UTF16_BE, 0);
     64     return std::make_pair(UEF_Unknown, 0);
     65   case 0xFF:
     66     if (  Input.size() >= 4
     67        && uint8_t(Input[1]) == 0xFE
     68        && Input[2] == 0
     69        && Input[3] == 0)
     70       return std::make_pair(UEF_UTF32_LE, 4);
     71 
     72     if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE)
     73       return std::make_pair(UEF_UTF16_LE, 2);
     74     return std::make_pair(UEF_Unknown, 0);
     75   case 0xFE:
     76     if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF)
     77       return std::make_pair(UEF_UTF16_BE, 2);
     78     return std::make_pair(UEF_Unknown, 0);
     79   case 0xEF:
     80     if (  Input.size() >= 3
     81        && uint8_t(Input[1]) == 0xBB
     82        && uint8_t(Input[2]) == 0xBF)
     83       return std::make_pair(UEF_UTF8, 3);
     84     return std::make_pair(UEF_Unknown, 0);
     85   }
     86 
     87   // It could still be utf-32 or utf-16.
     88   if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0)
     89     return std::make_pair(UEF_UTF32_LE, 0);
     90 
     91   if (Input.size() >= 2 && Input[1] == 0)
     92     return std::make_pair(UEF_UTF16_LE, 0);
     93 
     94   return std::make_pair(UEF_UTF8, 0);
     95 }
     96 
     97 namespace llvm {
     98 namespace yaml {
     99 /// Pin the vtables to this file.
    100 void Node::anchor() {}
    101 void NullNode::anchor() {}
    102 void ScalarNode::anchor() {}
    103 void KeyValueNode::anchor() {}
    104 void MappingNode::anchor() {}
    105 void SequenceNode::anchor() {}
    106 void AliasNode::anchor() {}
    107 
    108 /// Token - A single YAML token.
    109 struct Token : ilist_node<Token> {
    110   enum TokenKind {
    111     TK_Error, // Uninitialized token.
    112     TK_StreamStart,
    113     TK_StreamEnd,
    114     TK_VersionDirective,
    115     TK_TagDirective,
    116     TK_DocumentStart,
    117     TK_DocumentEnd,
    118     TK_BlockEntry,
    119     TK_BlockEnd,
    120     TK_BlockSequenceStart,
    121     TK_BlockMappingStart,
    122     TK_FlowEntry,
    123     TK_FlowSequenceStart,
    124     TK_FlowSequenceEnd,
    125     TK_FlowMappingStart,
    126     TK_FlowMappingEnd,
    127     TK_Key,
    128     TK_Value,
    129     TK_Scalar,
    130     TK_Alias,
    131     TK_Anchor,
    132     TK_Tag
    133   } Kind;
    134 
    135   /// A string of length 0 or more whose begin() points to the logical location
    136   /// of the token in the input.
    137   StringRef Range;
    138 
    139   Token() : Kind(TK_Error) {}
    140 };
    141 }
    142 }
    143 
    144 namespace llvm {
    145 template<>
    146 struct ilist_sentinel_traits<Token> {
    147   Token *createSentinel() const {
    148     return &Sentinel;
    149   }
    150   static void destroySentinel(Token*) {}
    151 
    152   Token *provideInitialHead() const { return createSentinel(); }
    153   Token *ensureHead(Token*) const { return createSentinel(); }
    154   static void noteHead(Token*, Token*) {}
    155 
    156 private:
    157   mutable Token Sentinel;
    158 };
    159 
    160 template<>
    161 struct ilist_node_traits<Token> {
    162   Token *createNode(const Token &V) {
    163     return new (Alloc.Allocate<Token>()) Token(V);
    164   }
    165   static void deleteNode(Token *V) {}
    166 
    167   void addNodeToList(Token *) {}
    168   void removeNodeFromList(Token *) {}
    169   void transferNodesFromList(ilist_node_traits &    /*SrcTraits*/,
    170                              ilist_iterator<Token> /*first*/,
    171                              ilist_iterator<Token> /*last*/) {}
    172 
    173   BumpPtrAllocator Alloc;
    174 };
    175 }
    176 
    177 typedef ilist<Token> TokenQueueT;
    178 
    179 namespace {
    180 /// @brief This struct is used to track simple keys.
    181 ///
    182 /// Simple keys are handled by creating an entry in SimpleKeys for each Token
    183 /// which could legally be the start of a simple key. When peekNext is called,
    184 /// if the Token To be returned is referenced by a SimpleKey, we continue
    185 /// tokenizing until that potential simple key has either been found to not be
    186 /// a simple key (we moved on to the next line or went further than 1024 chars).
    187 /// Or when we run into a Value, and then insert a Key token (and possibly
    188 /// others) before the SimpleKey's Tok.
    189 struct SimpleKey {
    190   TokenQueueT::iterator Tok;
    191   unsigned Column;
    192   unsigned Line;
    193   unsigned FlowLevel;
    194   bool IsRequired;
    195 
    196   bool operator ==(const SimpleKey &Other) {
    197     return Tok == Other.Tok;
    198   }
    199 };
    200 }
    201 
    202 /// @brief The Unicode scalar value of a UTF-8 minimal well-formed code unit
    203 ///        subsequence and the subsequence's length in code units (uint8_t).
    204 ///        A length of 0 represents an error.
    205 typedef std::pair<uint32_t, unsigned> UTF8Decoded;
    206 
    207 static UTF8Decoded decodeUTF8(StringRef Range) {
    208   StringRef::iterator Position= Range.begin();
    209   StringRef::iterator End = Range.end();
    210   // 1 byte: [0x00, 0x7f]
    211   // Bit pattern: 0xxxxxxx
    212   if ((*Position & 0x80) == 0) {
    213      return std::make_pair(*Position, 1);
    214   }
    215   // 2 bytes: [0x80, 0x7ff]
    216   // Bit pattern: 110xxxxx 10xxxxxx
    217   if (Position + 1 != End &&
    218       ((*Position & 0xE0) == 0xC0) &&
    219       ((*(Position + 1) & 0xC0) == 0x80)) {
    220     uint32_t codepoint = ((*Position & 0x1F) << 6) |
    221                           (*(Position + 1) & 0x3F);
    222     if (codepoint >= 0x80)
    223       return std::make_pair(codepoint, 2);
    224   }
    225   // 3 bytes: [0x8000, 0xffff]
    226   // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx
    227   if (Position + 2 != End &&
    228       ((*Position & 0xF0) == 0xE0) &&
    229       ((*(Position + 1) & 0xC0) == 0x80) &&
    230       ((*(Position + 2) & 0xC0) == 0x80)) {
    231     uint32_t codepoint = ((*Position & 0x0F) << 12) |
    232                          ((*(Position + 1) & 0x3F) << 6) |
    233                           (*(Position + 2) & 0x3F);
    234     // Codepoints between 0xD800 and 0xDFFF are invalid, as
    235     // they are high / low surrogate halves used by UTF-16.
    236     if (codepoint >= 0x800 &&
    237         (codepoint < 0xD800 || codepoint > 0xDFFF))
    238       return std::make_pair(codepoint, 3);
    239   }
    240   // 4 bytes: [0x10000, 0x10FFFF]
    241   // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
    242   if (Position + 3 != End &&
    243       ((*Position & 0xF8) == 0xF0) &&
    244       ((*(Position + 1) & 0xC0) == 0x80) &&
    245       ((*(Position + 2) & 0xC0) == 0x80) &&
    246       ((*(Position + 3) & 0xC0) == 0x80)) {
    247     uint32_t codepoint = ((*Position & 0x07) << 18) |
    248                          ((*(Position + 1) & 0x3F) << 12) |
    249                          ((*(Position + 2) & 0x3F) << 6) |
    250                           (*(Position + 3) & 0x3F);
    251     if (codepoint >= 0x10000 && codepoint <= 0x10FFFF)
    252       return std::make_pair(codepoint, 4);
    253   }
    254   return std::make_pair(0, 0);
    255 }
    256 
    257 namespace llvm {
    258 namespace yaml {
    259 /// @brief Scans YAML tokens from a MemoryBuffer.
    260 class Scanner {
    261 public:
    262   Scanner(const StringRef Input, SourceMgr &SM);
    263   Scanner(MemoryBuffer *Buffer, SourceMgr &SM_);
    264 
    265   /// @brief Parse the next token and return it without popping it.
    266   Token &peekNext();
    267 
    268   /// @brief Parse the next token and pop it from the queue.
    269   Token getNext();
    270 
    271   void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message,
    272                   ArrayRef<SMRange> Ranges = None) {
    273     SM.PrintMessage(Loc, Kind, Message, Ranges);
    274   }
    275 
    276   void setError(const Twine &Message, StringRef::iterator Position) {
    277     if (Current >= End)
    278       Current = End - 1;
    279 
    280     // Don't print out more errors after the first one we encounter. The rest
    281     // are just the result of the first, and have no meaning.
    282     if (!Failed)
    283       printError(SMLoc::getFromPointer(Current), SourceMgr::DK_Error, Message);
    284     Failed = true;
    285   }
    286 
    287   void setError(const Twine &Message) {
    288     setError(Message, Current);
    289   }
    290 
    291   /// @brief Returns true if an error occurred while parsing.
    292   bool failed() {
    293     return Failed;
    294   }
    295 
    296 private:
    297   StringRef currentInput() {
    298     return StringRef(Current, End - Current);
    299   }
    300 
    301   /// @brief Decode a UTF-8 minimal well-formed code unit subsequence starting
    302   ///        at \a Position.
    303   ///
    304   /// If the UTF-8 code units starting at Position do not form a well-formed
    305   /// code unit subsequence, then the Unicode scalar value is 0, and the length
    306   /// is 0.
    307   UTF8Decoded decodeUTF8(StringRef::iterator Position) {
    308     return ::decodeUTF8(StringRef(Position, End - Position));
    309   }
    310 
    311   // The following functions are based on the gramar rules in the YAML spec. The
    312   // style of the function names it meant to closely match how they are written
    313   // in the spec. The number within the [] is the number of the grammar rule in
    314   // the spec.
    315   //
    316   // See 4.2 [Production Naming Conventions] for the meaning of the prefixes.
    317   //
    318   // c-
    319   //   A production starting and ending with a special character.
    320   // b-
    321   //   A production matching a single line break.
    322   // nb-
    323   //   A production starting and ending with a non-break character.
    324   // s-
    325   //   A production starting and ending with a white space character.
    326   // ns-
    327   //   A production starting and ending with a non-space character.
    328   // l-
    329   //   A production matching complete line(s).
    330 
    331   /// @brief Skip a single nb-char[27] starting at Position.
    332   ///
    333   /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE]
    334   ///                  | [0xFF00-0xFFFD] | [0x10000-0x10FFFF]
    335   ///
    336   /// @returns The code unit after the nb-char, or Position if it's not an
    337   ///          nb-char.
    338   StringRef::iterator skip_nb_char(StringRef::iterator Position);
    339 
    340   /// @brief Skip a single b-break[28] starting at Position.
    341   ///
    342   /// A b-break is 0xD 0xA | 0xD | 0xA
    343   ///
    344   /// @returns The code unit after the b-break, or Position if it's not a
    345   ///          b-break.
    346   StringRef::iterator skip_b_break(StringRef::iterator Position);
    347 
    348   /// @brief Skip a single s-white[33] starting at Position.
    349   ///
    350   /// A s-white is 0x20 | 0x9
    351   ///
    352   /// @returns The code unit after the s-white, or Position if it's not a
    353   ///          s-white.
    354   StringRef::iterator skip_s_white(StringRef::iterator Position);
    355 
    356   /// @brief Skip a single ns-char[34] starting at Position.
    357   ///
    358   /// A ns-char is nb-char - s-white
    359   ///
    360   /// @returns The code unit after the ns-char, or Position if it's not a
    361   ///          ns-char.
    362   StringRef::iterator skip_ns_char(StringRef::iterator Position);
    363 
    364   typedef StringRef::iterator (Scanner::*SkipWhileFunc)(StringRef::iterator);
    365   /// @brief Skip minimal well-formed code unit subsequences until Func
    366   ///        returns its input.
    367   ///
    368   /// @returns The code unit after the last minimal well-formed code unit
    369   ///          subsequence that Func accepted.
    370   StringRef::iterator skip_while( SkipWhileFunc Func
    371                                 , StringRef::iterator Position);
    372 
    373   /// @brief Scan ns-uri-char[39]s starting at Cur.
    374   ///
    375   /// This updates Cur and Column while scanning.
    376   ///
    377   /// @returns A StringRef starting at Cur which covers the longest contiguous
    378   ///          sequence of ns-uri-char.
    379   StringRef scan_ns_uri_char();
    380 
    381   /// @brief Consume a minimal well-formed code unit subsequence starting at
    382   ///        \a Cur. Return false if it is not the same Unicode scalar value as
    383   ///        \a Expected. This updates \a Column.
    384   bool consume(uint32_t Expected);
    385 
    386   /// @brief Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column.
    387   void skip(uint32_t Distance);
    388 
    389   /// @brief Return true if the minimal well-formed code unit subsequence at
    390   ///        Pos is whitespace or a new line
    391   bool isBlankOrBreak(StringRef::iterator Position);
    392 
    393   /// @brief If IsSimpleKeyAllowed, create and push_back a new SimpleKey.
    394   void saveSimpleKeyCandidate( TokenQueueT::iterator Tok
    395                              , unsigned AtColumn
    396                              , bool IsRequired);
    397 
    398   /// @brief Remove simple keys that can no longer be valid simple keys.
    399   ///
    400   /// Invalid simple keys are not on the current line or are further than 1024
    401   /// columns back.
    402   void removeStaleSimpleKeyCandidates();
    403 
    404   /// @brief Remove all simple keys on FlowLevel \a Level.
    405   void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level);
    406 
    407   /// @brief Unroll indentation in \a Indents back to \a Col. Creates BlockEnd
    408   ///        tokens if needed.
    409   bool unrollIndent(int ToColumn);
    410 
    411   /// @brief Increase indent to \a Col. Creates \a Kind token at \a InsertPoint
    412   ///        if needed.
    413   bool rollIndent( int ToColumn
    414                  , Token::TokenKind Kind
    415                  , TokenQueueT::iterator InsertPoint);
    416 
    417   /// @brief Skip whitespace and comments until the start of the next token.
    418   void scanToNextToken();
    419 
    420   /// @brief Must be the first token generated.
    421   bool scanStreamStart();
    422 
    423   /// @brief Generate tokens needed to close out the stream.
    424   bool scanStreamEnd();
    425 
    426   /// @brief Scan a %BLAH directive.
    427   bool scanDirective();
    428 
    429   /// @brief Scan a ... or ---.
    430   bool scanDocumentIndicator(bool IsStart);
    431 
    432   /// @brief Scan a [ or { and generate the proper flow collection start token.
    433   bool scanFlowCollectionStart(bool IsSequence);
    434 
    435   /// @brief Scan a ] or } and generate the proper flow collection end token.
    436   bool scanFlowCollectionEnd(bool IsSequence);
    437 
    438   /// @brief Scan the , that separates entries in a flow collection.
    439   bool scanFlowEntry();
    440 
    441   /// @brief Scan the - that starts block sequence entries.
    442   bool scanBlockEntry();
    443 
    444   /// @brief Scan an explicit ? indicating a key.
    445   bool scanKey();
    446 
    447   /// @brief Scan an explicit : indicating a value.
    448   bool scanValue();
    449 
    450   /// @brief Scan a quoted scalar.
    451   bool scanFlowScalar(bool IsDoubleQuoted);
    452 
    453   /// @brief Scan an unquoted scalar.
    454   bool scanPlainScalar();
    455 
    456   /// @brief Scan an Alias or Anchor starting with * or &.
    457   bool scanAliasOrAnchor(bool IsAlias);
    458 
    459   /// @brief Scan a block scalar starting with | or >.
    460   bool scanBlockScalar(bool IsLiteral);
    461 
    462   /// @brief Scan a tag of the form !stuff.
    463   bool scanTag();
    464 
    465   /// @brief Dispatch to the next scanning function based on \a *Cur.
    466   bool fetchMoreTokens();
    467 
    468   /// @brief The SourceMgr used for diagnostics and buffer management.
    469   SourceMgr &SM;
    470 
    471   /// @brief The original input.
    472   MemoryBuffer *InputBuffer;
    473 
    474   /// @brief The current position of the scanner.
    475   StringRef::iterator Current;
    476 
    477   /// @brief The end of the input (one past the last character).
    478   StringRef::iterator End;
    479 
    480   /// @brief Current YAML indentation level in spaces.
    481   int Indent;
    482 
    483   /// @brief Current column number in Unicode code points.
    484   unsigned Column;
    485 
    486   /// @brief Current line number.
    487   unsigned Line;
    488 
    489   /// @brief How deep we are in flow style containers. 0 Means at block level.
    490   unsigned FlowLevel;
    491 
    492   /// @brief Are we at the start of the stream?
    493   bool IsStartOfStream;
    494 
    495   /// @brief Can the next token be the start of a simple key?
    496   bool IsSimpleKeyAllowed;
    497 
    498   /// @brief True if an error has occurred.
    499   bool Failed;
    500 
    501   /// @brief Queue of tokens. This is required to queue up tokens while looking
    502   ///        for the end of a simple key. And for cases where a single character
    503   ///        can produce multiple tokens (e.g. BlockEnd).
    504   TokenQueueT TokenQueue;
    505 
    506   /// @brief Indentation levels.
    507   SmallVector<int, 4> Indents;
    508 
    509   /// @brief Potential simple keys.
    510   SmallVector<SimpleKey, 4> SimpleKeys;
    511 };
    512 
    513 } // end namespace yaml
    514 } // end namespace llvm
    515 
    516 /// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result.
    517 static void encodeUTF8( uint32_t UnicodeScalarValue
    518                       , SmallVectorImpl<char> &Result) {
    519   if (UnicodeScalarValue <= 0x7F) {
    520     Result.push_back(UnicodeScalarValue & 0x7F);
    521   } else if (UnicodeScalarValue <= 0x7FF) {
    522     uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6);
    523     uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F);
    524     Result.push_back(FirstByte);
    525     Result.push_back(SecondByte);
    526   } else if (UnicodeScalarValue <= 0xFFFF) {
    527     uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12);
    528     uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
    529     uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F);
    530     Result.push_back(FirstByte);
    531     Result.push_back(SecondByte);
    532     Result.push_back(ThirdByte);
    533   } else if (UnicodeScalarValue <= 0x10FFFF) {
    534     uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18);
    535     uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12);
    536     uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
    537     uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F);
    538     Result.push_back(FirstByte);
    539     Result.push_back(SecondByte);
    540     Result.push_back(ThirdByte);
    541     Result.push_back(FourthByte);
    542   }
    543 }
    544 
    545 bool yaml::dumpTokens(StringRef Input, raw_ostream &OS) {
    546   SourceMgr SM;
    547   Scanner scanner(Input, SM);
    548   while (true) {
    549     Token T = scanner.getNext();
    550     switch (T.Kind) {
    551     case Token::TK_StreamStart:
    552       OS << "Stream-Start: ";
    553       break;
    554     case Token::TK_StreamEnd:
    555       OS << "Stream-End: ";
    556       break;
    557     case Token::TK_VersionDirective:
    558       OS << "Version-Directive: ";
    559       break;
    560     case Token::TK_TagDirective:
    561       OS << "Tag-Directive: ";
    562       break;
    563     case Token::TK_DocumentStart:
    564       OS << "Document-Start: ";
    565       break;
    566     case Token::TK_DocumentEnd:
    567       OS << "Document-End: ";
    568       break;
    569     case Token::TK_BlockEntry:
    570       OS << "Block-Entry: ";
    571       break;
    572     case Token::TK_BlockEnd:
    573       OS << "Block-End: ";
    574       break;
    575     case Token::TK_BlockSequenceStart:
    576       OS << "Block-Sequence-Start: ";
    577       break;
    578     case Token::TK_BlockMappingStart:
    579       OS << "Block-Mapping-Start: ";
    580       break;
    581     case Token::TK_FlowEntry:
    582       OS << "Flow-Entry: ";
    583       break;
    584     case Token::TK_FlowSequenceStart:
    585       OS << "Flow-Sequence-Start: ";
    586       break;
    587     case Token::TK_FlowSequenceEnd:
    588       OS << "Flow-Sequence-End: ";
    589       break;
    590     case Token::TK_FlowMappingStart:
    591       OS << "Flow-Mapping-Start: ";
    592       break;
    593     case Token::TK_FlowMappingEnd:
    594       OS << "Flow-Mapping-End: ";
    595       break;
    596     case Token::TK_Key:
    597       OS << "Key: ";
    598       break;
    599     case Token::TK_Value:
    600       OS << "Value: ";
    601       break;
    602     case Token::TK_Scalar:
    603       OS << "Scalar: ";
    604       break;
    605     case Token::TK_Alias:
    606       OS << "Alias: ";
    607       break;
    608     case Token::TK_Anchor:
    609       OS << "Anchor: ";
    610       break;
    611     case Token::TK_Tag:
    612       OS << "Tag: ";
    613       break;
    614     case Token::TK_Error:
    615       break;
    616     }
    617     OS << T.Range << "\n";
    618     if (T.Kind == Token::TK_StreamEnd)
    619       break;
    620     else if (T.Kind == Token::TK_Error)
    621       return false;
    622   }
    623   return true;
    624 }
    625 
    626 bool yaml::scanTokens(StringRef Input) {
    627   llvm::SourceMgr SM;
    628   llvm::yaml::Scanner scanner(Input, SM);
    629   for (;;) {
    630     llvm::yaml::Token T = scanner.getNext();
    631     if (T.Kind == Token::TK_StreamEnd)
    632       break;
    633     else if (T.Kind == Token::TK_Error)
    634       return false;
    635   }
    636   return true;
    637 }
    638 
    639 std::string yaml::escape(StringRef Input) {
    640   std::string EscapedInput;
    641   for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) {
    642     if (*i == '\\')
    643       EscapedInput += "\\\\";
    644     else if (*i == '"')
    645       EscapedInput += "\\\"";
    646     else if (*i == 0)
    647       EscapedInput += "\\0";
    648     else if (*i == 0x07)
    649       EscapedInput += "\\a";
    650     else if (*i == 0x08)
    651       EscapedInput += "\\b";
    652     else if (*i == 0x09)
    653       EscapedInput += "\\t";
    654     else if (*i == 0x0A)
    655       EscapedInput += "\\n";
    656     else if (*i == 0x0B)
    657       EscapedInput += "\\v";
    658     else if (*i == 0x0C)
    659       EscapedInput += "\\f";
    660     else if (*i == 0x0D)
    661       EscapedInput += "\\r";
    662     else if (*i == 0x1B)
    663       EscapedInput += "\\e";
    664     else if ((unsigned char)*i < 0x20) { // Control characters not handled above.
    665       std::string HexStr = utohexstr(*i);
    666       EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
    667     } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence.
    668       UTF8Decoded UnicodeScalarValue
    669         = decodeUTF8(StringRef(i, Input.end() - i));
    670       if (UnicodeScalarValue.second == 0) {
    671         // Found invalid char.
    672         SmallString<4> Val;
    673         encodeUTF8(0xFFFD, Val);
    674         EscapedInput.insert(EscapedInput.end(), Val.begin(), Val.end());
    675         // FIXME: Error reporting.
    676         return EscapedInput;
    677       }
    678       if (UnicodeScalarValue.first == 0x85)
    679         EscapedInput += "\\N";
    680       else if (UnicodeScalarValue.first == 0xA0)
    681         EscapedInput += "\\_";
    682       else if (UnicodeScalarValue.first == 0x2028)
    683         EscapedInput += "\\L";
    684       else if (UnicodeScalarValue.first == 0x2029)
    685         EscapedInput += "\\P";
    686       else {
    687         std::string HexStr = utohexstr(UnicodeScalarValue.first);
    688         if (HexStr.size() <= 2)
    689           EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
    690         else if (HexStr.size() <= 4)
    691           EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr;
    692         else if (HexStr.size() <= 8)
    693           EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr;
    694       }
    695       i += UnicodeScalarValue.second - 1;
    696     } else
    697       EscapedInput.push_back(*i);
    698   }
    699   return EscapedInput;
    700 }
    701 
    702 Scanner::Scanner(StringRef Input, SourceMgr &sm)
    703   : SM(sm)
    704   , Indent(-1)
    705   , Column(0)
    706   , Line(0)
    707   , FlowLevel(0)
    708   , IsStartOfStream(true)
    709   , IsSimpleKeyAllowed(true)
    710   , Failed(false) {
    711   InputBuffer = MemoryBuffer::getMemBuffer(Input, "YAML");
    712   SM.AddNewSourceBuffer(InputBuffer, SMLoc());
    713   Current = InputBuffer->getBufferStart();
    714   End = InputBuffer->getBufferEnd();
    715 }
    716 
    717 Scanner::Scanner(MemoryBuffer *Buffer, SourceMgr &SM_)
    718   : SM(SM_)
    719   , InputBuffer(Buffer)
    720   , Current(InputBuffer->getBufferStart())
    721   , End(InputBuffer->getBufferEnd())
    722   , Indent(-1)
    723   , Column(0)
    724   , Line(0)
    725   , FlowLevel(0)
    726   , IsStartOfStream(true)
    727   , IsSimpleKeyAllowed(true)
    728   , Failed(false) {
    729     SM.AddNewSourceBuffer(InputBuffer, SMLoc());
    730 }
    731 
    732 Token &Scanner::peekNext() {
    733   // If the current token is a possible simple key, keep parsing until we
    734   // can confirm.
    735   bool NeedMore = false;
    736   while (true) {
    737     if (TokenQueue.empty() || NeedMore) {
    738       if (!fetchMoreTokens()) {
    739         TokenQueue.clear();
    740         TokenQueue.push_back(Token());
    741         return TokenQueue.front();
    742       }
    743     }
    744     assert(!TokenQueue.empty() &&
    745             "fetchMoreTokens lied about getting tokens!");
    746 
    747     removeStaleSimpleKeyCandidates();
    748     SimpleKey SK;
    749     SK.Tok = TokenQueue.front();
    750     if (std::find(SimpleKeys.begin(), SimpleKeys.end(), SK)
    751         == SimpleKeys.end())
    752       break;
    753     else
    754       NeedMore = true;
    755   }
    756   return TokenQueue.front();
    757 }
    758 
    759 Token Scanner::getNext() {
    760   Token Ret = peekNext();
    761   // TokenQueue can be empty if there was an error getting the next token.
    762   if (!TokenQueue.empty())
    763     TokenQueue.pop_front();
    764 
    765   // There cannot be any referenced Token's if the TokenQueue is empty. So do a
    766   // quick deallocation of them all.
    767   if (TokenQueue.empty()) {
    768     TokenQueue.Alloc.Reset();
    769   }
    770 
    771   return Ret;
    772 }
    773 
    774 StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) {
    775   if (Position == End)
    776     return Position;
    777   // Check 7 bit c-printable - b-char.
    778   if (   *Position == 0x09
    779       || (*Position >= 0x20 && *Position <= 0x7E))
    780     return Position + 1;
    781 
    782   // Check for valid UTF-8.
    783   if (uint8_t(*Position) & 0x80) {
    784     UTF8Decoded u8d = decodeUTF8(Position);
    785     if (   u8d.second != 0
    786         && u8d.first != 0xFEFF
    787         && ( u8d.first == 0x85
    788           || ( u8d.first >= 0xA0
    789             && u8d.first <= 0xD7FF)
    790           || ( u8d.first >= 0xE000
    791             && u8d.first <= 0xFFFD)
    792           || ( u8d.first >= 0x10000
    793             && u8d.first <= 0x10FFFF)))
    794       return Position + u8d.second;
    795   }
    796   return Position;
    797 }
    798 
    799 StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) {
    800   if (Position == End)
    801     return Position;
    802   if (*Position == 0x0D) {
    803     if (Position + 1 != End && *(Position + 1) == 0x0A)
    804       return Position + 2;
    805     return Position + 1;
    806   }
    807 
    808   if (*Position == 0x0A)
    809     return Position + 1;
    810   return Position;
    811 }
    812 
    813 
    814 StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) {
    815   if (Position == End)
    816     return Position;
    817   if (*Position == ' ' || *Position == '\t')
    818     return Position + 1;
    819   return Position;
    820 }
    821 
    822 StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) {
    823   if (Position == End)
    824     return Position;
    825   if (*Position == ' ' || *Position == '\t')
    826     return Position;
    827   return skip_nb_char(Position);
    828 }
    829 
    830 StringRef::iterator Scanner::skip_while( SkipWhileFunc Func
    831                                        , StringRef::iterator Position) {
    832   while (true) {
    833     StringRef::iterator i = (this->*Func)(Position);
    834     if (i == Position)
    835       break;
    836     Position = i;
    837   }
    838   return Position;
    839 }
    840 
    841 static bool is_ns_hex_digit(const char C) {
    842   return    (C >= '0' && C <= '9')
    843          || (C >= 'a' && C <= 'z')
    844          || (C >= 'A' && C <= 'Z');
    845 }
    846 
    847 static bool is_ns_word_char(const char C) {
    848   return    C == '-'
    849          || (C >= 'a' && C <= 'z')
    850          || (C >= 'A' && C <= 'Z');
    851 }
    852 
    853 StringRef Scanner::scan_ns_uri_char() {
    854   StringRef::iterator Start = Current;
    855   while (true) {
    856     if (Current == End)
    857       break;
    858     if ((   *Current == '%'
    859           && Current + 2 < End
    860           && is_ns_hex_digit(*(Current + 1))
    861           && is_ns_hex_digit(*(Current + 2)))
    862         || is_ns_word_char(*Current)
    863         || StringRef(Current, 1).find_first_of("#;/?:@&=+$,_.!~*'()[]")
    864           != StringRef::npos) {
    865       ++Current;
    866       ++Column;
    867     } else
    868       break;
    869   }
    870   return StringRef(Start, Current - Start);
    871 }
    872 
    873 bool Scanner::consume(uint32_t Expected) {
    874   if (Expected >= 0x80)
    875     report_fatal_error("Not dealing with this yet");
    876   if (Current == End)
    877     return false;
    878   if (uint8_t(*Current) >= 0x80)
    879     report_fatal_error("Not dealing with this yet");
    880   if (uint8_t(*Current) == Expected) {
    881     ++Current;
    882     ++Column;
    883     return true;
    884   }
    885   return false;
    886 }
    887 
    888 void Scanner::skip(uint32_t Distance) {
    889   Current += Distance;
    890   Column += Distance;
    891   assert(Current <= End && "Skipped past the end");
    892 }
    893 
    894 bool Scanner::isBlankOrBreak(StringRef::iterator Position) {
    895   if (Position == End)
    896     return false;
    897   if (   *Position == ' ' || *Position == '\t'
    898       || *Position == '\r' || *Position == '\n')
    899     return true;
    900   return false;
    901 }
    902 
    903 void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok
    904                                     , unsigned AtColumn
    905                                     , bool IsRequired) {
    906   if (IsSimpleKeyAllowed) {
    907     SimpleKey SK;
    908     SK.Tok = Tok;
    909     SK.Line = Line;
    910     SK.Column = AtColumn;
    911     SK.IsRequired = IsRequired;
    912     SK.FlowLevel = FlowLevel;
    913     SimpleKeys.push_back(SK);
    914   }
    915 }
    916 
    917 void Scanner::removeStaleSimpleKeyCandidates() {
    918   for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin();
    919                                             i != SimpleKeys.end();) {
    920     if (i->Line != Line || i->Column + 1024 < Column) {
    921       if (i->IsRequired)
    922         setError( "Could not find expected : for simple key"
    923                 , i->Tok->Range.begin());
    924       i = SimpleKeys.erase(i);
    925     } else
    926       ++i;
    927   }
    928 }
    929 
    930 void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) {
    931   if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level)
    932     SimpleKeys.pop_back();
    933 }
    934 
    935 bool Scanner::unrollIndent(int ToColumn) {
    936   Token T;
    937   // Indentation is ignored in flow.
    938   if (FlowLevel != 0)
    939     return true;
    940 
    941   while (Indent > ToColumn) {
    942     T.Kind = Token::TK_BlockEnd;
    943     T.Range = StringRef(Current, 1);
    944     TokenQueue.push_back(T);
    945     Indent = Indents.pop_back_val();
    946   }
    947 
    948   return true;
    949 }
    950 
    951 bool Scanner::rollIndent( int ToColumn
    952                         , Token::TokenKind Kind
    953                         , TokenQueueT::iterator InsertPoint) {
    954   if (FlowLevel)
    955     return true;
    956   if (Indent < ToColumn) {
    957     Indents.push_back(Indent);
    958     Indent = ToColumn;
    959 
    960     Token T;
    961     T.Kind = Kind;
    962     T.Range = StringRef(Current, 0);
    963     TokenQueue.insert(InsertPoint, T);
    964   }
    965   return true;
    966 }
    967 
    968 void Scanner::scanToNextToken() {
    969   while (true) {
    970     while (*Current == ' ' || *Current == '\t') {
    971       skip(1);
    972     }
    973 
    974     // Skip comment.
    975     if (*Current == '#') {
    976       while (true) {
    977         // This may skip more than one byte, thus Column is only incremented
    978         // for code points.
    979         StringRef::iterator i = skip_nb_char(Current);
    980         if (i == Current)
    981           break;
    982         Current = i;
    983         ++Column;
    984       }
    985     }
    986 
    987     // Skip EOL.
    988     StringRef::iterator i = skip_b_break(Current);
    989     if (i == Current)
    990       break;
    991     Current = i;
    992     ++Line;
    993     Column = 0;
    994     // New lines may start a simple key.
    995     if (!FlowLevel)
    996       IsSimpleKeyAllowed = true;
    997   }
    998 }
    999 
   1000 bool Scanner::scanStreamStart() {
   1001   IsStartOfStream = false;
   1002 
   1003   EncodingInfo EI = getUnicodeEncoding(currentInput());
   1004 
   1005   Token T;
   1006   T.Kind = Token::TK_StreamStart;
   1007   T.Range = StringRef(Current, EI.second);
   1008   TokenQueue.push_back(T);
   1009   Current += EI.second;
   1010   return true;
   1011 }
   1012 
   1013 bool Scanner::scanStreamEnd() {
   1014   // Force an ending new line if one isn't present.
   1015   if (Column != 0) {
   1016     Column = 0;
   1017     ++Line;
   1018   }
   1019 
   1020   unrollIndent(-1);
   1021   SimpleKeys.clear();
   1022   IsSimpleKeyAllowed = false;
   1023 
   1024   Token T;
   1025   T.Kind = Token::TK_StreamEnd;
   1026   T.Range = StringRef(Current, 0);
   1027   TokenQueue.push_back(T);
   1028   return true;
   1029 }
   1030 
   1031 bool Scanner::scanDirective() {
   1032   // Reset the indentation level.
   1033   unrollIndent(-1);
   1034   SimpleKeys.clear();
   1035   IsSimpleKeyAllowed = false;
   1036 
   1037   StringRef::iterator Start = Current;
   1038   consume('%');
   1039   StringRef::iterator NameStart = Current;
   1040   Current = skip_while(&Scanner::skip_ns_char, Current);
   1041   StringRef Name(NameStart, Current - NameStart);
   1042   Current = skip_while(&Scanner::skip_s_white, Current);
   1043 
   1044   Token T;
   1045   if (Name == "YAML") {
   1046     Current = skip_while(&Scanner::skip_ns_char, Current);
   1047     T.Kind = Token::TK_VersionDirective;
   1048     T.Range = StringRef(Start, Current - Start);
   1049     TokenQueue.push_back(T);
   1050     return true;
   1051   } else if(Name == "TAG") {
   1052     Current = skip_while(&Scanner::skip_ns_char, Current);
   1053     Current = skip_while(&Scanner::skip_s_white, Current);
   1054     Current = skip_while(&Scanner::skip_ns_char, Current);
   1055     T.Kind = Token::TK_TagDirective;
   1056     T.Range = StringRef(Start, Current - Start);
   1057     TokenQueue.push_back(T);
   1058     return true;
   1059   }
   1060   return false;
   1061 }
   1062 
   1063 bool Scanner::scanDocumentIndicator(bool IsStart) {
   1064   unrollIndent(-1);
   1065   SimpleKeys.clear();
   1066   IsSimpleKeyAllowed = false;
   1067 
   1068   Token T;
   1069   T.Kind = IsStart ? Token::TK_DocumentStart : Token::TK_DocumentEnd;
   1070   T.Range = StringRef(Current, 3);
   1071   skip(3);
   1072   TokenQueue.push_back(T);
   1073   return true;
   1074 }
   1075 
   1076 bool Scanner::scanFlowCollectionStart(bool IsSequence) {
   1077   Token T;
   1078   T.Kind = IsSequence ? Token::TK_FlowSequenceStart
   1079                       : Token::TK_FlowMappingStart;
   1080   T.Range = StringRef(Current, 1);
   1081   skip(1);
   1082   TokenQueue.push_back(T);
   1083 
   1084   // [ and { may begin a simple key.
   1085   saveSimpleKeyCandidate(TokenQueue.back(), Column - 1, false);
   1086 
   1087   // And may also be followed by a simple key.
   1088   IsSimpleKeyAllowed = true;
   1089   ++FlowLevel;
   1090   return true;
   1091 }
   1092 
   1093 bool Scanner::scanFlowCollectionEnd(bool IsSequence) {
   1094   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
   1095   IsSimpleKeyAllowed = false;
   1096   Token T;
   1097   T.Kind = IsSequence ? Token::TK_FlowSequenceEnd
   1098                       : Token::TK_FlowMappingEnd;
   1099   T.Range = StringRef(Current, 1);
   1100   skip(1);
   1101   TokenQueue.push_back(T);
   1102   if (FlowLevel)
   1103     --FlowLevel;
   1104   return true;
   1105 }
   1106 
   1107 bool Scanner::scanFlowEntry() {
   1108   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
   1109   IsSimpleKeyAllowed = true;
   1110   Token T;
   1111   T.Kind = Token::TK_FlowEntry;
   1112   T.Range = StringRef(Current, 1);
   1113   skip(1);
   1114   TokenQueue.push_back(T);
   1115   return true;
   1116 }
   1117 
   1118 bool Scanner::scanBlockEntry() {
   1119   rollIndent(Column, Token::TK_BlockSequenceStart, TokenQueue.end());
   1120   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
   1121   IsSimpleKeyAllowed = true;
   1122   Token T;
   1123   T.Kind = Token::TK_BlockEntry;
   1124   T.Range = StringRef(Current, 1);
   1125   skip(1);
   1126   TokenQueue.push_back(T);
   1127   return true;
   1128 }
   1129 
   1130 bool Scanner::scanKey() {
   1131   if (!FlowLevel)
   1132     rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
   1133 
   1134   removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
   1135   IsSimpleKeyAllowed = !FlowLevel;
   1136 
   1137   Token T;
   1138   T.Kind = Token::TK_Key;
   1139   T.Range = StringRef(Current, 1);
   1140   skip(1);
   1141   TokenQueue.push_back(T);
   1142   return true;
   1143 }
   1144 
   1145 bool Scanner::scanValue() {
   1146   // If the previous token could have been a simple key, insert the key token
   1147   // into the token queue.
   1148   if (!SimpleKeys.empty()) {
   1149     SimpleKey SK = SimpleKeys.pop_back_val();
   1150     Token T;
   1151     T.Kind = Token::TK_Key;
   1152     T.Range = SK.Tok->Range;
   1153     TokenQueueT::iterator i, e;
   1154     for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) {
   1155       if (i == SK.Tok)
   1156         break;
   1157     }
   1158     assert(i != e && "SimpleKey not in token queue!");
   1159     i = TokenQueue.insert(i, T);
   1160 
   1161     // We may also need to add a Block-Mapping-Start token.
   1162     rollIndent(SK.Column, Token::TK_BlockMappingStart, i);
   1163 
   1164     IsSimpleKeyAllowed = false;
   1165   } else {
   1166     if (!FlowLevel)
   1167       rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
   1168     IsSimpleKeyAllowed = !FlowLevel;
   1169   }
   1170 
   1171   Token T;
   1172   T.Kind = Token::TK_Value;
   1173   T.Range = StringRef(Current, 1);
   1174   skip(1);
   1175   TokenQueue.push_back(T);
   1176   return true;
   1177 }
   1178 
   1179 // Forbidding inlining improves performance by roughly 20%.
   1180 // FIXME: Remove once llvm optimizes this to the faster version without hints.
   1181 LLVM_ATTRIBUTE_NOINLINE static bool
   1182 wasEscaped(StringRef::iterator First, StringRef::iterator Position);
   1183 
   1184 // Returns whether a character at 'Position' was escaped with a leading '\'.
   1185 // 'First' specifies the position of the first character in the string.
   1186 static bool wasEscaped(StringRef::iterator First,
   1187                        StringRef::iterator Position) {
   1188   assert(Position - 1 >= First);
   1189   StringRef::iterator I = Position - 1;
   1190   // We calculate the number of consecutive '\'s before the current position
   1191   // by iterating backwards through our string.
   1192   while (I >= First && *I == '\\') --I;
   1193   // (Position - 1 - I) now contains the number of '\'s before the current
   1194   // position. If it is odd, the character at 'Position' was escaped.
   1195   return (Position - 1 - I) % 2 == 1;
   1196 }
   1197 
   1198 bool Scanner::scanFlowScalar(bool IsDoubleQuoted) {
   1199   StringRef::iterator Start = Current;
   1200   unsigned ColStart = Column;
   1201   if (IsDoubleQuoted) {
   1202     do {
   1203       ++Current;
   1204       while (Current != End && *Current != '"')
   1205         ++Current;
   1206       // Repeat until the previous character was not a '\' or was an escaped
   1207       // backslash.
   1208     } while (   Current != End
   1209              && *(Current - 1) == '\\'
   1210              && wasEscaped(Start + 1, Current));
   1211   } else {
   1212     skip(1);
   1213     while (true) {
   1214       // Skip a ' followed by another '.
   1215       if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') {
   1216         skip(2);
   1217         continue;
   1218       } else if (*Current == '\'')
   1219         break;
   1220       StringRef::iterator i = skip_nb_char(Current);
   1221       if (i == Current) {
   1222         i = skip_b_break(Current);
   1223         if (i == Current)
   1224           break;
   1225         Current = i;
   1226         Column = 0;
   1227         ++Line;
   1228       } else {
   1229         if (i == End)
   1230           break;
   1231         Current = i;
   1232         ++Column;
   1233       }
   1234     }
   1235   }
   1236 
   1237   if (Current == End) {
   1238     setError("Expected quote at end of scalar", Current);
   1239     return false;
   1240   }
   1241 
   1242   skip(1); // Skip ending quote.
   1243   Token T;
   1244   T.Kind = Token::TK_Scalar;
   1245   T.Range = StringRef(Start, Current - Start);
   1246   TokenQueue.push_back(T);
   1247 
   1248   saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
   1249 
   1250   IsSimpleKeyAllowed = false;
   1251 
   1252   return true;
   1253 }
   1254 
   1255 bool Scanner::scanPlainScalar() {
   1256   StringRef::iterator Start = Current;
   1257   unsigned ColStart = Column;
   1258   unsigned LeadingBlanks = 0;
   1259   assert(Indent >= -1 && "Indent must be >= -1 !");
   1260   unsigned indent = static_cast<unsigned>(Indent + 1);
   1261   while (true) {
   1262     if (*Current == '#')
   1263       break;
   1264 
   1265     while (!isBlankOrBreak(Current)) {
   1266       if (  FlowLevel && *Current == ':'
   1267           && !(isBlankOrBreak(Current + 1) || *(Current + 1) == ',')) {
   1268         setError("Found unexpected ':' while scanning a plain scalar", Current);
   1269         return false;
   1270       }
   1271 
   1272       // Check for the end of the plain scalar.
   1273       if (  (*Current == ':' && isBlankOrBreak(Current + 1))
   1274           || (  FlowLevel
   1275           && (StringRef(Current, 1).find_first_of(",:?[]{}")
   1276               != StringRef::npos)))
   1277         break;
   1278 
   1279       StringRef::iterator i = skip_nb_char(Current);
   1280       if (i == Current)
   1281         break;
   1282       Current = i;
   1283       ++Column;
   1284     }
   1285 
   1286     // Are we at the end?
   1287     if (!isBlankOrBreak(Current))
   1288       break;
   1289 
   1290     // Eat blanks.
   1291     StringRef::iterator Tmp = Current;
   1292     while (isBlankOrBreak(Tmp)) {
   1293       StringRef::iterator i = skip_s_white(Tmp);
   1294       if (i != Tmp) {
   1295         if (LeadingBlanks && (Column < indent) && *Tmp == '\t') {
   1296           setError("Found invalid tab character in indentation", Tmp);
   1297           return false;
   1298         }
   1299         Tmp = i;
   1300         ++Column;
   1301       } else {
   1302         i = skip_b_break(Tmp);
   1303         if (!LeadingBlanks)
   1304           LeadingBlanks = 1;
   1305         Tmp = i;
   1306         Column = 0;
   1307         ++Line;
   1308       }
   1309     }
   1310 
   1311     if (!FlowLevel && Column < indent)
   1312       break;
   1313 
   1314     Current = Tmp;
   1315   }
   1316   if (Start == Current) {
   1317     setError("Got empty plain scalar", Start);
   1318     return false;
   1319   }
   1320   Token T;
   1321   T.Kind = Token::TK_Scalar;
   1322   T.Range = StringRef(Start, Current - Start);
   1323   TokenQueue.push_back(T);
   1324 
   1325   // Plain scalars can be simple keys.
   1326   saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
   1327 
   1328   IsSimpleKeyAllowed = false;
   1329 
   1330   return true;
   1331 }
   1332 
   1333 bool Scanner::scanAliasOrAnchor(bool IsAlias) {
   1334   StringRef::iterator Start = Current;
   1335   unsigned ColStart = Column;
   1336   skip(1);
   1337   while(true) {
   1338     if (   *Current == '[' || *Current == ']'
   1339         || *Current == '{' || *Current == '}'
   1340         || *Current == ','
   1341         || *Current == ':')
   1342       break;
   1343     StringRef::iterator i = skip_ns_char(Current);
   1344     if (i == Current)
   1345       break;
   1346     Current = i;
   1347     ++Column;
   1348   }
   1349 
   1350   if (Start == Current) {
   1351     setError("Got empty alias or anchor", Start);
   1352     return false;
   1353   }
   1354 
   1355   Token T;
   1356   T.Kind = IsAlias ? Token::TK_Alias : Token::TK_Anchor;
   1357   T.Range = StringRef(Start, Current - Start);
   1358   TokenQueue.push_back(T);
   1359 
   1360   // Alias and anchors can be simple keys.
   1361   saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
   1362 
   1363   IsSimpleKeyAllowed = false;
   1364 
   1365   return true;
   1366 }
   1367 
   1368 bool Scanner::scanBlockScalar(bool IsLiteral) {
   1369   StringRef::iterator Start = Current;
   1370   skip(1); // Eat | or >
   1371   while(true) {
   1372     StringRef::iterator i = skip_nb_char(Current);
   1373     if (i == Current) {
   1374       if (Column == 0)
   1375         break;
   1376       i = skip_b_break(Current);
   1377       if (i != Current) {
   1378         // We got a line break.
   1379         Column = 0;
   1380         ++Line;
   1381         Current = i;
   1382         continue;
   1383       } else {
   1384         // There was an error, which should already have been printed out.
   1385         return false;
   1386       }
   1387     }
   1388     Current = i;
   1389     ++Column;
   1390   }
   1391 
   1392   if (Start == Current) {
   1393     setError("Got empty block scalar", Start);
   1394     return false;
   1395   }
   1396 
   1397   Token T;
   1398   T.Kind = Token::TK_Scalar;
   1399   T.Range = StringRef(Start, Current - Start);
   1400   TokenQueue.push_back(T);
   1401   return true;
   1402 }
   1403 
   1404 bool Scanner::scanTag() {
   1405   StringRef::iterator Start = Current;
   1406   unsigned ColStart = Column;
   1407   skip(1); // Eat !.
   1408   if (Current == End || isBlankOrBreak(Current)); // An empty tag.
   1409   else if (*Current == '<') {
   1410     skip(1);
   1411     scan_ns_uri_char();
   1412     if (!consume('>'))
   1413       return false;
   1414   } else {
   1415     // FIXME: Actually parse the c-ns-shorthand-tag rule.
   1416     Current = skip_while(&Scanner::skip_ns_char, Current);
   1417   }
   1418 
   1419   Token T;
   1420   T.Kind = Token::TK_Tag;
   1421   T.Range = StringRef(Start, Current - Start);
   1422   TokenQueue.push_back(T);
   1423 
   1424   // Tags can be simple keys.
   1425   saveSimpleKeyCandidate(TokenQueue.back(), ColStart, false);
   1426 
   1427   IsSimpleKeyAllowed = false;
   1428 
   1429   return true;
   1430 }
   1431 
   1432 bool Scanner::fetchMoreTokens() {
   1433   if (IsStartOfStream)
   1434     return scanStreamStart();
   1435 
   1436   scanToNextToken();
   1437 
   1438   if (Current == End)
   1439     return scanStreamEnd();
   1440 
   1441   removeStaleSimpleKeyCandidates();
   1442 
   1443   unrollIndent(Column);
   1444 
   1445   if (Column == 0 && *Current == '%')
   1446     return scanDirective();
   1447 
   1448   if (Column == 0 && Current + 4 <= End
   1449       && *Current == '-'
   1450       && *(Current + 1) == '-'
   1451       && *(Current + 2) == '-'
   1452       && (Current + 3 == End || isBlankOrBreak(Current + 3)))
   1453     return scanDocumentIndicator(true);
   1454 
   1455   if (Column == 0 && Current + 4 <= End
   1456       && *Current == '.'
   1457       && *(Current + 1) == '.'
   1458       && *(Current + 2) == '.'
   1459       && (Current + 3 == End || isBlankOrBreak(Current + 3)))
   1460     return scanDocumentIndicator(false);
   1461 
   1462   if (*Current == '[')
   1463     return scanFlowCollectionStart(true);
   1464 
   1465   if (*Current == '{')
   1466     return scanFlowCollectionStart(false);
   1467 
   1468   if (*Current == ']')
   1469     return scanFlowCollectionEnd(true);
   1470 
   1471   if (*Current == '}')
   1472     return scanFlowCollectionEnd(false);
   1473 
   1474   if (*Current == ',')
   1475     return scanFlowEntry();
   1476 
   1477   if (*Current == '-' && isBlankOrBreak(Current + 1))
   1478     return scanBlockEntry();
   1479 
   1480   if (*Current == '?' && (FlowLevel || isBlankOrBreak(Current + 1)))
   1481     return scanKey();
   1482 
   1483   if (*Current == ':' && (FlowLevel || isBlankOrBreak(Current + 1)))
   1484     return scanValue();
   1485 
   1486   if (*Current == '*')
   1487     return scanAliasOrAnchor(true);
   1488 
   1489   if (*Current == '&')
   1490     return scanAliasOrAnchor(false);
   1491 
   1492   if (*Current == '!')
   1493     return scanTag();
   1494 
   1495   if (*Current == '|' && !FlowLevel)
   1496     return scanBlockScalar(true);
   1497 
   1498   if (*Current == '>' && !FlowLevel)
   1499     return scanBlockScalar(false);
   1500 
   1501   if (*Current == '\'')
   1502     return scanFlowScalar(false);
   1503 
   1504   if (*Current == '"')
   1505     return scanFlowScalar(true);
   1506 
   1507   // Get a plain scalar.
   1508   StringRef FirstChar(Current, 1);
   1509   if (!(isBlankOrBreak(Current)
   1510         || FirstChar.find_first_of("-?:,[]{}#&*!|>'\"%@`") != StringRef::npos)
   1511       || (*Current == '-' && !isBlankOrBreak(Current + 1))
   1512       || (!FlowLevel && (*Current == '?' || *Current == ':')
   1513           && isBlankOrBreak(Current + 1))
   1514       || (!FlowLevel && *Current == ':'
   1515                       && Current + 2 < End
   1516                       && *(Current + 1) == ':'
   1517                       && !isBlankOrBreak(Current + 2)))
   1518     return scanPlainScalar();
   1519 
   1520   setError("Unrecognized character while tokenizing.");
   1521   return false;
   1522 }
   1523 
   1524 Stream::Stream(StringRef Input, SourceMgr &SM)
   1525     : scanner(new Scanner(Input, SM)), CurrentDoc() {}
   1526 
   1527 Stream::Stream(MemoryBuffer *InputBuffer, SourceMgr &SM)
   1528     : scanner(new Scanner(InputBuffer, SM)), CurrentDoc() {}
   1529 
   1530 Stream::~Stream() {}
   1531 
   1532 bool Stream::failed() { return scanner->failed(); }
   1533 
   1534 void Stream::printError(Node *N, const Twine &Msg) {
   1535   SmallVector<SMRange, 1> Ranges;
   1536   Ranges.push_back(N->getSourceRange());
   1537   scanner->printError( N->getSourceRange().Start
   1538                      , SourceMgr::DK_Error
   1539                      , Msg
   1540                      , Ranges);
   1541 }
   1542 
   1543 document_iterator Stream::begin() {
   1544   if (CurrentDoc)
   1545     report_fatal_error("Can only iterate over the stream once");
   1546 
   1547   // Skip Stream-Start.
   1548   scanner->getNext();
   1549 
   1550   CurrentDoc.reset(new Document(*this));
   1551   return document_iterator(CurrentDoc);
   1552 }
   1553 
   1554 document_iterator Stream::end() {
   1555   return document_iterator();
   1556 }
   1557 
   1558 void Stream::skip() {
   1559   for (document_iterator i = begin(), e = end(); i != e; ++i)
   1560     i->skip();
   1561 }
   1562 
   1563 Node::Node(unsigned int Type, std::unique_ptr<Document> &D, StringRef A,
   1564            StringRef T)
   1565     : Doc(D), TypeID(Type), Anchor(A), Tag(T) {
   1566   SMLoc Start = SMLoc::getFromPointer(peekNext().Range.begin());
   1567   SourceRange = SMRange(Start, Start);
   1568 }
   1569 
   1570 std::string Node::getVerbatimTag() const {
   1571   StringRef Raw = getRawTag();
   1572   if (!Raw.empty() && Raw != "!") {
   1573     std::string Ret;
   1574     if (Raw.find_last_of('!') == 0) {
   1575       Ret = Doc->getTagMap().find("!")->second;
   1576       Ret += Raw.substr(1);
   1577       return std::move(Ret);
   1578     } else if (Raw.startswith("!!")) {
   1579       Ret = Doc->getTagMap().find("!!")->second;
   1580       Ret += Raw.substr(2);
   1581       return std::move(Ret);
   1582     } else {
   1583       StringRef TagHandle = Raw.substr(0, Raw.find_last_of('!') + 1);
   1584       std::map<StringRef, StringRef>::const_iterator It =
   1585           Doc->getTagMap().find(TagHandle);
   1586       if (It != Doc->getTagMap().end())
   1587         Ret = It->second;
   1588       else {
   1589         Token T;
   1590         T.Kind = Token::TK_Tag;
   1591         T.Range = TagHandle;
   1592         setError(Twine("Unknown tag handle ") + TagHandle, T);
   1593       }
   1594       Ret += Raw.substr(Raw.find_last_of('!') + 1);
   1595       return std::move(Ret);
   1596     }
   1597   }
   1598 
   1599   switch (getType()) {
   1600   case NK_Null:
   1601     return "tag:yaml.org,2002:null";
   1602   case NK_Scalar:
   1603     // TODO: Tag resolution.
   1604     return "tag:yaml.org,2002:str";
   1605   case NK_Mapping:
   1606     return "tag:yaml.org,2002:map";
   1607   case NK_Sequence:
   1608     return "tag:yaml.org,2002:seq";
   1609   }
   1610 
   1611   return "";
   1612 }
   1613 
   1614 Token &Node::peekNext() {
   1615   return Doc->peekNext();
   1616 }
   1617 
   1618 Token Node::getNext() {
   1619   return Doc->getNext();
   1620 }
   1621 
   1622 Node *Node::parseBlockNode() {
   1623   return Doc->parseBlockNode();
   1624 }
   1625 
   1626 BumpPtrAllocator &Node::getAllocator() {
   1627   return Doc->NodeAllocator;
   1628 }
   1629 
   1630 void Node::setError(const Twine &Msg, Token &Tok) const {
   1631   Doc->setError(Msg, Tok);
   1632 }
   1633 
   1634 bool Node::failed() const {
   1635   return Doc->failed();
   1636 }
   1637 
   1638 
   1639 
   1640 StringRef ScalarNode::getValue(SmallVectorImpl<char> &Storage) const {
   1641   // TODO: Handle newlines properly. We need to remove leading whitespace.
   1642   if (Value[0] == '"') { // Double quoted.
   1643     // Pull off the leading and trailing "s.
   1644     StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
   1645     // Search for characters that would require unescaping the value.
   1646     StringRef::size_type i = UnquotedValue.find_first_of("\\\r\n");
   1647     if (i != StringRef::npos)
   1648       return unescapeDoubleQuoted(UnquotedValue, i, Storage);
   1649     return UnquotedValue;
   1650   } else if (Value[0] == '\'') { // Single quoted.
   1651     // Pull off the leading and trailing 's.
   1652     StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
   1653     StringRef::size_type i = UnquotedValue.find('\'');
   1654     if (i != StringRef::npos) {
   1655       // We're going to need Storage.
   1656       Storage.clear();
   1657       Storage.reserve(UnquotedValue.size());
   1658       for (; i != StringRef::npos; i = UnquotedValue.find('\'')) {
   1659         StringRef Valid(UnquotedValue.begin(), i);
   1660         Storage.insert(Storage.end(), Valid.begin(), Valid.end());
   1661         Storage.push_back('\'');
   1662         UnquotedValue = UnquotedValue.substr(i + 2);
   1663       }
   1664       Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
   1665       return StringRef(Storage.begin(), Storage.size());
   1666     }
   1667     return UnquotedValue;
   1668   }
   1669   // Plain or block.
   1670   return Value.rtrim(" ");
   1671 }
   1672 
   1673 StringRef ScalarNode::unescapeDoubleQuoted( StringRef UnquotedValue
   1674                                           , StringRef::size_type i
   1675                                           , SmallVectorImpl<char> &Storage)
   1676                                           const {
   1677   // Use Storage to build proper value.
   1678   Storage.clear();
   1679   Storage.reserve(UnquotedValue.size());
   1680   for (; i != StringRef::npos; i = UnquotedValue.find_first_of("\\\r\n")) {
   1681     // Insert all previous chars into Storage.
   1682     StringRef Valid(UnquotedValue.begin(), i);
   1683     Storage.insert(Storage.end(), Valid.begin(), Valid.end());
   1684     // Chop off inserted chars.
   1685     UnquotedValue = UnquotedValue.substr(i);
   1686 
   1687     assert(!UnquotedValue.empty() && "Can't be empty!");
   1688 
   1689     // Parse escape or line break.
   1690     switch (UnquotedValue[0]) {
   1691     case '\r':
   1692     case '\n':
   1693       Storage.push_back('\n');
   1694       if (   UnquotedValue.size() > 1
   1695           && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
   1696         UnquotedValue = UnquotedValue.substr(1);
   1697       UnquotedValue = UnquotedValue.substr(1);
   1698       break;
   1699     default:
   1700       if (UnquotedValue.size() == 1)
   1701         // TODO: Report error.
   1702         break;
   1703       UnquotedValue = UnquotedValue.substr(1);
   1704       switch (UnquotedValue[0]) {
   1705       default: {
   1706           Token T;
   1707           T.Range = StringRef(UnquotedValue.begin(), 1);
   1708           setError("Unrecognized escape code!", T);
   1709           return "";
   1710         }
   1711       case '\r':
   1712       case '\n':
   1713         // Remove the new line.
   1714         if (   UnquotedValue.size() > 1
   1715             && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
   1716           UnquotedValue = UnquotedValue.substr(1);
   1717         // If this was just a single byte newline, it will get skipped
   1718         // below.
   1719         break;
   1720       case '0':
   1721         Storage.push_back(0x00);
   1722         break;
   1723       case 'a':
   1724         Storage.push_back(0x07);
   1725         break;
   1726       case 'b':
   1727         Storage.push_back(0x08);
   1728         break;
   1729       case 't':
   1730       case 0x09:
   1731         Storage.push_back(0x09);
   1732         break;
   1733       case 'n':
   1734         Storage.push_back(0x0A);
   1735         break;
   1736       case 'v':
   1737         Storage.push_back(0x0B);
   1738         break;
   1739       case 'f':
   1740         Storage.push_back(0x0C);
   1741         break;
   1742       case 'r':
   1743         Storage.push_back(0x0D);
   1744         break;
   1745       case 'e':
   1746         Storage.push_back(0x1B);
   1747         break;
   1748       case ' ':
   1749         Storage.push_back(0x20);
   1750         break;
   1751       case '"':
   1752         Storage.push_back(0x22);
   1753         break;
   1754       case '/':
   1755         Storage.push_back(0x2F);
   1756         break;
   1757       case '\\':
   1758         Storage.push_back(0x5C);
   1759         break;
   1760       case 'N':
   1761         encodeUTF8(0x85, Storage);
   1762         break;
   1763       case '_':
   1764         encodeUTF8(0xA0, Storage);
   1765         break;
   1766       case 'L':
   1767         encodeUTF8(0x2028, Storage);
   1768         break;
   1769       case 'P':
   1770         encodeUTF8(0x2029, Storage);
   1771         break;
   1772       case 'x': {
   1773           if (UnquotedValue.size() < 3)
   1774             // TODO: Report error.
   1775             break;
   1776           unsigned int UnicodeScalarValue;
   1777           if (UnquotedValue.substr(1, 2).getAsInteger(16, UnicodeScalarValue))
   1778             // TODO: Report error.
   1779             UnicodeScalarValue = 0xFFFD;
   1780           encodeUTF8(UnicodeScalarValue, Storage);
   1781           UnquotedValue = UnquotedValue.substr(2);
   1782           break;
   1783         }
   1784       case 'u': {
   1785           if (UnquotedValue.size() < 5)
   1786             // TODO: Report error.
   1787             break;
   1788           unsigned int UnicodeScalarValue;
   1789           if (UnquotedValue.substr(1, 4).getAsInteger(16, UnicodeScalarValue))
   1790             // TODO: Report error.
   1791             UnicodeScalarValue = 0xFFFD;
   1792           encodeUTF8(UnicodeScalarValue, Storage);
   1793           UnquotedValue = UnquotedValue.substr(4);
   1794           break;
   1795         }
   1796       case 'U': {
   1797           if (UnquotedValue.size() < 9)
   1798             // TODO: Report error.
   1799             break;
   1800           unsigned int UnicodeScalarValue;
   1801           if (UnquotedValue.substr(1, 8).getAsInteger(16, UnicodeScalarValue))
   1802             // TODO: Report error.
   1803             UnicodeScalarValue = 0xFFFD;
   1804           encodeUTF8(UnicodeScalarValue, Storage);
   1805           UnquotedValue = UnquotedValue.substr(8);
   1806           break;
   1807         }
   1808       }
   1809       UnquotedValue = UnquotedValue.substr(1);
   1810     }
   1811   }
   1812   Storage.insert(Storage.end(), UnquotedValue.begin(), UnquotedValue.end());
   1813   return StringRef(Storage.begin(), Storage.size());
   1814 }
   1815 
   1816 Node *KeyValueNode::getKey() {
   1817   if (Key)
   1818     return Key;
   1819   // Handle implicit null keys.
   1820   {
   1821     Token &t = peekNext();
   1822     if (   t.Kind == Token::TK_BlockEnd
   1823         || t.Kind == Token::TK_Value
   1824         || t.Kind == Token::TK_Error) {
   1825       return Key = new (getAllocator()) NullNode(Doc);
   1826     }
   1827     if (t.Kind == Token::TK_Key)
   1828       getNext(); // skip TK_Key.
   1829   }
   1830 
   1831   // Handle explicit null keys.
   1832   Token &t = peekNext();
   1833   if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) {
   1834     return Key = new (getAllocator()) NullNode(Doc);
   1835   }
   1836 
   1837   // We've got a normal key.
   1838   return Key = parseBlockNode();
   1839 }
   1840 
   1841 Node *KeyValueNode::getValue() {
   1842   if (Value)
   1843     return Value;
   1844   getKey()->skip();
   1845   if (failed())
   1846     return Value = new (getAllocator()) NullNode(Doc);
   1847 
   1848   // Handle implicit null values.
   1849   {
   1850     Token &t = peekNext();
   1851     if (   t.Kind == Token::TK_BlockEnd
   1852         || t.Kind == Token::TK_FlowMappingEnd
   1853         || t.Kind == Token::TK_Key
   1854         || t.Kind == Token::TK_FlowEntry
   1855         || t.Kind == Token::TK_Error) {
   1856       return Value = new (getAllocator()) NullNode(Doc);
   1857     }
   1858 
   1859     if (t.Kind != Token::TK_Value) {
   1860       setError("Unexpected token in Key Value.", t);
   1861       return Value = new (getAllocator()) NullNode(Doc);
   1862     }
   1863     getNext(); // skip TK_Value.
   1864   }
   1865 
   1866   // Handle explicit null values.
   1867   Token &t = peekNext();
   1868   if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) {
   1869     return Value = new (getAllocator()) NullNode(Doc);
   1870   }
   1871 
   1872   // We got a normal value.
   1873   return Value = parseBlockNode();
   1874 }
   1875 
   1876 void MappingNode::increment() {
   1877   if (failed()) {
   1878     IsAtEnd = true;
   1879     CurrentEntry = nullptr;
   1880     return;
   1881   }
   1882   if (CurrentEntry) {
   1883     CurrentEntry->skip();
   1884     if (Type == MT_Inline) {
   1885       IsAtEnd = true;
   1886       CurrentEntry = nullptr;
   1887       return;
   1888     }
   1889   }
   1890   Token T = peekNext();
   1891   if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) {
   1892     // KeyValueNode eats the TK_Key. That way it can detect null keys.
   1893     CurrentEntry = new (getAllocator()) KeyValueNode(Doc);
   1894   } else if (Type == MT_Block) {
   1895     switch (T.Kind) {
   1896     case Token::TK_BlockEnd:
   1897       getNext();
   1898       IsAtEnd = true;
   1899       CurrentEntry = nullptr;
   1900       break;
   1901     default:
   1902       setError("Unexpected token. Expected Key or Block End", T);
   1903     case Token::TK_Error:
   1904       IsAtEnd = true;
   1905       CurrentEntry = nullptr;
   1906     }
   1907   } else {
   1908     switch (T.Kind) {
   1909     case Token::TK_FlowEntry:
   1910       // Eat the flow entry and recurse.
   1911       getNext();
   1912       return increment();
   1913     case Token::TK_FlowMappingEnd:
   1914       getNext();
   1915     case Token::TK_Error:
   1916       // Set this to end iterator.
   1917       IsAtEnd = true;
   1918       CurrentEntry = nullptr;
   1919       break;
   1920     default:
   1921       setError( "Unexpected token. Expected Key, Flow Entry, or Flow "
   1922                 "Mapping End."
   1923               , T);
   1924       IsAtEnd = true;
   1925       CurrentEntry = nullptr;
   1926     }
   1927   }
   1928 }
   1929 
   1930 void SequenceNode::increment() {
   1931   if (failed()) {
   1932     IsAtEnd = true;
   1933     CurrentEntry = nullptr;
   1934     return;
   1935   }
   1936   if (CurrentEntry)
   1937     CurrentEntry->skip();
   1938   Token T = peekNext();
   1939   if (SeqType == ST_Block) {
   1940     switch (T.Kind) {
   1941     case Token::TK_BlockEntry:
   1942       getNext();
   1943       CurrentEntry = parseBlockNode();
   1944       if (!CurrentEntry) { // An error occurred.
   1945         IsAtEnd = true;
   1946         CurrentEntry = nullptr;
   1947       }
   1948       break;
   1949     case Token::TK_BlockEnd:
   1950       getNext();
   1951       IsAtEnd = true;
   1952       CurrentEntry = nullptr;
   1953       break;
   1954     default:
   1955       setError( "Unexpected token. Expected Block Entry or Block End."
   1956               , T);
   1957     case Token::TK_Error:
   1958       IsAtEnd = true;
   1959       CurrentEntry = nullptr;
   1960     }
   1961   } else if (SeqType == ST_Indentless) {
   1962     switch (T.Kind) {
   1963     case Token::TK_BlockEntry:
   1964       getNext();
   1965       CurrentEntry = parseBlockNode();
   1966       if (!CurrentEntry) { // An error occurred.
   1967         IsAtEnd = true;
   1968         CurrentEntry = nullptr;
   1969       }
   1970       break;
   1971     default:
   1972     case Token::TK_Error:
   1973       IsAtEnd = true;
   1974       CurrentEntry = nullptr;
   1975     }
   1976   } else if (SeqType == ST_Flow) {
   1977     switch (T.Kind) {
   1978     case Token::TK_FlowEntry:
   1979       // Eat the flow entry and recurse.
   1980       getNext();
   1981       WasPreviousTokenFlowEntry = true;
   1982       return increment();
   1983     case Token::TK_FlowSequenceEnd:
   1984       getNext();
   1985     case Token::TK_Error:
   1986       // Set this to end iterator.
   1987       IsAtEnd = true;
   1988       CurrentEntry = nullptr;
   1989       break;
   1990     case Token::TK_StreamEnd:
   1991     case Token::TK_DocumentEnd:
   1992     case Token::TK_DocumentStart:
   1993       setError("Could not find closing ]!", T);
   1994       // Set this to end iterator.
   1995       IsAtEnd = true;
   1996       CurrentEntry = nullptr;
   1997       break;
   1998     default:
   1999       if (!WasPreviousTokenFlowEntry) {
   2000         setError("Expected , between entries!", T);
   2001         IsAtEnd = true;
   2002         CurrentEntry = nullptr;
   2003         break;
   2004       }
   2005       // Otherwise it must be a flow entry.
   2006       CurrentEntry = parseBlockNode();
   2007       if (!CurrentEntry) {
   2008         IsAtEnd = true;
   2009       }
   2010       WasPreviousTokenFlowEntry = false;
   2011       break;
   2012     }
   2013   }
   2014 }
   2015 
   2016 Document::Document(Stream &S) : stream(S), Root(nullptr) {
   2017   // Tag maps starts with two default mappings.
   2018   TagMap["!"] = "!";
   2019   TagMap["!!"] = "tag:yaml.org,2002:";
   2020 
   2021   if (parseDirectives())
   2022     expectToken(Token::TK_DocumentStart);
   2023   Token &T = peekNext();
   2024   if (T.Kind == Token::TK_DocumentStart)
   2025     getNext();
   2026 }
   2027 
   2028 bool Document::skip()  {
   2029   if (stream.scanner->failed())
   2030     return false;
   2031   if (!Root)
   2032     getRoot();
   2033   Root->skip();
   2034   Token &T = peekNext();
   2035   if (T.Kind == Token::TK_StreamEnd)
   2036     return false;
   2037   if (T.Kind == Token::TK_DocumentEnd) {
   2038     getNext();
   2039     return skip();
   2040   }
   2041   return true;
   2042 }
   2043 
   2044 Token &Document::peekNext() {
   2045   return stream.scanner->peekNext();
   2046 }
   2047 
   2048 Token Document::getNext() {
   2049   return stream.scanner->getNext();
   2050 }
   2051 
   2052 void Document::setError(const Twine &Message, Token &Location) const {
   2053   stream.scanner->setError(Message, Location.Range.begin());
   2054 }
   2055 
   2056 bool Document::failed() const {
   2057   return stream.scanner->failed();
   2058 }
   2059 
   2060 Node *Document::parseBlockNode() {
   2061   Token T = peekNext();
   2062   // Handle properties.
   2063   Token AnchorInfo;
   2064   Token TagInfo;
   2065 parse_property:
   2066   switch (T.Kind) {
   2067   case Token::TK_Alias:
   2068     getNext();
   2069     return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(1));
   2070   case Token::TK_Anchor:
   2071     if (AnchorInfo.Kind == Token::TK_Anchor) {
   2072       setError("Already encountered an anchor for this node!", T);
   2073       return nullptr;
   2074     }
   2075     AnchorInfo = getNext(); // Consume TK_Anchor.
   2076     T = peekNext();
   2077     goto parse_property;
   2078   case Token::TK_Tag:
   2079     if (TagInfo.Kind == Token::TK_Tag) {
   2080       setError("Already encountered a tag for this node!", T);
   2081       return nullptr;
   2082     }
   2083     TagInfo = getNext(); // Consume TK_Tag.
   2084     T = peekNext();
   2085     goto parse_property;
   2086   default:
   2087     break;
   2088   }
   2089 
   2090   switch (T.Kind) {
   2091   case Token::TK_BlockEntry:
   2092     // We got an unindented BlockEntry sequence. This is not terminated with
   2093     // a BlockEnd.
   2094     // Don't eat the TK_BlockEntry, SequenceNode needs it.
   2095     return new (NodeAllocator) SequenceNode( stream.CurrentDoc
   2096                                            , AnchorInfo.Range.substr(1)
   2097                                            , TagInfo.Range
   2098                                            , SequenceNode::ST_Indentless);
   2099   case Token::TK_BlockSequenceStart:
   2100     getNext();
   2101     return new (NodeAllocator)
   2102       SequenceNode( stream.CurrentDoc
   2103                   , AnchorInfo.Range.substr(1)
   2104                   , TagInfo.Range
   2105                   , SequenceNode::ST_Block);
   2106   case Token::TK_BlockMappingStart:
   2107     getNext();
   2108     return new (NodeAllocator)
   2109       MappingNode( stream.CurrentDoc
   2110                  , AnchorInfo.Range.substr(1)
   2111                  , TagInfo.Range
   2112                  , MappingNode::MT_Block);
   2113   case Token::TK_FlowSequenceStart:
   2114     getNext();
   2115     return new (NodeAllocator)
   2116       SequenceNode( stream.CurrentDoc
   2117                   , AnchorInfo.Range.substr(1)
   2118                   , TagInfo.Range
   2119                   , SequenceNode::ST_Flow);
   2120   case Token::TK_FlowMappingStart:
   2121     getNext();
   2122     return new (NodeAllocator)
   2123       MappingNode( stream.CurrentDoc
   2124                  , AnchorInfo.Range.substr(1)
   2125                  , TagInfo.Range
   2126                  , MappingNode::MT_Flow);
   2127   case Token::TK_Scalar:
   2128     getNext();
   2129     return new (NodeAllocator)
   2130       ScalarNode( stream.CurrentDoc
   2131                 , AnchorInfo.Range.substr(1)
   2132                 , TagInfo.Range
   2133                 , T.Range);
   2134   case Token::TK_Key:
   2135     // Don't eat the TK_Key, KeyValueNode expects it.
   2136     return new (NodeAllocator)
   2137       MappingNode( stream.CurrentDoc
   2138                  , AnchorInfo.Range.substr(1)
   2139                  , TagInfo.Range
   2140                  , MappingNode::MT_Inline);
   2141   case Token::TK_DocumentStart:
   2142   case Token::TK_DocumentEnd:
   2143   case Token::TK_StreamEnd:
   2144   default:
   2145     // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not
   2146     //       !!null null.
   2147     return new (NodeAllocator) NullNode(stream.CurrentDoc);
   2148   case Token::TK_Error:
   2149     return nullptr;
   2150   }
   2151   llvm_unreachable("Control flow shouldn't reach here.");
   2152   return nullptr;
   2153 }
   2154 
   2155 bool Document::parseDirectives() {
   2156   bool isDirective = false;
   2157   while (true) {
   2158     Token T = peekNext();
   2159     if (T.Kind == Token::TK_TagDirective) {
   2160       parseTAGDirective();
   2161       isDirective = true;
   2162     } else if (T.Kind == Token::TK_VersionDirective) {
   2163       parseYAMLDirective();
   2164       isDirective = true;
   2165     } else
   2166       break;
   2167   }
   2168   return isDirective;
   2169 }
   2170 
   2171 void Document::parseYAMLDirective() {
   2172   getNext(); // Eat %YAML <version>
   2173 }
   2174 
   2175 void Document::parseTAGDirective() {
   2176   Token Tag = getNext(); // %TAG <handle> <prefix>
   2177   StringRef T = Tag.Range;
   2178   // Strip %TAG
   2179   T = T.substr(T.find_first_of(" \t")).ltrim(" \t");
   2180   std::size_t HandleEnd = T.find_first_of(" \t");
   2181   StringRef TagHandle = T.substr(0, HandleEnd);
   2182   StringRef TagPrefix = T.substr(HandleEnd).ltrim(" \t");
   2183   TagMap[TagHandle] = TagPrefix;
   2184 }
   2185 
   2186 bool Document::expectToken(int TK) {
   2187   Token T = getNext();
   2188   if (T.Kind != TK) {
   2189     setError("Unexpected token", T);
   2190     return false;
   2191   }
   2192   return true;
   2193 }
   2194